Пример #1
0
//-----------------------------------------------------------------------------
void SparsityPatternBuilder::build_multimesh_sparsity_pattern(
  GenericSparsityPattern& sparsity_pattern,
  const MultiMeshForm& form)
{
  // Get global dimensions and local range
  const std::size_t rank = form.rank();
  std::vector<std::size_t> global_dimensions(rank);
  std::vector<std::pair<std::size_t, std::size_t>> local_range(rank);
  std::vector<ArrayView<const std::size_t>> local_to_global(rank);
  std::vector<ArrayView<const int>> off_process_owner(rank);
  for (std::size_t i = 0; i < rank; ++i)
  {
    global_dimensions[i] = form.function_space(i)->dofmap()->global_dimension();
    local_range[i]       = form.function_space(i)->dofmap()->ownership_range();
    off_process_owner[i].set(form.function_space(i)->dofmap()->off_process_owner());
  }

  // Initialize sparsity pattern
  const std::vector<std::size_t> block_sizes(rank, 1);
  sparsity_pattern.init(form.function_space(0)->part(0)->mesh()->mpi_comm(),
                        global_dimensions,
                        local_range, local_to_global,
                        off_process_owner, block_sizes);

  // Iterate over each part
  for (std::size_t part = 0; part < form.num_parts(); part++)
  {
    // Get mesh on current part (assume it's the same for all arguments)
    const Mesh& mesh = *form.function_space(0)->part(part)->mesh();

    // Build list of dofmaps
    std::vector<const GenericDofMap*> dofmaps;
    for (std::size_t i = 0; i < form.rank(); i++)
      dofmaps.push_back(&*form.function_space(i)->dofmap()->part(part));

    log(PROGRESS, "Building intra-mesh sparsity pattern on part %d.", part);

    // Build sparsity pattern for part by calling the regular dofmap
    // builder. This builds the sparsity pattern for all interacting
    // dofs on the current part.
    build(sparsity_pattern, mesh, dofmaps,
          true, false, false, true, false, false);

    log(PROGRESS, "Building inter-mesh sparsity pattern on part %d.", part);

    // Build sparsity pattern for interface. This builds the sparsity
    // pattern for all dofs that may interact across the interface
    // between cutting meshes.
    _build_multimesh_sparsity_pattern_interface(sparsity_pattern, form, part);
  }

  log(PROGRESS, "Applying changes to sparsity pattern.");

  // Finalize sparsity pattern
  sparsity_pattern.apply();
}
Пример #2
0
//-----------------------------------------------------------------------------
void MultiMeshAssembler::_assemble_uncut_cells(GenericTensor& A,
                                               const MultiMeshForm& a)
{
  // Get form rank
  const std::size_t form_rank = a.rank();

  // Extract multimesh
  std::shared_ptr<const MultiMesh> multimesh = a.multimesh();

  // Collect pointers to dof maps
  std::vector<const MultiMeshDofMap*> dofmaps;
  for (std::size_t i = 0; i < form_rank; i++)
    dofmaps.push_back(a.function_space(i)->dofmap().get());

  // Vector to hold dof map for a cell
  std::vector<ArrayView<const dolfin::la_index>> dofs(form_rank);

  // Initialize variables that will be reused throughout assembly
  ufc::cell ufc_cell;
  std::vector<double> coordinate_dofs;

  // Iterate over parts
  for (std::size_t part = 0; part < a.num_parts(); part++)
  {
    log(PROGRESS, "Assembling multimesh form over uncut cells on part %d.", part);

    // Get form for current part
    const Form& a_part = *a.part(part);

    // Create data structure for local assembly data
    UFC ufc_part(a_part);

    // Extract mesh
    const Mesh& mesh_part = a_part.mesh();

    // FIXME: Handle subdomains

    // Get integral
    ufc::cell_integral* integral = ufc_part.default_cell_integral.get();

    // Skip if we don't have a cell integral
    if (!integral) continue;

    // Get uncut cells
    const std::vector<unsigned int>& uncut_cells = multimesh->uncut_cells(part);

    // Iterate over uncut cells
    for (auto it = uncut_cells.begin(); it != uncut_cells.end(); ++it)
    {
      // Create cell
      Cell cell(mesh_part, *it);

      // Update to current cell
      cell.get_cell_data(ufc_cell);
      cell.get_coordinate_dofs(coordinate_dofs);
      ufc_part.update(cell, coordinate_dofs, ufc_cell);

      // Get local-to-global dof maps for cell
      for (std::size_t i = 0; i < form_rank; ++i)
      {
        const auto dofmap = a.function_space(i)->dofmap()->part(part);
        dofs[i] = dofmap->cell_dofs(cell.index());
      }

      // Tabulate cell tensor
      integral->tabulate_tensor(ufc_part.A.data(),
                                ufc_part.w(),
                                coordinate_dofs.data(),
                                ufc_cell.orientation);

      // Add entries to global tensor
      A.add(ufc_part.A.data(), dofs);
    }
  }
}
Пример #3
0
//-----------------------------------------------------------------------------
void MultiMeshAssembler::_assemble_overlap(GenericTensor& A,
                                           const MultiMeshForm& a)
{
  // FIXME: This function and assemble_interface are very similar.
  // FIXME: Refactor to improve code reuse.

  // Extract multimesh
  std::shared_ptr<const MultiMesh> multimesh = a.multimesh();

  // Get form rank
  const std::size_t form_rank = a.rank();

  // Collect pointers to dof maps
  std::vector<const MultiMeshDofMap*> dofmaps;
  for (std::size_t i = 0; i < form_rank; i++)
    dofmaps.push_back(a.function_space(i)->dofmap().get());

  // Vector to hold dof map for a cell
  std::vector<const std::vector<dolfin::la_index>* > dofs(form_rank);

  // Initialize variables that will be reused throughout assembly
  ufc::cell ufc_cell[2];
  std::vector<double> coordinate_dofs[2];
  std::vector<double> macro_coordinate_dofs;

  // Vector to hold dofs for cells, and a vector holding pointers to same
  std::vector<ArrayView<const dolfin::la_index>> macro_dof_ptrs(form_rank);
  std::vector<std::vector<dolfin::la_index>> macro_dofs(form_rank);

  // Iterate over parts
  for (std::size_t part = 0; part < a.num_parts(); part++)
  {
    log(PROGRESS, "Assembling multimesh form over overlap on part %d.", part);

    // Get form for current part
    const Form& a_part = *a.part(part);

    // Create data structure for local assembly data
    UFC ufc_part(a_part);

    // FIXME: Handle subdomains

    // Get integral
    ufc::overlap_integral* integral = ufc_part.default_overlap_integral.get();

    // Skip if we don't have an overlap integral
    if (!integral) continue;

    // Get quadrature rules
    const auto& quadrature_rules = multimesh->quadrature_rule_overlap(part);

    // Get collision map
    const auto& cmap = multimesh->collision_map_cut_cells(part);

    // Iterate over all cut cells in collision map
    for (auto it = cmap.begin(); it != cmap.end(); ++it)
    {
      // Get cut cell
      const unsigned int cut_cell_index = it->first;
      const Cell cut_cell(*multimesh->part(part), cut_cell_index);

      // Iterate over cutting cells
      const auto& cutting_cells = it->second;
      for (auto jt = cutting_cells.begin(); jt != cutting_cells.end(); jt++)
      {
        // Get cutting part and cutting cell
        const std::size_t cutting_part = jt->first;
        const std::size_t cutting_cell_index = jt->second;
        const Cell cutting_cell(*multimesh->part(cutting_part), cutting_cell_index);

        // Get quadrature rule for interface part defined by
        // intersection of the cut and cutting cells
        const std::size_t k = jt - cutting_cells.begin();
        dolfin_assert(k < quadrature_rules.at(cut_cell_index).size());
        const auto& qr = quadrature_rules.at(cut_cell_index)[k];

        // FIXME: There might be quite a few cases when we skip cutting
        // FIXME: cells because there are no quadrature points. Perhaps
        // FIXME: we can rewrite this inner loop to avoid unnecessary
        // FIXME: iterations.

        // Skip if there are no quadrature points
        const std::size_t num_quadrature_points = qr.second.size();
        if (num_quadrature_points == 0)
          continue;

        // Create aliases for cells to simplify notation
        const Cell& cell_0 = cut_cell;
        const Cell& cell_1 = cutting_cell;

        // Update to current pair of cells
        cell_0.get_cell_data(ufc_cell[0], 0);
        cell_1.get_cell_data(ufc_cell[1], 0);
        cell_0.get_coordinate_dofs(coordinate_dofs[0]);
        cell_1.get_coordinate_dofs(coordinate_dofs[1]);
        ufc_part.update(cell_0, coordinate_dofs[0], ufc_cell[0],
                        cell_1, coordinate_dofs[1], ufc_cell[1]);


        // Collect vertex coordinates
        macro_coordinate_dofs.resize(coordinate_dofs[0].size() +
                                     coordinate_dofs[0].size());
        std::copy(coordinate_dofs[0].begin(),
                  coordinate_dofs[0].end(),
                  macro_coordinate_dofs.begin());
        std::copy(coordinate_dofs[1].begin(),
                  coordinate_dofs[1].end(),
                  macro_coordinate_dofs.begin() + coordinate_dofs[0].size());

        // Tabulate dofs for each dimension on macro element
        for (std::size_t i = 0; i < form_rank; i++)
        {
          // Get dofs for cut mesh
          const auto dofmap_0 = a.function_space(i)->dofmap()->part(part);
          const auto dofs_0 = dofmap_0->cell_dofs(cell_0.index());

          // Get dofs for cutting mesh
          const auto dofmap_1 = a.function_space(i)->dofmap()->part(cutting_part);
          const auto dofs_1 = dofmap_1->cell_dofs(cell_1.index());

          // Create space in macro dof vector
          macro_dofs[i].resize(dofs_0.size() + dofs_1.size());

          // Copy cell dofs into macro dof vector
          std::copy(dofs_0.begin(), dofs_0.end(),
                    macro_dofs[i].begin());
          std::copy(dofs_1.begin(), dofs_1.end(),
                    macro_dofs[i].begin() + dofs_0.size());

          // Update array view
          macro_dof_ptrs[i]
            = ArrayView<const dolfin::la_index>(macro_dofs[i].size(),
                                                macro_dofs[i].data());
        }

        // FIXME: Cell orientation not supported
        const int cell_orientation = ufc_cell[0].orientation;

        // Tabulate overlap tensor on macro element
        integral->tabulate_tensor(ufc_part.macro_A.data(),
                                  ufc_part.macro_w(),
                                  macro_coordinate_dofs.data(),
                                  num_quadrature_points,
                                  qr.first.data(),
                                  qr.second.data(),
                                  cell_orientation);

        // Add entries to global tensor
        A.add(ufc_part.macro_A.data(), macro_dof_ptrs);
      }
    }
  }
}
Пример #4
0
//-----------------------------------------------------------------------------
void MultiMeshAssembler::_assemble_cut_cells(GenericTensor& A,
                                             const MultiMeshForm& a)
{
  // Get form rank
  const std::size_t form_rank = a.rank();

  // Extract multimesh
  std::shared_ptr<const MultiMesh> multimesh = a.multimesh();

  // Collect pointers to dof maps
  std::vector<const MultiMeshDofMap*> dofmaps;
  for (std::size_t i = 0; i < form_rank; i++)
    dofmaps.push_back(a.function_space(i)->dofmap().get());

  // Vector to hold dof map for a cell
  std::vector<ArrayView<const dolfin::la_index>> dofs(form_rank);

  // Initialize variables that will be reused throughout assembly
  ufc::cell ufc_cell;
  std::vector<double> coordinate_dofs;

  // Iterate over parts
  for (std::size_t part = 0; part < a.num_parts(); part++)
  {
    log(PROGRESS, "Assembling multimesh form over cut cells on part %d.", part);

    // Get form for current part
    const Form& a_part = *a.part(part);

    // Create data structure for local assembly data
    UFC ufc_part(a_part);

    // Extract mesh
    const Mesh& mesh_part = a_part.mesh();

    // FIXME: Handle subdomains

    // Get integral
    ufc::cutcell_integral* integral = ufc_part.default_cutcell_integral.get();

    // Skip if we don't have a cutcell integral
    if (!integral) continue;

    // Get cut cells and quadrature rules
    const std::vector<unsigned int>& cut_cells = multimesh->cut_cells(part);
    const auto& quadrature_rules = multimesh->quadrature_rule_cut_cells(part);

    // Iterate over cut cells
    for (auto it = cut_cells.begin(); it != cut_cells.end(); ++it)
    {
      // Create cell
      Cell cell(mesh_part, *it);

      // Update to current cell
      cell.get_cell_data(ufc_cell);
      cell.get_coordinate_dofs(coordinate_dofs);
      ufc_part.update(cell, coordinate_dofs, ufc_cell);

      // Get local-to-global dof maps for cell
      for (std::size_t i = 0; i < form_rank; ++i)
      {
        const auto dofmap = a.function_space(i)->dofmap()->part(part);
        dofs[i] = dofmap->cell_dofs(cell.index());
      }

      // Get quadrature rule for cut cell
      const auto& qr = quadrature_rules.at(*it);

      // Skip if there are no quadrature points
      std::size_t num_quadrature_points = qr.second.size();
      if (num_quadrature_points == 0)
        continue;

      // FIXME: Handle this inside the quadrature point generation,
      // FIXME: perhaps by storing three different sets of points,
      // FIXME: including cut cell, overlap and the whole cell.

      // Include only quadrature points with positive weight if
      // integration should be extended on cut cells
      std::pair<std::vector<double>, std::vector<double>> pr;
      if (extend_cut_cell_integration)
      {
        const std::size_t gdim = mesh_part.geometry().dim();
        for (std::size_t i = 0; i < num_quadrature_points; i++)
        {
          if (qr.second[i] > 0.0)
          {
            pr.second.push_back(qr.second[i]);
            for (std::size_t j = i*gdim; j < (i + 1)*gdim; j++)
              pr.first.push_back(qr.first[j]);
          }
        }
        num_quadrature_points = pr.second.size();
      }
      else
      {
        pr = qr;
      }

      // Tabulate cell tensor
      integral->tabulate_tensor(ufc_part.A.data(),
                                ufc_part.w(),
                                coordinate_dofs.data(),
                                num_quadrature_points,
                                pr.first.data(),
                                pr.second.data(),
                                ufc_cell.orientation);

      // Add entries to global tensor
      A.add(ufc_part.A.data(), dofs);
    }
  }
}
Пример #5
0
//-----------------------------------------------------------------------------
void MultiMeshAssembler::_assemble_interface(GenericTensor& A,
                                             const MultiMeshForm& a)
{
  // Extract multimesh
  std::shared_ptr<const MultiMesh> multimesh = a.multimesh();

  // Get form rank
  const std::size_t form_rank = a.rank();

  // Get multimesh coefficients
  // These are updated in within this assembly loop
  std::map<std::size_t, std::shared_ptr<const MultiMeshFunction> >
    multimesh_coefficients = a.multimesh_coefficients();

  // Identify the coefficents that are not MultiMeshFunction
  // These will be updated by UFC
  // It is assumed that the coefficents are the same for all parts
  std::vector<bool> ufc_enabled_coefficients;
  for (std::size_t i = 0; i < a.part(0)->coefficients().size(); i++)
  {
    bool ufc_update = multimesh_coefficients.find(i) == multimesh_coefficients.end();
    ufc_enabled_coefficients.push_back(ufc_update);
  }

  // Collect pointers to dof maps
  std::vector<const MultiMeshDofMap*> dofmaps;
  for (std::size_t i = 0; i < form_rank; i++)
    dofmaps.push_back(a.function_space(i)->dofmap().get());

  // Vector to hold dof map for a cell
  std::vector<const std::vector<dolfin::la_index>* > dofs(form_rank);

  // Initialize variables that will be reused throughout assembly
  ufc::cell ufc_cell[2];
  std::vector<double> coordinate_dofs[2];
  std::vector<double> macro_coordinate_dofs;

  // Vector to hold dofs for cells, and a vector holding pointers to same
  std::vector<ArrayView<const dolfin::la_index>> macro_dof_ptrs(form_rank);
  std::vector<std::vector<dolfin::la_index>> macro_dofs(form_rank);

  // Iterate over parts
  for (std::size_t part = 0; part < a.num_parts(); part++)
  {
    log(PROGRESS, "Assembling multimesh form over interface on part %d.",
        part);

    // Get form for current part
    const Form& a_part = *a.part(part);

    // Create data structure for local assembly data
    UFC ufc_part(a_part);

    // FIXME: Handle subdomains

    // Get integral
    ufc::interface_integral* integral = ufc_part.default_interface_integral.get();

    // Skip if we don't have an interface integral
    if (!integral) continue;

    // Get quadrature rules
    const auto& quadrature_rules = multimesh->quadrature_rules_interface(part);

    // Get collision map
    const auto& cmap = multimesh->collision_map_cut_cells(part);

    // Get facet normals
    const auto& facet_normals = multimesh->facet_normals(part);

    // Iterate over all cut cells in collision map
    for (auto it = cmap.begin(); it != cmap.end(); ++it)
    {
      // Get cut cell
      const unsigned int cut_cell_index = it->first;
      const Cell cut_cell(*multimesh->part(part), cut_cell_index);

      // Iterate over cutting cells
      const auto& cutting_cells = it->second;
      for (auto jt = cutting_cells.begin(); jt != cutting_cells.end(); jt++)
      {
        // Get cutting part and cutting cell
        const std::size_t cutting_part = jt->first;
        const std::size_t cutting_cell_index = jt->second;
        const Cell cutting_cell(*multimesh->part(cutting_part),
                                cutting_cell_index);

        // Get quadrature rule for interface part defined by
        // intersection of the cut and cutting cells
        const std::size_t k = jt - cutting_cells.begin();
        dolfin_assert(k < quadrature_rules.at(cut_cell_index).size());
        const auto& qr = quadrature_rules.at(cut_cell_index)[k];

        // FIXME: There might be quite a few cases when we skip cutting
        // FIXME: cells because there are no quadrature points. Perhaps
        // FIXME: we can rewrite this inner loop to avoid unnecessary
        // FIXME: iterations.

        // Skip if there are no quadrature points
        const std::size_t num_quadrature_points = qr.second.size();
        if (num_quadrature_points == 0)
          continue;

        // Create aliases for cells to simplify notation
        const std::size_t& part_1 = cutting_part;
        const std::size_t& part_0 = part;
        const Cell& cell_1 = cutting_cell;
        const Cell& cell_0 = cut_cell;

        // Update to current pair of cells
        // Let UFC update the coefficients that are not MultiMeshFunction
        cell_0.get_cell_data(ufc_cell[0], 0);
        cell_1.get_cell_data(ufc_cell[1], 0);
        cell_0.get_coordinate_dofs(coordinate_dofs[0]);
        cell_1.get_coordinate_dofs(coordinate_dofs[1]);
        ufc_part.update(cell_0, coordinate_dofs[0], ufc_cell[0],
                        cell_1, coordinate_dofs[1], ufc_cell[1],
                        ufc_enabled_coefficients);

        // Manually update multimesh coefficients
        for (auto it : multimesh_coefficients)
        {
          std::size_t coefficient_number = it.first;
          std::shared_ptr<const MultiMeshFunction> coefficient = it.second;
          double** macro_w = ufc_part.macro_w();
          const FiniteElement& element = *coefficient->function_space()->part(part_0)->element();
          std::size_t offset = element.space_dimension();

          double * w_0 = macro_w[coefficient_number];
          double * w_1 = macro_w[coefficient_number] + offset;

          coefficient->restrict(w_0, element,
                                part_0, cell_0, coordinate_dofs[0].data(), ufc_cell[0]);
          coefficient->restrict(w_1, element,
                                part_1, cell_1, coordinate_dofs[1].data(), ufc_cell[1]);
        }

        // Collect vertex coordinates
        macro_coordinate_dofs.resize(coordinate_dofs[0].size() +
                                     coordinate_dofs[1].size());
        std::copy(coordinate_dofs[0].begin(), coordinate_dofs[0].end(),
                  macro_coordinate_dofs.begin());
        std::copy(coordinate_dofs[1].begin(), coordinate_dofs[1].end(),
                  macro_coordinate_dofs.begin() + coordinate_dofs[0].size());

        // Tabulate dofs for each dimension on macro element
        for (std::size_t i = 0; i < form_rank; i++)
        {
          // Get dofs for cut mesh
          const auto dofmap_0 = a.function_space(i)->dofmap()->part(part_0);
          const auto dofs_0 = dofmap_0->cell_dofs(cell_0.index());

          // Get dofs for cutting mesh
          const auto dofmap_1 = a.function_space(i)->dofmap()->part(part_1);
          const auto dofs_1 = dofmap_1->cell_dofs(cell_1.index());

          // Create space in macro dof vector
          macro_dofs[i].resize(dofs_0.size() + dofs_1.size());

          // Copy cell dofs into macro dof vector
          std::copy(dofs_0.data(), dofs_0.data() + dofs_0.size(),
                    macro_dofs[i].begin());
          std::copy(dofs_1.data(), dofs_1.data() + dofs_1.size(),
                    macro_dofs[i].begin() + dofs_0.size());

          // Update array view
          macro_dof_ptrs[i]
            = ArrayView<const dolfin::la_index>(macro_dofs[i].size(),
                                                macro_dofs[i].data());
        }

        // Get facet normals
        const auto& n = facet_normals.at(cut_cell_index)[k];

        // FIXME: We would like to use this assertion (but it fails
        // for 2 meshes)
        dolfin_assert(n.size() == a_part.mesh()->geometry().dim()*num_quadrature_points);

        // FIXME: For now, use this assertion (which fails for 3 meshes)
        //dolfin_assert(n.size() > 0);

        // FIXME: Cell orientation not supported
        const int cell_orientation = ufc_cell[0].orientation;

        // Tabulate interface tensor on macro element
        integral->tabulate_tensor(ufc_part.macro_A.data(),
                                  ufc_part.macro_w(),
                                  macro_coordinate_dofs.data(),
                                  num_quadrature_points,
                                  qr.first.data(),
                                  qr.second.data(),
                                  n.data(),
                                  cell_orientation);

        // Add entries to global tensor
        A.add(ufc_part.macro_A.data(), macro_dof_ptrs);
      }
    }
  }
}