Пример #1
0
//
// What's the slowest way I can think of to compute all the norms??
//
Real
MFNorm (const MultiFab& mfab, 
        const int       exponent,
        const int       srcComp,
        const int       numComp,
        const int       numGrow)
{
    BL_ASSERT (numGrow <= mfab.nGrow());
    BoxArray boxes = mfab.boxArray();
    boxes.grow(numGrow);
    //
    // Get a copy of the multifab
    //
    MultiFab mftmp(mfab.boxArray(), numComp, 0);
    MultiFab::Copy(mftmp,mfab,srcComp,0,numComp,numGrow);
    //
    // Calculate the Norms
    //
    Real myNorm = 0;
    if ( exponent == 0 )
    {
        for ( MFIter mftmpmfi(mftmp); mftmpmfi.isValid(); ++mftmpmfi)
        {
            mftmp[mftmpmfi].abs(boxes[mftmpmfi.index()], 0, numComp);
            myNorm = std::max(myNorm, mftmp[mftmpmfi].norm(0, 0, numComp));
        }
	ParallelDescriptor::ReduceRealMax(myNorm);

    } else if ( exponent == 1 )
    {
        for ( MFIter mftmpmfi(mftmp); mftmpmfi.isValid(); ++mftmpmfi)
        {
            mftmp[mftmpmfi].abs(boxes[mftmpmfi.index()], 0, numComp);

            myNorm += mftmp[mftmpmfi].norm(1, 0, numComp);
        }
	ParallelDescriptor::ReduceRealSum(myNorm);

    } else if ( exponent == 2 )
    {
        for ( MFIter mftmpmfi(mftmp); mftmpmfi.isValid(); ++mftmpmfi)
        {
            mftmp[mftmpmfi].abs(boxes[mftmpmfi.index()], 0, numComp);

            myNorm += pow(mftmp[mftmpmfi].norm(2, 0, numComp), 2);
        }
	ParallelDescriptor::ReduceRealSum(myNorm);
        myNorm = sqrt( myNorm );

    } else {

        BoxLib::Error("Invalid exponent to norm function");
    }
    
    return myNorm;
}
Пример #2
0
void
MultiGrid::average (MultiFab&       c,
                    const MultiFab& f)
{
    BL_PROFILE("MultiGrid::average()");
    //
    // Use Fortran function to average down (restrict) f to c.
    //
    const bool tiling = true;
#ifdef _OPENMP
#pragma omp parallel
#endif
    for (MFIter cmfi(c,tiling); cmfi.isValid(); ++cmfi)
    {
        BL_ASSERT(c.boxArray().get(cmfi.index()) == cmfi.validbox());

        const int        nc   = c.nComp();
        const Box&       bx   = cmfi.tilebox();
        FArrayBox&       cfab = c[cmfi];
        const FArrayBox& ffab = f[cmfi];

        FORT_AVERAGE(cfab.dataPtr(),
                     ARLIM(cfab.loVect()), ARLIM(cfab.hiVect()),
                     ffab.dataPtr(),
                     ARLIM(ffab.loVect()), ARLIM(ffab.hiVect()),
                     bx.loVect(), bx.hiVect(), &nc);
    }
}
Пример #3
0
void
MultiGrid::interpolate (MultiFab&       f,
                        const MultiFab& c)
{
    BL_PROFILE("MultiGrid::interpolate()");
    //
    // Use fortran function to interpolate up (prolong) c to f
    // Note: returns f=f+P(c) , i.e. ADDS interp'd c to f.
    //
    // OMP over boxes
#ifdef _OPENMP
#pragma omp parallel
#endif
    for (MFIter mfi(c); mfi.isValid(); ++mfi)
    {
        const int           k = mfi.index();
        const Box&         bx = c.boxArray()[k];
        const int          nc = f.nComp();
        const FArrayBox& cfab = c[mfi];
        FArrayBox&       ffab = f[mfi];

        FORT_INTERP(ffab.dataPtr(),
                    ARLIM(ffab.loVect()), ARLIM(ffab.hiVect()),
                    cfab.dataPtr(),
                    ARLIM(cfab.loVect()), ARLIM(cfab.hiVect()),
                    bx.loVect(), bx.hiVect(), &nc);
    }
}
Пример #4
0
    void average_down (MultiFab& S_fine, MultiFab& S_crse, 
                       int scomp, int ncomp, const IntVect& ratio)
    {
        BL_ASSERT(S_crse.nComp() == S_fine.nComp());

        //
        // Coarsen() the fine stuff on processors owning the fine data.
        //
        BoxArray crse_S_fine_BA = S_fine.boxArray(); crse_S_fine_BA.coarsen(ratio);

        MultiFab crse_S_fine(crse_S_fine_BA,ncomp,0);

#ifdef _OPENMP
#pragma omp parallel
#endif
        for (MFIter mfi(crse_S_fine,true); mfi.isValid(); ++mfi)
        {
            //  NOTE: The tilebox is defined at the coarse level.
            const Box& tbx = mfi.tilebox();

            //  NOTE: We copy from component scomp of the fine fab into component 0 of the crse fab
            //        because the crse fab is a temporary which was made starting at comp 0, it is
            //        not part of the actual crse multifab which came in.

            BL_FORT_PROC_CALL(BL_AVGDOWN,bl_avgdown)
                (tbx.loVect(), tbx.hiVect(),
                 BL_TO_FORTRAN_N(S_fine[mfi],scomp),
                 BL_TO_FORTRAN_N(crse_S_fine[mfi],0),
                 ratio.getVect(),&ncomp);
        }

        S_crse.copy(crse_S_fine,0,scomp,ncomp);
   }
Пример #5
0
void solve_with_Cpp(MultiFab& soln, MultiFab& gphi, Real a, Real b, MultiFab& alpha, 
		    PArray<MultiFab>& beta, MultiFab& rhs, const BoxArray& bs, const Geometry& geom)
{
  BL_PROFILE("solve_with_Cpp()");
  BndryData bd(bs, 1, geom);
  set_boundary(bd, rhs, 0);

  ABecLaplacian abec_operator(bd, dx);
  abec_operator.setScalars(a, b);
  abec_operator.setCoefficients(alpha, beta);

  MultiGrid mg(abec_operator);
  mg.setVerbose(verbose);
  mg.solve(soln, rhs, tolerance_rel, tolerance_abs);

  PArray<MultiFab> grad_phi(BL_SPACEDIM, PArrayManage);
  for (int n = 0; n < BL_SPACEDIM; ++n)
      grad_phi.set(n, new MultiFab(BoxArray(soln.boxArray()).surroundingNodes(n), 1, 0));

#if (BL_SPACEDIM == 2)
  abec_operator.compFlux(grad_phi[0],grad_phi[1],soln);
#elif (BL_SPACEDIM == 3)
  abec_operator.compFlux(grad_phi[0],grad_phi[1],grad_phi[2],soln);
#endif

  // Average edge-centered gradients to cell centers.
  BoxLib::average_face_to_cellcenter(gphi, grad_phi, geom);
}
Пример #6
0
void
Nyx::strang_second_step (Real time, Real dt, MultiFab& S_new, MultiFab& D_new)
{
    BL_PROFILE("Nyx::strang_second_step()");
    Real half_dt = 0.5*dt;
    int  min_iter = 100000;
    int  max_iter =      0;

    int min_iter_grid;
    int max_iter_grid;

    // Set a at the half of the time step in the second strang
    const Real a = get_comoving_a(time-half_dt);

    MultiFab reset_e_src(S_new.boxArray(), S_new.DistributionMap(), 1, NUM_GROW);
    reset_e_src.setVal(0.0);
    reset_internal_energy(S_new,D_new,reset_e_src);
    compute_new_temp     (S_new,D_new);

#ifndef FORCING
    {
      const Real z = 1.0/a - 1.0;
      fort_interp_to_this_z(&z);
    }
#endif

#ifdef _OPENMP
#pragma omp parallel private(min_iter_grid,max_iter_grid) reduction(min:min_iter) reduction(max:max_iter)
#endif
    for (MFIter mfi(S_new,true); mfi.isValid(); ++mfi)
    {
        // Here bx is just the valid region
        const Box& bx = mfi.tilebox();

        min_iter_grid = 100000;
        max_iter_grid =      0;

        integrate_state
            (bx.loVect(), bx.hiVect(), 
             BL_TO_FORTRAN(S_new[mfi]),
             BL_TO_FORTRAN(D_new[mfi]),
             &a, &half_dt, &min_iter_grid, &max_iter_grid);

        if (S_new[mfi].contains_nan(bx,0,S_new.nComp()))
        {
            std::cout << "NANS IN THIS GRID " << bx << std::endl;
        }

        min_iter = std::min(min_iter,min_iter_grid);
        max_iter = std::max(max_iter,max_iter_grid);
    }

    ParallelDescriptor::ReduceIntMax(max_iter);
    ParallelDescriptor::ReduceIntMin(min_iter);

    if (heat_cool_type == 1)
        if (ParallelDescriptor::IOProcessor())
            std::cout << "Min/Max Number of Iterations in Second Strang: " << min_iter << " " << max_iter << std::endl;
}
Пример #7
0
void
ABec4::aCoefficients (const MultiFab& _a)
{
    BL_ASSERT(_a.ok());
    BL_ASSERT(_a.boxArray() == (acoefs[0])->boxArray());
    invalidate_a_to_level(0);
    MultiFab::Copy(*acoefs[0],_a,0,0,acoefs[0]->nComp(),acoefs[0]->nGrow());
}
Пример #8
0
void
ABec4::bCoefficients (const MultiFab& _b)
{
    BL_ASSERT(_b.ok());
    BL_ASSERT(_b.boxArray() == (bcoefs[0])->boxArray());
    invalidate_b_to_level(0);
    MultiFab::Copy(*bcoefs[0],_b,0,0,bcoefs[0]->nComp(),bcoefs[0]->nGrow());
}
Пример #9
0
static
void
Write_N_Read (const MultiFab& mf,
              const std::string&  mf_name)
{
    if (ParallelDescriptor::IOProcessor())
    {
        std::cout << "Writing the MultiFab to disk ...\n";
    }

    double start, end;

    ParallelDescriptor::Barrier();

    if (ParallelDescriptor::IOProcessor())
    {
        start = BoxLib::wsecond();
    }

    ParallelDescriptor::Barrier();

    if (ParallelDescriptor::IOProcessor())
    {
        end = BoxLib::wsecond();

        std::cout << "\nWallclock time for MF write: " << (end-start) << '\n';

        std::cout << "Reading the MultiFab from disk ...\n";
    }

    VisMF vmf(mf_name);

    BL_ASSERT(vmf.size() == mf.boxArray().size());

    for (MFIter mfi(mf); mfi.isValid(); ++mfi)
    {
        //const FArrayBox& fab = vmf[mfi.index()];
        const FArrayBox& fab = vmf.GetFab(mfi.index(), 0);

        std::cout << "\tCPU #"
                  << ParallelDescriptor::MyProc()
                  << " read FAB #"
                  << mfi.index()
                  << '\n';
    }

    ParallelDescriptor::Barrier();

    if (ParallelDescriptor::IOProcessor())
    {
        std::cout << "Building new MultiFab from disk version ....\n\n";
    }

    MultiFab new_mf;
    
    VisMF::Read(new_mf, mf_name);
}
Пример #10
0
//
// Do a one-component dot product of r & z using supplied components.
//
static
Real
dotxy (const MultiFab& r,
       int             rcomp,
       const MultiFab& z,
       int             zcomp,
       bool            local)
{
    BL_PROFILE("CGSolver::dotxy()");

    BL_ASSERT(r.nComp() > rcomp);
    BL_ASSERT(z.nComp() > zcomp);
    BL_ASSERT(r.boxArray() == z.boxArray());

    const int ncomp = 1;
    const int nghost = 0;
    return MultiFab::Dot(r,rcomp,z,zcomp,ncomp,nghost,local);
}
Пример #11
0
    void average_down (MultiFab& S_fine, MultiFab& S_crse, const Geometry& fgeom, const Geometry& cgeom, 
                       int scomp, int ncomp, const IntVect& ratio)
    {
  
        if (S_fine.is_nodal() || S_crse.is_nodal())
        {
            BoxLib::Error("Can't use BoxLib::average_down for nodal MultiFab!");
        }

#if (BL_SPACEDIM == 3)
	BoxLib::average_down(S_fine, S_crse, scomp, ncomp, ratio);
	return;
#else

        BL_ASSERT(S_crse.nComp() == S_fine.nComp());

        //
        // Coarsen() the fine stuff on processors owning the fine data.
        //
	const BoxArray& fine_BA = S_fine.boxArray();
        BoxArray crse_S_fine_BA = fine_BA; 
	crse_S_fine_BA.coarsen(ratio);

        MultiFab crse_S_fine(crse_S_fine_BA,ncomp,0);

	MultiFab fvolume;
	fgeom.GetVolume(fvolume, fine_BA, 0);

#ifdef _OPENMP
#pragma omp parallel
#endif
        for (MFIter mfi(crse_S_fine,true); mfi.isValid(); ++mfi)
        {
            //  NOTE: The tilebox is defined at the coarse level.
            const Box& tbx = mfi.tilebox();

            //  NOTE: We copy from component scomp of the fine fab into component 0 of the crse fab
            //        because the crse fab is a temporary which was made starting at comp 0, it is
            //        not part of the actual crse multifab which came in.
            BL_FORT_PROC_CALL(BL_AVGDOWN_WITH_VOL,bl_avgdown_with_vol)
                (tbx.loVect(), tbx.hiVect(),
                 BL_TO_FORTRAN_N(S_fine[mfi],scomp),
                 BL_TO_FORTRAN_N(crse_S_fine[mfi],0),
                 BL_TO_FORTRAN(fvolume[mfi]),
                 ratio.getVect(),&ncomp);
	}

        S_crse.copy(crse_S_fine,0,scomp,ncomp);
#endif
   }
Пример #12
0
void solve_with_F90(MultiFab& soln, MultiFab& gphi, Real a, Real b, MultiFab& alpha, 
		    PArray<MultiFab>& beta, MultiFab& rhs, const BoxArray& bs, const Geometry& geom)
{
  BL_PROFILE("solve_with_F90()");

  FMultiGrid fmg(geom);

  int mg_bc[2*BL_SPACEDIM];
  if (bc_type == Periodic) {
    // Define the type of boundary conditions to be periodic
    for ( int n = 0; n < BL_SPACEDIM; ++n ) {
      mg_bc[2*n + 0] = MGT_BC_PER;
      mg_bc[2*n + 1] = MGT_BC_PER;
    }
  }
  else if (bc_type == Neumann) {
    // Define the type of boundary conditions to be Neumann
    for ( int n = 0; n < BL_SPACEDIM; ++n ) {
      mg_bc[2*n + 0] = MGT_BC_NEU;
      mg_bc[2*n + 1] = MGT_BC_NEU;
    }
  }
  else if (bc_type == Dirichlet) {
    // Define the type of boundary conditions to be Dirichlet
    for ( int n = 0; n < BL_SPACEDIM; ++n ) {
      mg_bc[2*n + 0] = MGT_BC_DIR;
      mg_bc[2*n + 1] = MGT_BC_DIR;
    }
  }

  fmg.set_bc(mg_bc);
  fmg.set_maxorder(maxorder);

  fmg.set_scalars(a, b);
  fmg.set_coefficients(alpha, beta);

  int always_use_bnorm = 0;
  int need_grad_phi = 1;
  fmg.solve(soln, rhs, tolerance_rel, tolerance_abs, always_use_bnorm, need_grad_phi);

  PArray<MultiFab> grad_phi(BL_SPACEDIM, PArrayManage);
  for (int n = 0; n < BL_SPACEDIM; ++n)
      grad_phi.set(n, new MultiFab(BoxArray(soln.boxArray()).surroundingNodes(n), 1, 0));

  fmg.get_fluxes(grad_phi);

  // Average edge-centered gradients to cell centers.
  BoxLib::average_face_to_cellcenter(gphi, grad_phi, geom);
}
Пример #13
0
void 
MultiFab_C_to_F::share (MultiFab& cmf, const std::string& fmf_name)
{
    const Box& bx = cmf.boxArray()[0];
    int nodal[BL_SPACEDIM];
    for ( int i = 0; i < BL_SPACEDIM; ++i ) {
	nodal[i] = (bx.type(i) == IndexType::NODE) ? 1 : 0;
    }

    share_multifab_with_f (fmf_name.c_str(), cmf.nComp(), cmf.nGrow(), nodal);

    for (MFIter mfi(cmf); mfi.isValid(); ++mfi)
    {
	int li = mfi.LocalIndex();
	const FArrayBox& fab = cmf[mfi];
	share_fab_with_f (li, fab.dataPtr());
    }
}
Пример #14
0
void
MCMultiGrid::interpolate (MultiFab&       f,
			  const MultiFab& c)
{
    //
    // Use fortran function to interpolate up (prolong) c to f
    // Note: returns f=f+P(c) , i.e. ADDS interp'd c to f
    //
    for (MFIter fmfi(f); fmfi.isValid(); ++fmfi)
    {
        const Box&       bx   = c.boxArray()[fmfi.index()];
	int              nc   = f.nComp();
        const FArrayBox& cfab = c[fmfi];
        FArrayBox&       ffab = f[fmfi];
	FORT_INTERP(
	    ffab.dataPtr(),ARLIM(ffab.loVect()),ARLIM(ffab.hiVect()),
	    cfab.dataPtr(),ARLIM(cfab.loVect()),ARLIM(cfab.hiVect()),
	    bx.loVect(), bx.hiVect(), &nc);
    }
}
Пример #15
0
void
MacOperator::setCoefficients (MultiFab*   area,
                              MultiFab&   rho,
                              int         rho_comp,
                              const Real* dx)
{
    //
    // Should check that all BoxArrays are consistant.
    //
    const BoxArray& ba = gbox[0];
    BL_ASSERT(rho.boxArray() == ba);
    //
    // First set scalar coeficients.
    //
    setScalars(0.0,1.0);
    //
    // Don't need to set a because alpha is set to zero.
    //
    const int n_grow = 0;

    D_TERM(MultiFab bxcoef(area[0].boxArray(),area[0].nComp(),n_grow);,
Пример #16
0
int
CGSolver::jbb_precond (MultiFab&       sol,
		       const MultiFab& rhs,
                       int             lev,
		       LinOp&          Lp)
{
    //
    // This is a local routine.  No parallel is allowed to happen here.
    //
    int                  lev_loc = lev;
    const Real           eps_rel = 1.e-2;
    const Real           eps_abs = 1.e-16;
    const int            nghost  = sol.nGrow();
    const int            ncomp   = sol.nComp();
    const bool           local   = true;
    const LinOp::BC_Mode bc_mode = LinOp::Homogeneous_BC;

    BL_ASSERT(ncomp == 1 );
    BL_ASSERT(sol.boxArray() == Lp.boxArray(lev_loc));
    BL_ASSERT(rhs.boxArray() == Lp.boxArray(lev_loc));

    const BoxArray& ba = sol.boxArray();
    const DistributionMapping& dm = sol.DistributionMap();

    MultiFab sorig(ba, ncomp, nghost, dm);

    MultiFab r(ba, ncomp, nghost, dm);
    MultiFab z(ba, ncomp, nghost, dm);
    MultiFab q(ba, ncomp, nghost, dm);
    MultiFab p(ba, ncomp, nghost, dm);

    sorig.copy(sol);

    Lp.residual(r, rhs, sorig, lev_loc, LinOp::Homogeneous_BC, local);

    sol.setVal(0);

    Real       rnorm    = norm_inf(r,local);
    const Real rnorm0   = rnorm;
    Real       minrnorm = rnorm;

    if ( verbose > 2 && ParallelDescriptor::IOProcessor(color()) )
    {
        Spacer(std::cout, lev_loc);
        std::cout << "     jbb_precond: Initial error :        " << rnorm0 << '\n';
    }

    const Real Lp_norm = Lp.norm(0, lev_loc, local);
    Real sol_norm = 0;
    int  ret      = 0;			// will return this value if all goes well
    Real rho_1    = 0;
    int  nit      = 1;

    if ( rnorm0 == 0 || rnorm0 < eps_abs )
    {
        if ( verbose > 2 && ParallelDescriptor::IOProcessor(color()) )
	{
            Spacer(std::cout, lev_loc);
            std::cout << "jbb_precond: niter = 0,"
                      << ", rnorm = " << rnorm 
                      << ", eps_abs = " << eps_abs << std::endl;
	}
        return 0;
    }

    for (; nit <= maxiter; ++nit)
    {
        z.copy(r);

        Real rho = dotxy(z,r,local);
        if (nit == 1)
        {
            p.copy(z);
        }
        else
        {
            Real beta = rho/rho_1;
            sxay(p, z, beta, p);
        }

        Lp.apply(q, p, lev_loc, bc_mode, local);

        Real alpha;
        if ( Real pw = dotxy(p,q,local) )
	{
            alpha = rho/pw;
	}
        else
	{
            ret = 1; break;
	}
        
        if ( verbose > 3 && ParallelDescriptor::IOProcessor(color()) )
        {
            Spacer(std::cout, lev_loc);
            std::cout << "jbb_precond:" << " nit " << nit
                      << " rho " << rho << " alpha " << alpha << '\n';
        }
        sxay(sol, sol, alpha, p);
        sxay(  r,   r,-alpha, q);
        rnorm    = norm_inf(r,   local);
        sol_norm = norm_inf(sol, local);

        if ( verbose > 2 && ParallelDescriptor::IOProcessor(color()) )
        {
            Spacer(std::cout, lev_loc);
            std::cout << "jbb_precond:       Iteration"
                      << std::setw(4) << nit
                      << " rel. err. "
                      << rnorm/(rnorm0) << '\n';
        }

        if ( rnorm < eps_rel*(Lp_norm*sol_norm + rnorm0) || rnorm < eps_abs )
	{
            break;
	}
      
        if ( rnorm > def_unstable_criterion*minrnorm )
	{
            ret = 2; break;
	}
        else if ( rnorm < minrnorm )
	{
            minrnorm = rnorm;
	}

        rho_1 = rho;
    }
    
    if ( verbose > 0 && ParallelDescriptor::IOProcessor(color()) )
    {
        Spacer(std::cout, lev_loc);
        std::cout << "jbb_precond: Final Iteration"
                  << std::setw(4) << nit
                  << " rel. err. "
                  << rnorm/(rnorm0) << '\n';
    }
    if ( ret == 0 && rnorm > eps_rel*(Lp_norm*sol_norm + rnorm0) && rnorm > eps_abs )
    {
        if ( ParallelDescriptor::IOProcessor(color()) )
	{
            BoxLib::Warning("jbb_precond:: failed to converge!");
	}
        ret = 8;
    }

    if ( ( ret == 0 || ret == 8 ) && (rnorm < rnorm0) )
    {
        sol.plus(sorig, 0, 1, 0);
    } 
    else 
    {
        sol.setVal(0);
        sol.plus(sorig, 0, 1, 0);
    }

    return ret;
}
Пример #17
0
void
MCLinOp::makeCoefficients (MultiFab&       cs,
                           const MultiFab& fn,
                           int             level)
{
    const int nc = fn.nComp();
    //
    // Determine index type of incoming MultiFab.
    //
    const IndexType iType(fn.boxArray().ixType());
    const IndexType cType(D_DECL(IndexType::CELL, IndexType::CELL, IndexType::CELL));
    const IndexType xType(D_DECL(IndexType::NODE, IndexType::CELL, IndexType::CELL));
    const IndexType yType(D_DECL(IndexType::CELL, IndexType::NODE, IndexType::CELL));
#if (BL_SPACEDIM == 3)    
    const IndexType zType(D_DECL(IndexType::CELL, IndexType::CELL, IndexType::NODE));
#endif
    int cdir;
    if (iType == cType)
    {
        cdir = -1;
    }
    else if (iType == xType)
    {
        cdir = 0;
    }
    else if (iType == yType)
    {
        cdir = 1;
    }
#if (BL_SPACEDIM == 3)
    else if (iType == zType)
    {
        cdir = 2;
    }
#endif
    else
        BoxLib::Abort("MCLinOp::makeCoeffients(): Bad index type");
    
    BoxArray d(gbox[level]);
    if (cdir >= 0)
	d.surroundingNodes(cdir);

    int nGrow=0;
    cs.define(d, nc, nGrow, Fab_allocate);
    cs.setVal(0.0);

    const BoxArray& grids = gbox[level];

    for (MFIter csmfi(cs); csmfi.isValid(); ++csmfi)
    {
        const Box&       grd   = grids[csmfi.index()];
        FArrayBox&       csfab = cs[csmfi];
        const FArrayBox& fnfab = fn[csmfi];

	switch(cdir)
        {
	case -1:
	    FORT_AVERAGECC(
		csfab.dataPtr(),
                ARLIM(csfab.loVect()), ARLIM(csfab.hiVect()),
		fnfab.dataPtr(),
                ARLIM(fnfab.loVect()), ARLIM(fnfab.hiVect()),
		grd.loVect(),
                grd.hiVect(), &nc);
	    break;
	case 0:
	case 1:
	case 2:
	    if ( harmavg )
            {
		FORT_HARMONIC_AVERAGEEC(
		    csfab.dataPtr(), 
                    ARLIM(csfab.loVect()), ARLIM(csfab.hiVect()),
		    fnfab.dataPtr(), 
                    ARLIM(fnfab.loVect()), ARLIM(fnfab.hiVect()),
		    grd.loVect(),
                    grd.hiVect(), &nc, &cdir);
	    }
            else
            {
		FORT_AVERAGEEC(
		    csfab.dataPtr(), 
                    ARLIM(csfab.loVect()), ARLIM(csfab.hiVect()),
		    fnfab.dataPtr(), 
                    ARLIM(fnfab.loVect()), ARLIM(fnfab.hiVect()),
		    grd.loVect(),
                    grd.hiVect(), &nc, &cdir);
	    }
	    break;
	default:
	    BoxLib::Error("MCLinOp::makeCoeffients(): bad coefficient coarsening direction!");
	}
    }
}
Пример #18
0
void
MCLinOp::applyBC (MultiFab& inout,
		  int       level,
		  MCBC_Mode bc_mode)
{
    //
    // The inout MultiFab must have at least MCLinOp_grow ghost cells
    // for applyBC()
    //
    BL_ASSERT(inout.nGrow() >= MCLinOp_grow);
    //
    // The inout MultiFab must have at least Periodic_BC_grow cells for the
    // algorithms taking care of periodic boundary conditions.
    //
    BL_ASSERT(inout.nGrow() >= MCLinOp_grow);
    //
    // No coarsened boundary values, cannot apply inhomog at lev>0.
    //
    BL_ASSERT(!(level>0 && bc_mode == MCInhomogeneous_BC));
    
    int flagden = 1;	// fill in the bndry data and undrrelxr
    int flagbc  = 1;	// with values
    if (bc_mode == MCHomogeneous_BC)
        flagbc = 0; // nodata if homog
    int nc = inout.nComp();
    BL_ASSERT(nc == numcomp );

    inout.setBndry(-1.e30);
    inout.FillBoundary();
    prepareForLevel(level);

    geomarray[level].FillPeriodicBoundary(inout,0,nc);
    //
    // Fill boundary cells.
    //
#ifdef _OPENMP
#pragma omp parallel
#endif
    for (MFIter mfi(inout); mfi.isValid(); ++mfi)
    {
        const int gn = mfi.index();

        BL_ASSERT(gbox[level][gn] == inout.box(gn));

        const BndryData::RealTuple&      bdl = bgb.bndryLocs(gn);
        const Array< Array<BoundCond> >& bdc = bgb.bndryConds(gn);
        const MaskTuple&                 msk = maskvals[level][gn];

        for (OrientationIter oitr; oitr; ++oitr)
        {
            const Orientation face = oitr();
            FabSet& f  = (*undrrelxr[level])[face];
            FabSet& td = (*tangderiv[level])[face];
            int cdr(face);
            const FabSet& fs = bgb.bndryValues(face);
	    Real bcl = bdl[face];
            const Array<BoundCond>& bc = bdc[face];
	    const int *bct = (const int*) bc.dataPtr();
	    const FArrayBox& fsfab = fs[gn];
	    const Real* bcvalptr = fsfab.dataPtr();
            //
	    // Way external derivs stored.
            //
	    const Real* exttdptr = fsfab.dataPtr(numcomp); 
	    const int* fslo      = fsfab.loVect();
	    const int* fshi      = fsfab.hiVect();
	    FArrayBox& inoutfab  = inout[gn];
	    FArrayBox& denfab    = f[gn];
	    FArrayBox& tdfab     = td[gn];
#if BL_SPACEDIM==2
            int cdir = face.coordDir(), perpdir = -1;
	    if (cdir == 0)
                perpdir = 1;
	    else if (cdir == 1)
                perpdir = 0;
	    else
                BoxLib::Abort("MCLinOp::applyBC(): bad logic");

	    const Mask& m    = *msk[face];
	    const Mask& mphi = *msk[Orientation(perpdir,Orientation::high)];
	    const Mask& mplo = *msk[Orientation(perpdir,Orientation::low)];
	    FORT_APPLYBC(
		&flagden, &flagbc, &maxorder,
		inoutfab.dataPtr(), 
                ARLIM(inoutfab.loVect()), ARLIM(inoutfab.hiVect()),
		&cdr, bct, &bcl,
		bcvalptr, ARLIM(fslo), ARLIM(fshi),
		m.dataPtr(),    ARLIM(m.loVect()),    ARLIM(m.hiVect()),
		mphi.dataPtr(), ARLIM(mphi.loVect()), ARLIM(mphi.hiVect()),
		mplo.dataPtr(), ARLIM(mplo.loVect()), ARLIM(mplo.hiVect()),
		denfab.dataPtr(), 
		ARLIM(denfab.loVect()), ARLIM(denfab.hiVect()),
		exttdptr, ARLIM(fslo), ARLIM(fshi),
		tdfab.dataPtr(),ARLIM(tdfab.loVect()),ARLIM(tdfab.hiVect()),
		inout.box(gn).loVect(), inout.box(gn).hiVect(),
		&nc, h[level]);
#elif BL_SPACEDIM==3
	    const Mask& mn = *msk[Orientation(1,Orientation::high)];
	    const Mask& me = *msk[Orientation(0,Orientation::high)];
	    const Mask& mw = *msk[Orientation(0,Orientation::low)];
	    const Mask& ms = *msk[Orientation(1,Orientation::low)];
	    const Mask& mt = *msk[Orientation(2,Orientation::high)];
	    const Mask& mb = *msk[Orientation(2,Orientation::low)];
	    FORT_APPLYBC(
		&flagden, &flagbc, &maxorder,
		inoutfab.dataPtr(), 
                ARLIM(inoutfab.loVect()), ARLIM(inoutfab.hiVect()),
		&cdr, bct, &bcl,
		bcvalptr, ARLIM(fslo), ARLIM(fshi),
		mn.dataPtr(),ARLIM(mn.loVect()),ARLIM(mn.hiVect()),
		me.dataPtr(),ARLIM(me.loVect()),ARLIM(me.hiVect()),
		mw.dataPtr(),ARLIM(mw.loVect()),ARLIM(mw.hiVect()),
		ms.dataPtr(),ARLIM(ms.loVect()),ARLIM(ms.hiVect()),
		mt.dataPtr(),ARLIM(mt.loVect()),ARLIM(mt.hiVect()),
		mb.dataPtr(),ARLIM(mb.loVect()),ARLIM(mb.hiVect()),
		denfab.dataPtr(), 
		ARLIM(denfab.loVect()), ARLIM(denfab.hiVect()),
		exttdptr, ARLIM(fslo), ARLIM(fshi),
		tdfab.dataPtr(),ARLIM(tdfab.loVect()),ARLIM(tdfab.hiVect()),
		inout.box(gn).loVect(), inout.box(gn).hiVect(),
		&nc, h[level]);
#endif
	}
    }

#if 0
  // This "probably" works, but is not strictly needed just because of the way Bill
  // coded up the tangential derivative stuff.  It's handy code though, so I want to
  // keep it around/

  // Clean up corners:
  // The problem here is that APPLYBC fills only grow cells normal to the boundary.
  // As a result, any corner cell on the boundary (either coarse-fine or fine-fine)
  // is not filled.  For coarse-fine, the operator adjusts itself, sliding away from
  // the box edge to avoid referencing that corner point.  On the physical boundary
  // though, the corner point is needed.  Particularly if a fine-fine boundary intersects
  // the physical boundary, since we want the stencil to be independent of the box
  // blocking.  FillBoundary operations wont fix the problem because the "good"
  // data we need is living in the grow region of adjacent fabs.  So, here we play
  // the usual games to treat the newly filled grow cells as "valid" data.

  // Note that we only need to do something where the grids touch the physical boundary.

  const Geometry& geomlev = geomarray[level];
  const BoxArray& grids = inout.boxArray();
  const Box& domain = geomlev.Domain();
  int nGrow = 1;
  int src_comp = 0;
  int num_comp = BL_SPACEDIM;


  // Lets do a quick check to see if we need to do anything at all here
  BoxArray BIGba = BoxArray(grids).grow(nGrow);

  if (! (domain.contains(BIGba.minimalBox())) ) {

    BoxArray boundary_pieces;
    Array<int> proc_idxs;
    Array<Array<int> > old_to_new(grids.size());
    const DistributionMapping& dmap=inout.DistributionMap();

    for (int d=0; d<BL_SPACEDIM; ++d) {
      if (! (geomlev.isPeriodic(d)) ) {

        BoxArray gba = BoxArray(grids).grow(d,nGrow);
        for (int i=0; i<gba.size(); ++i) {
          BoxArray new_pieces = BoxLib::boxComplement(gba[i],domain);
          int size_new = new_pieces.size();
          if (size_new>0) {
            int size_old = boundary_pieces.size();
            boundary_pieces.resize(size_old+size_new);
            proc_idxs.resize(boundary_pieces.size());
            for (int j=0; j<size_new; ++j) {
              boundary_pieces.set(size_old+j,new_pieces[j]);
              proc_idxs[size_old+j] = dmap[i];
              old_to_new[i].push_back(size_old+j);
            }
          }
        }
      }
    }

    proc_idxs.push_back(ParallelDescriptor::MyProc());

    MultiFab boundary_data(boundary_pieces,num_comp,nGrow,
                           DistributionMapping(proc_idxs));

    for (MFIter mfi(inout); mfi.isValid(); ++mfi) {
      const FArrayBox& src_fab = inout[mfi];
      for (int j=0; j<old_to_new[mfi.index()].size(); ++j) {
        int new_box_idx = old_to_new[mfi.index()][j];
        boundary_data[new_box_idx].copy(src_fab,src_comp,0,num_comp);
      }
    }

    boundary_data.FillBoundary();

    // Use a hacked Geometry object to handle the periodic intersections for us.
    // Here, the "domain" is the plane of cells on non-periodic boundary faces.
    // and there may be cells over the periodic boundary in the remaining directions.
    // We do a Geometry::PFB on each non-periodic face to sync these up.
    if (geomlev.isAnyPeriodic()) {
      Array<int> is_per(BL_SPACEDIM,0);
      for (int d=0; d<BL_SPACEDIM; ++d) {
        is_per[d] = geomlev.isPeriodic(d);
      }
      for (int d=0; d<BL_SPACEDIM; ++d) {
        if (! is_per[d]) {
          Box tmpLo = BoxLib::adjCellLo(geomlev.Domain(),d,1);
          Geometry tmpGeomLo(tmpLo,&(geomlev.ProbDomain()),(int)geomlev.Coord(),is_per.dataPtr());
          tmpGeomLo.FillPeriodicBoundary(boundary_data);

          Box tmpHi = BoxLib::adjCellHi(geomlev.Domain(),d,1);
          Geometry tmpGeomHi(tmpHi,&(geomlev.ProbDomain()),(int)geomlev.Coord(),is_per.dataPtr());
          tmpGeomHi.FillPeriodicBoundary(boundary_data);
        }
      }
    }

    for (MFIter mfi(inout); mfi.isValid(); ++mfi) {
      int idx = mfi.index();
      FArrayBox& dst_fab = inout[mfi];
      for (int j=0; j<old_to_new[idx].size(); ++j) {
        int new_box_idx = old_to_new[mfi.index()][j];
        const FArrayBox& src_fab = boundary_data[new_box_idx];
        const Box& src_box = src_fab.box();

        BoxArray pieces_outside_domain = BoxLib::boxComplement(src_box,domain);
        for (int k=0; k<pieces_outside_domain.size(); ++k) {
          const Box& outside = pieces_outside_domain[k] & dst_fab.box();
          if (outside.ok()) {
            dst_fab.copy(src_fab,outside,0,outside,src_comp,num_comp);
          }
        }
      }
    }
  }
#endif
}
Пример #19
0
void
writePlotFile (const std::string& dir,
               const MultiFab&    mf,
               const Geometry&    geom)
{
    //
    // Only let 64 CPUs be writing at any one time.
    //
    VisMF::SetNOutFiles(64);
    //
    // Only the I/O processor makes the directory if it doesn't already exist.
    //
    if (ParallelDescriptor::IOProcessor())
        if (!BoxLib::UtilCreateDirectory(dir, 0755))
            BoxLib::CreateDirectoryFailed(dir);
    //
    // Force other processors to wait till directory is built.
    //
    ParallelDescriptor::Barrier();

    std::string HeaderFileName = dir + "/Header";

    VisMF::IO_Buffer io_buffer(VisMF::IO_Buffer_Size);

    std::ofstream HeaderFile;

    HeaderFile.rdbuf()->pubsetbuf(io_buffer.dataPtr(), io_buffer.size());

    if (ParallelDescriptor::IOProcessor())
    {
        //
        // Only the IOProcessor() writes to the header file.
        //
        HeaderFile.open(HeaderFileName.c_str(), std::ios::out|std::ios::trunc|std::ios::binary);
        if (!HeaderFile.good())
            BoxLib::FileOpenFailed(HeaderFileName);
        HeaderFile << "NavierStokes-V1.1\n";

        HeaderFile << mf.nComp() << '\n';

        for (int ivar = 1; ivar <= mf.nComp(); ivar++) {
          HeaderFile << "Variable " << ivar << "\n";
        }

        HeaderFile << BL_SPACEDIM << '\n';
        HeaderFile << 0 << '\n';
        HeaderFile << 0 << '\n';
        for (int i = 0; i < BL_SPACEDIM; i++)
            HeaderFile << geom.ProbLo(i) << ' ';
        HeaderFile << '\n';
        for (int i = 0; i < BL_SPACEDIM; i++)
            HeaderFile << geom.ProbHi(i) << ' ';
        HeaderFile << '\n';
        HeaderFile << '\n';
        HeaderFile << geom.Domain() << ' ';
        HeaderFile << '\n';
        HeaderFile << 0 << ' ';
        HeaderFile << '\n';
        for (int k = 0; k < BL_SPACEDIM; k++)
            HeaderFile << geom.CellSize()[k] << ' ';
        HeaderFile << '\n';
        HeaderFile << geom.Coord() << '\n';
        HeaderFile << "0\n";
    }
    // Build the directory to hold the MultiFab at this level.
    // The name is relative to the directory containing the Header file.
    //
    static const std::string BaseName = "/Cell";

    std::string Level = BoxLib::Concatenate("Level_", 0, 1);
    //
    // Now for the full pathname of that directory.
    //
    std::string FullPath = dir;
    if (!FullPath.empty() && FullPath[FullPath.length()-1] != '/')
        FullPath += '/';
    FullPath += Level;
    //
    // Only the I/O processor makes the directory if it doesn't already exist.
    //
    if (ParallelDescriptor::IOProcessor())
        if (!BoxLib::UtilCreateDirectory(FullPath, 0755))
            BoxLib::CreateDirectoryFailed(FullPath);
    //
    // Force other processors to wait till directory is built.
    //
    ParallelDescriptor::Barrier();

    if (ParallelDescriptor::IOProcessor())
    {
        HeaderFile << 0 << ' ' << mf.boxArray().size() << ' ' << 0 << '\n';
        HeaderFile << 0 << '\n';

        for (int i = 0; i < mf.boxArray().size(); ++i)
        {
            RealBox loc = RealBox(mf.boxArray()[i],geom.CellSize(),geom.ProbLo());
            for (int n = 0; n < BL_SPACEDIM; n++)
                HeaderFile << loc.lo(n) << ' ' << loc.hi(n) << '\n';
        }

        std::string PathNameInHeader = Level;
        PathNameInHeader += BaseName;
        HeaderFile << PathNameInHeader << '\n';
    }
    //
    // Use the Full pathname when naming the MultiFab.
    //
    std::string TheFullPath = FullPath;
    TheFullPath += BaseName;

    VisMF::Write(mf,TheFullPath);
}
Пример #20
0
int
CGSolver::solve_cg (MultiFab&       sol,
		    const MultiFab& rhs,
		    Real            eps_rel,
		    Real            eps_abs,
		    LinOp::BC_Mode  bc_mode)
{
    BL_PROFILE("CGSolver::solve_cg()");

    const int nghost = sol.nGrow(), ncomp = 1;

    const BoxArray& ba = sol.boxArray();
    const DistributionMapping& dm = sol.DistributionMap();

    BL_ASSERT(sol.nComp() == ncomp);
    BL_ASSERT(sol.boxArray() == Lp.boxArray(lev));
    BL_ASSERT(rhs.boxArray() == Lp.boxArray(lev));

    MultiFab sorig(ba, ncomp, nghost, dm);
    MultiFab r(ba, ncomp, nghost, dm);
    MultiFab z(ba, ncomp, nghost, dm);
    MultiFab q(ba, ncomp, nghost, dm);
    MultiFab p(ba, ncomp, nghost, dm);

    MultiFab r1(ba, ncomp, nghost, dm);
    MultiFab z1(ba, ncomp, nghost, dm);
    MultiFab r2(ba, ncomp, nghost, dm);
    MultiFab z2(ba, ncomp, nghost, dm);

    MultiFab::Copy(sorig,sol,0,0,1,0);

    Lp.residual(r, rhs, sorig, lev, bc_mode);

    sol.setVal(0);

    const LinOp::BC_Mode temp_bc_mode=LinOp::Homogeneous_BC;

    Real       rnorm    = norm_inf(r);
    const Real rnorm0   = rnorm;
    Real       minrnorm = rnorm;

    if ( verbose > 0 && ParallelDescriptor::IOProcessor(color()) )
    {
        Spacer(std::cout, lev);
        std::cout << "              CG: Initial error :        " << rnorm0 << '\n';
    }

    const Real Lp_norm = Lp.norm(0, lev);
    Real sol_norm      = 0;
    Real rho_1         = 0;
    int  ret           = 0;
    int  nit           = 1;

    if ( rnorm == 0 || rnorm < eps_abs )
    {
        if ( verbose > 0 && ParallelDescriptor::IOProcessor(color()) )
	{
            Spacer(std::cout, lev);
            std::cout << "       CG: niter = 0,"
                      << ", rnorm = " << rnorm 
                      << ", eps_rel*(Lp_norm*sol_norm + rnorm0 )" <<  eps_rel*(Lp_norm*sol_norm + rnorm0 ) 
                      << ", eps_abs = " << eps_abs << std::endl;
	}
        return 0;
    }

    for (; nit <= maxiter; ++nit)
    {
        if (use_jbb_precond && ParallelDescriptor::NProcs(color()) > 1)
        {
            z.setVal(0);

            jbb_precond(z,r,lev,Lp);
        }
        else
        {
            MultiFab::Copy(z,r,0,0,1,0);
        }

        Real rho = dotxy(z,r);

        if (nit == 1)
        {
            MultiFab::Copy(p,z,0,0,1,0);
        }
        else
        {
            Real beta = rho/rho_1;
            sxay(p, z, beta, p);
        }
        Lp.apply(q, p, lev, temp_bc_mode);

        Real alpha;
        if ( Real pw = dotxy(p,q) )
	{
            alpha = rho/pw;
	}
        else
	{
            ret = 1; break;
	}
        
        if ( verbose > 2 && ParallelDescriptor::IOProcessor(color()) )
        {
            Spacer(std::cout, lev);
            std::cout << "CGSolver_cg:"
                      << " nit " << nit
                      << " rho " << rho
                      << " alpha " << alpha << '\n';
        }
        sxay(sol, sol, alpha, p);
        sxay(  r,   r,-alpha, q);
        rnorm = norm_inf(r);
        sol_norm = norm_inf(sol);

        if ( verbose > 2 && ParallelDescriptor::IOProcessor(color()) )
        {
            Spacer(std::cout, lev);
            std::cout << "       CG:       Iteration"
                      << std::setw(4) << nit
                      << " rel. err. "
                      << rnorm/(rnorm0) << '\n';
        }

#ifdef CG_USE_OLD_CONVERGENCE_CRITERIA
        if ( rnorm < eps_rel*rnorm0 || rnorm < eps_abs ) break;
#else
        if ( rnorm < eps_rel*(Lp_norm*sol_norm + rnorm0) || rnorm < eps_abs ) break;
#endif
        if ( rnorm > def_unstable_criterion*minrnorm )
	{
            ret = 2; break;
	}
        else if ( rnorm < minrnorm )
	{
            minrnorm = rnorm;
	}

        rho_1 = rho;
    }
    
    if ( verbose > 0 && ParallelDescriptor::IOProcessor(color()) )
    {
        Spacer(std::cout, lev);
        std::cout << "       CG: Final Iteration"
                  << std::setw(4) << nit
                  << " rel. err. "
                  << rnorm/(rnorm0) << '\n';
    }

#ifdef CG_USE_OLD_CONVERGENCE_CRITERIA
    if ( ret == 0 &&  rnorm > eps_rel*rnorm0 && rnorm > eps_abs )
#else
    if ( ret == 0 && rnorm > eps_rel*(Lp_norm*sol_norm + rnorm0) && rnorm > eps_abs )
#endif
    {
        if ( ParallelDescriptor::IOProcessor(color()) )
            BoxLib::Warning("CGSolver_cg: failed to converge!");
        ret = 8;
    }

    if ( ( ret == 0 || ret == 8 ) && (rnorm < rnorm0) )
    {
        sol.plus(sorig, 0, 1, 0);
    } 
    else 
    {
        sol.setVal(0);
        sol.plus(sorig, 0, 1, 0);
    }

    return ret;
}
Пример #21
0
int
CGSolver::solve_cabicgstab (MultiFab&       sol,
                            const MultiFab& rhs,
                            Real            eps_rel,
                            Real            eps_abs,
                            LinOp::BC_Mode  bc_mode)
{
    BL_PROFILE("CGSolver::solve_cabicgstab()");

    BL_ASSERT(sol.nComp() == 1);
    BL_ASSERT(sol.boxArray() == Lp.boxArray(lev));
    BL_ASSERT(rhs.boxArray() == Lp.boxArray(lev));

    Real  temp1[4*SSS_MAX+1];
    Real  temp2[4*SSS_MAX+1];
    Real  temp3[4*SSS_MAX+1];
    Real     Tp[4*SSS_MAX+1][4*SSS_MAX+1];
    Real    Tpp[4*SSS_MAX+1][4*SSS_MAX+1];
    Real     aj[4*SSS_MAX+1];
    Real     cj[4*SSS_MAX+1];
    Real     ej[4*SSS_MAX+1];
    Real   Tpaj[4*SSS_MAX+1];
    Real   Tpcj[4*SSS_MAX+1];
    Real  Tppaj[4*SSS_MAX+1];
    Real      G[4*SSS_MAX+1][4*SSS_MAX+1];    // Extracted from first 4*SSS+1 columns of Gg[][].  indexed as [row][col]
    Real      g[4*SSS_MAX+1];                 // Extracted from last [4*SSS+1] column of Gg[][].
    Real     Gg[(4*SSS_MAX+1)*(4*SSS_MAX+2)]; // Buffer to hold the Gram-like matrix produced by matmul().  indexed as [row*(4*SSS+2) + col]
    //
    // If variable_SSS we "telescope" SSS.
    // We start with 1 and increase it up to SSS_MAX on the outer iterations.
    //
    if (variable_SSS) SSS = 1;

    zero(   aj, 4*SSS_MAX+1);
    zero(   cj, 4*SSS_MAX+1);
    zero(   ej, 4*SSS_MAX+1);
    zero( Tpaj, 4*SSS_MAX+1);
    zero( Tpcj, 4*SSS_MAX+1);
    zero(Tppaj, 4*SSS_MAX+1);
    zero(temp1, 4*SSS_MAX+1);
    zero(temp2, 4*SSS_MAX+1);
    zero(temp3, 4*SSS_MAX+1);

    SetMonomialBasis(Tp,Tpp,SSS);

    const int ncomp = 1, nghost = sol.nGrow();
    //
    // Contains the matrix powers of p[] and r[].
    //
    // First 2*SSS+1 components are powers of p[].
    // Next  2*SSS   components are powers of r[].
    //
    const BoxArray& ba = sol.boxArray();
    const DistributionMapping& dm = sol.DistributionMap();

    MultiFab PR(ba, 4*SSS_MAX+1, 0, dm);

    MultiFab  p(ba, ncomp, 0, dm);
    MultiFab  r(ba, ncomp, 0, dm);
    MultiFab rt(ba, ncomp, 0, dm);
    
    MultiFab tmp(ba, 4, nghost, dm);

    Lp.residual(r, rhs, sol, lev, bc_mode);

    BL_ASSERT(!r.contains_nan());

    MultiFab::Copy(rt,r,0,0,1,0);
    MultiFab::Copy( p,r,0,0,1,0);

    const Real           rnorm0        = norm_inf(r);
    Real                 delta         = dotxy(r,rt);
    const Real           L2_norm_of_rt = sqrt(delta);
    const LinOp::BC_Mode temp_bc_mode  = LinOp::Homogeneous_BC;

    if ( verbose > 0 && ParallelDescriptor::IOProcessor(color()) )
    {
        Spacer(std::cout, lev);
        std::cout << "CGSolver_CABiCGStab: Initial error (error0) =        " << rnorm0 << '\n';
    }

    if ( rnorm0 == 0 || delta == 0 || rnorm0 < eps_abs )
    {
        if ( verbose > 0 && ParallelDescriptor::IOProcessor(color()) )
	{
            Spacer(std::cout, lev);
            std::cout << "CGSolver_CABiCGStab: niter = 0,"
                      << ", rnorm = "   << rnorm0
                      << ", delta = "   << delta
                      << ", eps_abs = " << eps_abs << '\n';
	}
        return 0;
    }

    int niters = 0, ret = 0;

    Real L2_norm_of_resid = 0, atime = 0, gtime = 0;

    bool BiCGStabFailed = false, BiCGStabConverged = false;

    for (int m = 0; m < maxiter && !BiCGStabFailed && !BiCGStabConverged; )
    {
        const Real time1 = ParallelDescriptor::second();
        //
        // Compute the matrix powers on p[] & r[] (monomial basis).
        // The 2*SSS+1 powers of p[] followed by the 2*SSS powers of r[].
        //
        MultiFab::Copy(PR,p,0,0,1,0);
        MultiFab::Copy(PR,r,0,2*SSS+1,1,0);
	
        BL_ASSERT(!PR.contains_nan(0,      1));
        BL_ASSERT(!PR.contains_nan(2*SSS+1,1));
        //
        // We use "tmp" to minimize the number of Lp.apply()s.
        // We do this by doing p & r together in a single call.
        //
        MultiFab::Copy(tmp,p,0,0,1,0);
        MultiFab::Copy(tmp,r,0,1,1,0);

        for (int n = 1; n < 2*SSS; n++)
        {
            Lp.apply(tmp, tmp, lev, temp_bc_mode, false, 0, 2, 2);

            MultiFab::Copy(tmp,tmp,2,0,2,0);

            MultiFab::Copy(PR,tmp,0,        n,1,0);
            MultiFab::Copy(PR,tmp,1,2*SSS+n+1,1,0);

            BL_ASSERT(!PR.contains_nan(n,        1));
            BL_ASSERT(!PR.contains_nan(2*SSS+n+1,1));
        }

        MultiFab::Copy(tmp,PR,2*SSS-1,0,1,0);
        Lp.apply(tmp, tmp, lev, temp_bc_mode, false, 0, 1, 1);
        MultiFab::Copy(PR,tmp,1,2*SSS,1,0);

        BL_ASSERT(!PR.contains_nan(2*SSS-1,1));
        BL_ASSERT(!PR.contains_nan(2*SSS,  1));

        Real time2 = ParallelDescriptor::second();

        atime += (time2-time1);

        BuildGramMatrix(Gg, PR, rt, SSS);

        const Real time3 = ParallelDescriptor::second();

        gtime += (time3-time2);
        //
        // Form G[][] and g[] from Gg.
        //
        for (int i = 0, k = 0; i < 4*SSS+1; i++)
        {
            for (int j = 0; j < 4*SSS+1; j++)
                //
                // First 4*SSS+1 elements in each row go to G[][].
                //
                G[i][j] = Gg[k++];
            //
            // Last element in row goes to g[].
            //
            g[i] = Gg[k++];
        }

        zero(aj, 4*SSS+1); aj[0]       = 1;
        zero(cj, 4*SSS+1); cj[2*SSS+1] = 1;
        zero(ej, 4*SSS+1);

        for (int nit = 0; nit < SSS; nit++)
        {
            gemv( Tpaj,  Tp, aj, 4*SSS+1, 4*SSS+1);
            gemv( Tpcj,  Tp, cj, 4*SSS+1, 4*SSS+1);
            gemv(Tppaj, Tpp, aj, 4*SSS+1, 4*SSS+1);

            const Real g_dot_Tpaj = dot(g, Tpaj, 4*SSS+1);

            if ( g_dot_Tpaj == 0 )
            {
                if ( verbose > 1 && ParallelDescriptor::IOProcessor(color()) )
                    std::cout << "CGSolver_CABiCGStab: g_dot_Tpaj == 0, nit = " << nit << '\n';
                BiCGStabFailed = true; ret = 1; break;
            }

            const Real alpha = delta / g_dot_Tpaj;

            if ( std::isinf(alpha) )
            {
                if ( verbose > 1 && ParallelDescriptor::IOProcessor(color()) )
                    std::cout << "CGSolver_CABiCGStab: alpha == inf, nit = " << nit << '\n';
                BiCGStabFailed = true; ret = 2; break;
            }

            axpy(temp1, Tpcj, -alpha, Tppaj, 4*SSS+1);

            gemv(temp2, G, temp1, 4*SSS+1, 4*SSS+1);

            axpy(temp3,   cj, -alpha,  Tpaj, 4*SSS+1);

            const Real omega_numerator   = dot(temp3, temp2, 4*SSS+1);
            const Real omega_denominator = dot(temp1, temp2, 4*SSS+1);
            //
            // NOTE: omega_numerator/omega_denominator can be 0/x or 0/0, but should never be x/0.
            //
            // If omega_numerator==0, and ||s||==0, then convergence, x=x+alpha*aj.
            // If omega_numerator==0, and ||s||!=0, then stabilization breakdown.
            //
            // Partial update of ej must happen before the check on omega to ensure forward progress !!!
            //
            axpy(ej, ej, alpha, aj, 4*SSS+1);
            //
            // ej has been updated so consider that we've done an iteration since
            // even if we break out of the loop we'll be able to update both sol.
            //
            niters++;
            //
            // Calculate the norm of Saad's vector 's' to check intra s-step convergence.
            //
            axpy(temp1, cj,-alpha,  Tpaj, 4*SSS+1);

            gemv(temp2, G, temp1, 4*SSS+1, 4*SSS+1);

            const Real L2_norm_of_s = dot(temp1,temp2,4*SSS+1);

            L2_norm_of_resid = (L2_norm_of_s < 0 ? 0 : sqrt(L2_norm_of_s));

            if ( L2_norm_of_resid < eps_rel*L2_norm_of_rt )
            {
                if ( verbose > 1 && L2_norm_of_resid == 0 && ParallelDescriptor::IOProcessor(color()) )
                    std::cout << "CGSolver_CABiCGStab: L2 norm of s: " << L2_norm_of_s << '\n';
                BiCGStabConverged = true; break;
            }

            if ( omega_denominator == 0 )
            {
                if ( verbose > 1 && ParallelDescriptor::IOProcessor(color()) )
                    std::cout << "CGSolver_CABiCGStab: omega_denominator == 0, nit = " << nit << '\n';
                BiCGStabFailed = true; ret = 3; break;
            }

            const Real omega = omega_numerator / omega_denominator;

            if ( verbose > 1 && ParallelDescriptor::IOProcessor(color()) )
            {
                if ( omega == 0   ) std::cout << "CGSolver_CABiCGStab: omega == 0, nit = " << nit << '\n';
                if ( std::isinf(omega) ) std::cout << "CGSolver_CABiCGStab: omega == inf, nit = " << nit << '\n';
            }

            if ( omega == 0   ) { BiCGStabFailed = true; ret = 4; break; }
            if ( std::isinf(omega) ) { BiCGStabFailed = true; ret = 4; break; }
            //
            // Complete the update of ej & cj now that omega is known to be ok.
            //
            axpy(ej, ej,       omega,    cj, 4*SSS+1);
            axpy(ej, ej,-omega*alpha,  Tpaj, 4*SSS+1);
            axpy(cj, cj,      -omega,  Tpcj, 4*SSS+1);
            axpy(cj, cj,      -alpha,  Tpaj, 4*SSS+1);
            axpy(cj, cj, omega*alpha, Tppaj, 4*SSS+1);
            //
            // Do an early check of the residual to determine convergence.
            //
            gemv(temp1, G, cj, 4*SSS+1, 4*SSS+1);
            //
            // sqrt( (cj,Gcj) ) == L2 norm of the intermediate residual in exact arithmetic.
            // However, finite precision can lead to the norm^2 being < 0 (Jim Demmel).
            // If cj_dot_Gcj < 0 we flush to zero and consider ourselves converged.
            //
            const Real L2_norm_of_r = dot(cj, temp1, 4*SSS+1);

            L2_norm_of_resid = (L2_norm_of_r > 0 ? sqrt(L2_norm_of_r) : 0);

            if ( L2_norm_of_resid < eps_rel*L2_norm_of_rt )
            {
                if ( verbose > 1 && L2_norm_of_resid == 0 && ParallelDescriptor::IOProcessor(color()) )
                    std::cout << "CGSolver_CABiCGStab: L2_norm_of_r: " << L2_norm_of_r << '\n';
                BiCGStabConverged = true; break;
            }

            const Real delta_next = dot(g, cj, 4*SSS+1);

            if ( verbose > 1 && ParallelDescriptor::IOProcessor(color()) )
            {
                if ( delta_next == 0   ) std::cout << "CGSolver_CABiCGStab: delta == 0, nit = " << nit << '\n';
                if ( std::isinf(delta_next) ) std::cout << "CGSolver_CABiCGStab: delta == inf, nit = " << nit << '\n';
            }

            if ( std::isinf(delta_next) ) { BiCGStabFailed = true; ret = 5; break; } // delta = inf?
            if ( delta_next  == 0  ) { BiCGStabFailed = true; ret = 5; break; } // Lanczos breakdown...

            const Real beta = (delta_next/delta)*(alpha/omega);

            if ( verbose > 1 && ParallelDescriptor::IOProcessor(color()) )
            {
                if ( beta == 0   ) std::cout << "CGSolver_CABiCGStab: beta == 0, nit = " << nit << '\n';
                if ( std::isinf(beta) ) std::cout << "CGSolver_CABiCGStab: beta == inf, nit = " << nit << '\n';
            }

            if ( std::isinf(beta) ) { BiCGStabFailed = true; ret = 6; break; } // beta = inf?
            if ( beta == 0   ) { BiCGStabFailed = true; ret = 6; break; } // beta = 0?  can't make further progress(?)

            axpy(aj, cj,        beta,   aj, 4*SSS+1);
            axpy(aj, aj, -omega*beta, Tpaj, 4*SSS+1);

            delta = delta_next;
        }
        //
        // Update iterates.
        //
        for (int i = 0; i < 4*SSS+1; i++)
            sxay(sol,sol,ej[i],PR,i);

        MultiFab::Copy(p,PR,0,0,1,0);
        p.mult(aj[0],0,1);
        for (int i = 1; i < 4*SSS+1; i++)
            sxay(p,p,aj[i],PR,i);

        MultiFab::Copy(r,PR,0,0,1,0);
        r.mult(cj[0],0,1);
        for (int i = 1; i < 4*SSS+1; i++)
            sxay(r,r,cj[i],PR,i);

        if ( !BiCGStabFailed && !BiCGStabConverged )
        {
            m += SSS;

            if ( variable_SSS && SSS < SSS_MAX ) { SSS++; SetMonomialBasis(Tp,Tpp,SSS); }
        }
    }

    if ( verbose > 0 )
    {
        if ( ParallelDescriptor::IOProcessor(color()) )
        {
            Spacer(std::cout, lev);
            std::cout << "CGSolver_CABiCGStab: Final: Iteration "
                      << std::setw(4) << niters
                      << " rel. err. "
                      << L2_norm_of_resid << '\n';
        }

        if ( verbose > 1 )
        {
            Real tmp[2] = { atime, gtime };

            ParallelDescriptor::ReduceRealMax(tmp,2,color());

            if ( ParallelDescriptor::IOProcessor(color()) )
            {
                Spacer(std::cout, lev);
                std::cout << "CGSolver_CABiCGStab apply time: " << tmp[0] << ", gram time: " << tmp[1] << '\n';
            }
        }
    }

    if ( niters >= maxiter && !BiCGStabFailed && !BiCGStabConverged)
    {
        if ( L2_norm_of_resid > L2_norm_of_rt )
        {
            if ( ParallelDescriptor::IOProcessor(color()) )
                BoxLib::Warning("CGSolver_CABiCGStab: failed to converge!");
            //
            // Return code 8 tells the MultiGrid driver to zero out the solution!
            //
            ret = 8;
        }
        else
        {
            //
            // Return codes 1-7 tells the MultiGrid driver to smooth the solution!
            //
            ret = 7;
        }
    }

    return ret;
}
Пример #22
0
void
Nyx::sdc_reactions (MultiFab& S_old, MultiFab& S_new, MultiFab& D_new, 
                    MultiFab& hydro_src, MultiFab& IR,
                    Real delta_time, Real a_old, Real a_new, int sdc_iter)
{
    BL_PROFILE("Nyx::sdc_reactions()");

    const Real* dx = geom.CellSize();

    // First reset internal energy before call to compute_temp
    MultiFab reset_e_src(S_new.boxArray(), S_new.DistributionMap(), 1, NUM_GROW);
    reset_e_src.setVal(0.0);

    reset_internal_energy(S_new,D_new,reset_e_src);
    compute_new_temp     (S_new,D_new);
    
#ifndef FORCING
    {
      const Real z = 1.0/a_old - 1.0;
      fort_interp_to_this_z(&z);
    }
#endif

    int  min_iter = 100000;
    int  max_iter =      0;

    int  min_iter_grid, max_iter_grid;

    /////////////////////Consider adding ifdefs for whether CVODE is compiled in for these statements
    if(heat_cool_type == 3)
      {
#ifdef _OPENMP
#pragma omp parallel
#endif
    for (MFIter mfi(S_old,true); mfi.isValid(); ++mfi)
    {
        // Note that this "bx" is only the valid region (unlike for Strang)
      const Box& bx = mfi.tilebox();

        min_iter_grid = 100000;
        max_iter_grid =      0;

        integrate_state_with_source
                (bx.loVect(), bx.hiVect(), 
                 BL_TO_FORTRAN(S_old[mfi]),
                 BL_TO_FORTRAN(S_new[mfi]),
                 BL_TO_FORTRAN(D_new[mfi]),
		 BL_TO_FORTRAN(hydro_src[mfi]),
		 BL_TO_FORTRAN(reset_e_src[mfi]),
		 BL_TO_FORTRAN(IR[mfi]),
                 &a_old, &delta_time, &min_iter_grid, &max_iter_grid);

        min_iter = std::min(min_iter,min_iter_grid);
        max_iter = std::max(max_iter,max_iter_grid);
    }
      }
    else if(heat_cool_type == 5)
      {
#ifdef _OPENMP
#pragma omp parallel
#endif
    for (MFIter mfi(S_old,true); mfi.isValid(); ++mfi)
    {
        // Note that this "bx" is only the valid region (unlike for Strang)
      const Box& bx = mfi.tilebox();

        min_iter_grid = 100000;
        max_iter_grid =      0;
	
        integrate_state_fcvode_with_source
                (bx.loVect(), bx.hiVect(), 
                 BL_TO_FORTRAN(S_old[mfi]),
                 BL_TO_FORTRAN(S_new[mfi]),
                 BL_TO_FORTRAN(D_new[mfi]),
		 BL_TO_FORTRAN(hydro_src[mfi]),
		 BL_TO_FORTRAN(reset_e_src[mfi]),
		 BL_TO_FORTRAN(IR[mfi]),
                 &a_old, &delta_time, &min_iter_grid, &max_iter_grid);

        min_iter = std::min(min_iter,min_iter_grid);
        max_iter = std::max(max_iter,max_iter_grid);
    }

      }

    ParallelDescriptor::ReduceIntMax(max_iter);
    ParallelDescriptor::ReduceIntMin(min_iter);

    amrex::Print() << "Min/Max Number of Iterations in SDC: " << min_iter << " " << max_iter << std::endl;
}
Пример #23
0
void solve_with_HPGMG(MultiFab& soln, MultiFab& gphi, Real a, Real b, MultiFab& alpha, PArray<MultiFab>& beta,
                      MultiFab& beta_cc, MultiFab& rhs, const BoxArray& bs, const Geometry& geom, int n_cell)
{
  BndryData bd(bs, 1, geom);
  set_boundary(bd, rhs, 0);

  ABecLaplacian abec_operator(bd, dx);
  abec_operator.setScalars(a, b);
  abec_operator.setCoefficients(alpha, beta);

  int minCoarseDim;
  if (domain_boundary_condition == BC_PERIODIC)
  {
    minCoarseDim = 2; // avoid problems with black box calculation of D^{-1} for poisson with periodic BC's on a 1^3 grid
  }
  else
  {
    minCoarseDim = 1; // assumes you can drop order on the boundaries
  }

  level_type level_h;
  mg_type MG_h;
  int numVectors = 12;

  int my_rank = 0, num_ranks = 1;

#ifdef BL_USE_MPI
  MPI_Comm_size (MPI_COMM_WORLD, &num_ranks);
  MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
#endif /* BL_USE_MPI */

  const double h0 = dx[0];
  // Create the geometric structure of the HPGMG grid using the RHS MultiFab as
  // a template. This doesn't copy any actual data.
  CreateHPGMGLevel(&level_h, rhs, n_cell, max_grid_size, my_rank, num_ranks, domain_boundary_condition, numVectors, h0);

  // Set up the coefficients for the linear operator L.
  SetupHPGMGCoefficients(a, b, alpha, beta_cc, &level_h);

  // Now that the HPGMG grid is built, populate it with RHS data.
  ConvertToHPGMGLevel(rhs, n_cell, max_grid_size, &level_h, VECTOR_F);

#ifdef USE_HELMHOLTZ
  if (ParallelDescriptor::IOProcessor()) {
    std::cout << "Creating Helmholtz (a=" << a << ", b=" << b << ") test problem" << std::endl;;
  }
#else
  if (ParallelDescriptor::IOProcessor()) {
    std::cout << "Creating Poisson (a=" << a << ", b=" << b << ") test problem" << std::endl;;
  }
#endif /* USE_HELMHOLTZ */

  if (level_h.boundary_condition.type == BC_PERIODIC)
  {
    double average_value_of_f = mean (&level_h, VECTOR_F);
    if (average_value_of_f != 0.0)
    {
      if (ParallelDescriptor::IOProcessor())
      {
        std::cerr << "WARNING: Periodic boundary conditions, but f does not sum to zero... mean(f)=" << average_value_of_f << std::endl;
      }
      //shift_vector(&level_h,VECTOR_F,VECTOR_F,-average_value_of_f);
    }
  }
  //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  rebuild_operator(&level_h,NULL,a,b);    // i.e. calculate Dinv and lambda_max
  MGBuild(&MG_h,&level_h,a,b,minCoarseDim,ParallelDescriptor::Communicator()); // build the Multigrid Hierarchy
  //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  if (ParallelDescriptor::IOProcessor())
      std::cout << std::endl << std::endl << "===== STARTING SOLVE =====" << std::endl << std::flush;

  MGResetTimers (&MG_h);
  zero_vector (MG_h.levels[0], VECTOR_U);
#ifdef USE_FCYCLES
  FMGSolve (&MG_h, 0, VECTOR_U, VECTOR_F, a, b, tolerance_abs, tolerance_rel);
#else
  MGSolve (&MG_h, 0, VECTOR_U, VECTOR_F, a, b, tolerance_abs, tolerance_rel);
#endif /* USE_FCYCLES */

  MGPrintTiming (&MG_h, 0);   // don't include the error check in the timing results
  //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

  if (ParallelDescriptor::IOProcessor())
    std::cout << std::endl << std::endl << "===== Performing Richardson error analysis ==========================" << std::endl;
  // solve A^h u^h = f^h
  // solve A^2h u^2h = f^2h
  // solve A^4h u^4h = f^4h
  // error analysis...
  MGResetTimers(&MG_h);
  const double dtol = tolerance_abs;
  const double rtol = tolerance_rel;
  int l;for(l=0;l<3;l++){
    if(l>0)restriction(MG_h.levels[l],VECTOR_F,MG_h.levels[l-1],VECTOR_F,RESTRICT_CELL);
           zero_vector(MG_h.levels[l],VECTOR_U);
    #ifdef USE_FCYCLES
    FMGSolve(&MG_h,l,VECTOR_U,VECTOR_F,a,b,dtol,rtol);
    #else
     MGSolve(&MG_h,l,VECTOR_U,VECTOR_F,a,b,dtol,rtol);
    #endif
  }
  richardson_error(&MG_h,0,VECTOR_U);

  // Now convert solution from HPGMG back to rhs MultiFab.
  ConvertFromHPGMGLevel(soln, &level_h, VECTOR_U);

  const double norm_from_HPGMG = norm(&level_h, VECTOR_U);
  const double mean_from_HPGMG = mean(&level_h, VECTOR_U);
  const Real norm0 = soln.norm0();
  const Real norm2 = soln.norm2();
  if (ParallelDescriptor::IOProcessor()) {
    std::cout << "mean from HPGMG: " << mean_from_HPGMG << std::endl;
    std::cout << "norm from HPGMG: " << norm_from_HPGMG << std::endl;
    std::cout << "norm0 of RHS copied to MF: " << norm0 << std::endl;
    std::cout << "norm2 of RHS copied to MF: " << norm2 << std::endl;
  }

  // Write the MF to disk for comparison with the in-house solver
  if (plot_soln)
  {
    writePlotFile("SOLN-HPGMG", soln, geom);
  }

  //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  MGDestroy(&MG_h);
  destroy_level(&level_h);
  //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

  PArray<MultiFab> grad_phi(BL_SPACEDIM, PArrayManage);
  for (int n = 0; n < BL_SPACEDIM; ++n)
      grad_phi.set(n, new MultiFab(BoxArray(soln.boxArray()).surroundingNodes(n), 1, 0));

#if (BL_SPACEDIM == 2)
  abec_operator.compFlux(grad_phi[0],grad_phi[1],soln);
#elif (BL_SPACEDIM == 3)
  abec_operator.compFlux(grad_phi[0],grad_phi[1],grad_phi[2],soln);
#endif

  // Average edge-centered gradients to cell centers.
  BoxLib::average_face_to_cellcenter(gphi, grad_phi, geom);
}
Пример #24
0
void
LinOp::makeCoefficients (MultiFab&       cs,
                         const MultiFab& fn,
                         int             level)
{
    BL_PROFILE("LinOp::makeCoefficients()");

    int nc = 1;
    //
    // Determine index type of incoming MultiFab.
    //
    const IndexType iType(fn.boxArray().ixType());
    const IndexType cType(D_DECL(IndexType::CELL, IndexType::CELL, IndexType::CELL));
    const IndexType xType(D_DECL(IndexType::NODE, IndexType::CELL, IndexType::CELL));
    const IndexType yType(D_DECL(IndexType::CELL, IndexType::NODE, IndexType::CELL));
#if (BL_SPACEDIM == 3)    
    const IndexType zType(D_DECL(IndexType::CELL, IndexType::CELL, IndexType::NODE));
#endif

    int cdir;
    if (iType == cType)
    {
        cdir = -1;
    }
    else if (iType == xType)
    {
        cdir = 0;
    }
    else if (iType == yType)
    {
        cdir = 1;
#if (BL_SPACEDIM == 3)
    }
    else if (iType == zType)
    {
        cdir = 2;
#endif    
    }
    else
    {
        BoxLib::Error("LinOp::makeCoeffients: Bad index type");
    }

    BoxArray d(gbox[level]);
    if (cdir >= 0)
        d.surroundingNodes(cdir);
    //
    // Only single-component solves supported (verified) by this class.
    //
    const int nComp=1;
    const int nGrow=0;
    cs.define(d, nComp, nGrow, Fab_allocate);

    const bool tiling = true;

    switch (cdir)
    {
    case -1:
#ifdef _OPENMP
#pragma omp parallel
#endif
        for (MFIter csmfi(cs,tiling); csmfi.isValid(); ++csmfi)
        {
            const Box& tbx = csmfi.tilebox();
            FArrayBox&       csfab = cs[csmfi];
            const FArrayBox& fnfab = fn[csmfi];

            FORT_AVERAGECC(csfab.dataPtr(), ARLIM(csfab.loVect()),
                           ARLIM(csfab.hiVect()),fnfab.dataPtr(),
                           ARLIM(fnfab.loVect()),ARLIM(fnfab.hiVect()),
                           tbx.loVect(),tbx.hiVect(), &nc);
        }
        break;
    case 0:
    case 1:
    case 2:
        if (harmavg)
        {
#ifdef _OPENMP
#pragma omp parallel
#endif
  	    for (MFIter csmfi(cs,tiling); csmfi.isValid(); ++csmfi)
            {
	        const Box& tbx = csmfi.tilebox();
                FArrayBox&       csfab = cs[csmfi];
                const FArrayBox& fnfab = fn[csmfi];

                FORT_HARMONIC_AVERAGEEC(csfab.dataPtr(),
                                        ARLIM(csfab.loVect()),
                                        ARLIM(csfab.hiVect()),
                                        fnfab.dataPtr(),
                                        ARLIM(fnfab.loVect()),
                                        ARLIM(fnfab.hiVect()),
                                        tbx.loVect(),tbx.hiVect(),
                                        &nc,&cdir);
            }
        }
        else
        {
#ifdef _OPENMP
#pragma omp parallel
#endif
            for (MFIter csmfi(cs,tiling); csmfi.isValid(); ++csmfi)
            {
                const Box& tbx = csmfi.tilebox();
                FArrayBox&       csfab = cs[csmfi];
                const FArrayBox& fnfab = fn[csmfi];

                FORT_AVERAGEEC(csfab.dataPtr(),ARLIM(csfab.loVect()),
                               ARLIM(csfab.hiVect()),fnfab.dataPtr(), 
                               ARLIM(fnfab.loVect()),ARLIM(fnfab.hiVect()),
	                       tbx.loVect(),tbx.hiVect(),
                               &nc, &cdir);
            }
        }
        break;
    default:
        BoxLib::Error("LinOp:: bad coefficient coarsening direction!");
    }
}
Пример #25
0
int
CGSolver::solve_bicgstab (MultiFab&       sol,
                          const MultiFab& rhs,
                          Real            eps_rel,
                          Real            eps_abs,
                          LinOp::BC_Mode  bc_mode)
{
    BL_PROFILE("CGSolver::solve_bicgstab()");

    const int nghost = sol.nGrow(), ncomp = 1;

    const BoxArray& ba = sol.boxArray();
    const DistributionMapping& dm = sol.DistributionMap();

    BL_ASSERT(sol.nComp() == ncomp);
    BL_ASSERT(sol.boxArray() == Lp.boxArray(lev));
    BL_ASSERT(rhs.boxArray() == Lp.boxArray(lev));

    MultiFab ph(ba, ncomp, nghost, dm);
    MultiFab sh(ba, ncomp, nghost, dm);

    MultiFab sorig(ba, ncomp, 0, dm);
    MultiFab p    (ba, ncomp, 0, dm);
    MultiFab r    (ba, ncomp, 0, dm);
    MultiFab s    (ba, ncomp, 0, dm);
    MultiFab rh   (ba, ncomp, 0, dm);
    MultiFab v    (ba, ncomp, 0, dm);
    MultiFab t    (ba, ncomp, 0, dm);

    Lp.residual(r, rhs, sol, lev, bc_mode);

    MultiFab::Copy(sorig,sol,0,0,1,0);
    MultiFab::Copy(rh,   r,  0,0,1,0);

    sol.setVal(0);

    const LinOp::BC_Mode temp_bc_mode = LinOp::Homogeneous_BC;

#ifdef CG_USE_OLD_CONVERGENCE_CRITERIA
    Real rnorm = norm_inf(r);
#else
    //
    // Calculate the local values of these norms & reduce their values together.
    //
    Real vals[2] = { norm_inf(r, true), Lp.norm(0, lev, true) };

    ParallelDescriptor::ReduceRealMax(vals,2,color());

    Real       rnorm    = vals[0];
    const Real Lp_norm  = vals[1];
    Real       sol_norm = 0;
#endif
    const Real rnorm0   = rnorm;

    if ( verbose > 0 && ParallelDescriptor::IOProcessor(color()) )
    {
        Spacer(std::cout, lev);
        std::cout << "CGSolver_BiCGStab: Initial error (error0) =        " << rnorm0 << '\n';
    }
    int ret = 0, nit = 1;
    Real rho_1 = 0, alpha = 0, omega = 0;

    if ( rnorm0 == 0 || rnorm0 < eps_abs )
    {
        if ( verbose > 0 && ParallelDescriptor::IOProcessor(color()) )
	{
            Spacer(std::cout, lev);
            std::cout << "CGSolver_BiCGStab: niter = 0,"
                      << ", rnorm = " << rnorm 
                      << ", eps_abs = " << eps_abs << std::endl;
	}
        return ret;
    }

    for (; nit <= maxiter; ++nit)
    {
        const Real rho = dotxy(rh,r);
        if ( rho == 0 ) 
	{
            ret = 1; break;
	}
        if ( nit == 1 )
        {
            MultiFab::Copy(p,r,0,0,1,0);
        }
        else
        {
            const Real beta = (rho/rho_1)*(alpha/omega);
            sxay(p, p, -omega, v);
            sxay(p, r,   beta, p);
        }
        if ( use_mg_precond )
        {
            ph.setVal(0);
            mg_precond->solve(ph, p, eps_rel, eps_abs, temp_bc_mode);
        }
        else if ( use_jacobi_precond )
        {
            ph.setVal(0);
            Lp.jacobi_smooth(ph, p, lev, temp_bc_mode);
        }
        else 
        {
            MultiFab::Copy(ph,p,0,0,1,0);
        }
        Lp.apply(v, ph, lev, temp_bc_mode);

        if ( Real rhTv = dotxy(rh,v) )
	{
            alpha = rho/rhTv;
	}
        else
	{
            ret = 2; break;
	}
        sxay(sol, sol,  alpha, ph);
        sxay(s,     r, -alpha,  v);

        rnorm = norm_inf(s);

        if ( verbose > 2 && ParallelDescriptor::IOProcessor(color()) )
        {
            Spacer(std::cout, lev);
            std::cout << "CGSolver_BiCGStab: Half Iter "
                      << std::setw(11) << nit
                      << " rel. err. "
                      << rnorm/(rnorm0) << '\n';
        }

#ifdef CG_USE_OLD_CONVERGENCE_CRITERIA
        if ( rnorm < eps_rel*rnorm0 || rnorm < eps_abs ) break;
#else
        sol_norm = norm_inf(sol);
        if ( rnorm < eps_rel*(Lp_norm*sol_norm + rnorm0 ) || rnorm < eps_abs ) break;
#endif
        if ( use_mg_precond )
        {
            sh.setVal(0);
            mg_precond->solve(sh, s, eps_rel, eps_abs, temp_bc_mode);
        }
        else if ( use_jacobi_precond )
        {
            sh.setVal(0);
            Lp.jacobi_smooth(sh, s, lev, temp_bc_mode);
        }
        else
        {
            MultiFab::Copy(sh,s,0,0,1,0);
        }
        Lp.apply(t, sh, lev, temp_bc_mode);
        //
        // This is a little funky.  I want to elide one of the reductions
        // in the following two dotxy()s.  We do that by calculating the "local"
        // values and then reducing the two local values at the same time.
        //
        Real vals[2] = { dotxy(t,t,true), dotxy(t,s,true) };

        ParallelDescriptor::ReduceRealSum(vals,2,color());

        if ( vals[0] )
	{
            omega = vals[1]/vals[0];
	}
        else
	{
            ret = 3; break;
	}
        sxay(sol, sol,  omega, sh);
        sxay(r,     s, -omega,  t);

        rnorm = norm_inf(r);

        if ( verbose > 2 && ParallelDescriptor::IOProcessor(color()) )
        {
            Spacer(std::cout, lev);
            std::cout << "CGSolver_BiCGStab: Iteration "
                      << std::setw(11) << nit
                      << " rel. err. "
                      << rnorm/(rnorm0) << '\n';
        }

#ifdef CG_USE_OLD_CONVERGENCE_CRITERIA
        if ( rnorm < eps_rel*rnorm0 || rnorm < eps_abs ) break;
#else
        sol_norm = norm_inf(sol);
        if ( rnorm < eps_rel*(Lp_norm*sol_norm + rnorm0 ) || rnorm < eps_abs ) break;
#endif
        if ( omega == 0 )
	{
            ret = 4; break;
	}
        rho_1 = rho;
    }

    if ( verbose > 0 && ParallelDescriptor::IOProcessor(color()) )
    {
        Spacer(std::cout, lev);
        std::cout << "CGSolver_BiCGStab: Final: Iteration "
                  << std::setw(4) << nit
                  << " rel. err. "
                  << rnorm/(rnorm0) << '\n';
    }

#ifdef CG_USE_OLD_CONVERGENCE_CRITERIA
    if ( ret == 0 && rnorm > eps_rel*rnorm0 && rnorm > eps_abs)
#else
    if ( ret == 0 && rnorm > eps_rel*(Lp_norm*sol_norm + rnorm0 ) && rnorm > eps_abs )
#endif
    {
        if ( ParallelDescriptor::IOProcessor(color()) )
            BoxLib::Warning("CGSolver_BiCGStab:: failed to converge!");
        ret = 8;
    }

    if ( ( ret == 0 || ret == 8 ) && (rnorm < rnorm0) )
    {
        sol.plus(sorig, 0, 1, 0);
    } 
    else 
    {
        sol.setVal(0);
        sol.plus(sorig, 0, 1, 0);
    }

    return ret;
}