void NIImporter_SUMO::_loadNetwork(const OptionsCont& oc) { // check whether the option is set (properly) if (!oc.isUsableFileList("sumo-net-file")) { return; } // parse file(s) std::vector<std::string> files = oc.getStringVector("sumo-net-file"); for (std::vector<std::string>::const_iterator file = files.begin(); file != files.end(); ++file) { if (!FileHelpers::exists(*file)) { WRITE_ERROR("Could not open sumo-net-file '" + *file + "'."); return; } setFileName(*file); PROGRESS_BEGIN_MESSAGE("Parsing sumo-net from '" + *file + "'"); XMLSubSys::runParser(*this, *file); PROGRESS_DONE_MESSAGE(); } // build edges for (std::map<std::string, EdgeAttrs*>::const_iterator i = myEdges.begin(); i != myEdges.end(); ++i) { EdgeAttrs* ed = (*i).second; // skip internal edges if (ed->func == toString(EDGEFUNC_INTERNAL)) { continue; } // get and check the nodes NBNode* from = myNodeCont.retrieve(ed->fromNode); NBNode* to = myNodeCont.retrieve(ed->toNode); if (from == 0) { WRITE_ERROR("Edge's '" + ed->id + "' from-node '" + ed->fromNode + "' is not known."); continue; } if (to == 0) { WRITE_ERROR("Edge's '" + ed->id + "' to-node '" + ed->toNode + "' is not known."); continue; } // edge shape PositionVector geom; if (ed->shape.size() > 0) { geom = ed->shape; mySuspectKeepShape = false; // no problem with reconstruction if edge shape is given explicit } else { // either the edge has default shape consisting only of the two node // positions or we have a legacy network geom = reconstructEdgeShape(ed, from->getPosition(), to->getPosition()); } // build and insert the edge NBEdge* e = new NBEdge(ed->id, from, to, ed->type, ed->maxSpeed, (unsigned int) ed->lanes.size(), ed->priority, NBEdge::UNSPECIFIED_WIDTH, NBEdge::UNSPECIFIED_OFFSET, geom, ed->streetName, ed->lsf, true); // always use tryIgnoreNodePositions to keep original shape e->setLoadedLength(ed->length); if (!myNetBuilder.getEdgeCont().insert(e)) { WRITE_ERROR("Could not insert edge '" + ed->id + "'."); delete e; continue; } ed->builtEdge = myNetBuilder.getEdgeCont().retrieve(ed->id); } // assign further lane attributes (edges are built) for (std::map<std::string, EdgeAttrs*>::const_iterator i = myEdges.begin(); i != myEdges.end(); ++i) { EdgeAttrs* ed = (*i).second; NBEdge* nbe = ed->builtEdge; if (nbe == 0) { // inner edge or removed by explicit list, vclass, ... continue; } for (unsigned int fromLaneIndex = 0; fromLaneIndex < (unsigned int) ed->lanes.size(); ++fromLaneIndex) { LaneAttrs* lane = ed->lanes[fromLaneIndex]; // connections const std::vector<Connection> &connections = lane->connections; for (std::vector<Connection>::const_iterator c_it = connections.begin(); c_it != connections.end(); c_it++) { const Connection& c = *c_it; if (myEdges.count(c.toEdgeID) == 0) { WRITE_ERROR("Unknown edge '" + c.toEdgeID + "' given in connection."); continue; } NBEdge* toEdge = myEdges[c.toEdgeID]->builtEdge; if (toEdge == 0) { // removed by explicit list, vclass, ... continue; } nbe->addLane2LaneConnection( fromLaneIndex, toEdge, c.toLaneIdx, NBEdge::L2L_VALIDATED, false, c.mayDefinitelyPass); // maybe we have a tls-controlled connection if (c.tlID != "") { const std::map<std::string, NBTrafficLightDefinition*>& programs = myTLLCont.getPrograms(c.tlID); if (programs.size() > 0) { std::map<std::string, NBTrafficLightDefinition*>::const_iterator it; for (it = programs.begin(); it != programs.end(); it++) { NBLoadedSUMOTLDef* tlDef = dynamic_cast<NBLoadedSUMOTLDef*>(it->second); if (tlDef) { tlDef->addConnection(nbe, toEdge, fromLaneIndex, c.toLaneIdx, c.tlLinkNo); } else { throw ProcessError("Corrupt traffic light definition '" + c.tlID + "' (program '" + it->first + "')"); } } } else { WRITE_ERROR("The traffic light '" + c.tlID + "' is not known."); } } } // allow/disallow SUMOVehicleClasses allowed; SUMOVehicleClasses disallowed; parseVehicleClasses(lane->allow, lane->disallow, allowed, disallowed); nbe->setVehicleClasses(allowed, disallowed, fromLaneIndex); // width, offset nbe->setWidth(fromLaneIndex, lane->width); nbe->setOffset(fromLaneIndex, lane->offset); nbe->setSpeed(fromLaneIndex, lane->maxSpeed); } nbe->declareConnectionsAsLoaded(); } // insert loaded prohibitions for (std::vector<Prohibition>::const_iterator it = myProhibitions.begin(); it != myProhibitions.end(); it++) { NBEdge* prohibitedFrom = myEdges[it->prohibitedFrom]->builtEdge; if (prohibitedFrom == 0) { WRITE_ERROR("Edge '" + it->prohibitedFrom + "' in prohibition was not built"); } else { NBNode* n = prohibitedFrom->getToNode(); n->addSortedLinkFoes( NBConnection(myEdges[it->prohibitorFrom]->builtEdge, myEdges[it->prohibitorTo]->builtEdge), NBConnection(prohibitedFrom, myEdges[it->prohibitedTo]->builtEdge)); } } // final warning if (mySuspectKeepShape) { WRITE_WARNING("The input network may have been built using option 'xml.keep-shape'.\n... Accuracy of junction positions cannot be guaranteed."); } }
void NIXMLConnectionsHandler::myStartElement(int element, const SUMOSAXAttributes& attrs) { if (element == SUMO_TAG_DELETE) { bool ok = true; std::string from = attrs.get<std::string>(SUMO_ATTR_FROM, 0, ok); std::string to = attrs.get<std::string>(SUMO_ATTR_TO, 0, ok); if (!ok) { return; } // these connections were removed when the edge was deleted if (myEdgeCont.wasRemoved(from) || myEdgeCont.wasRemoved(to)) { return; } NBEdge* fromEdge = myEdgeCont.retrieve(from); NBEdge* toEdge = myEdgeCont.retrieve(to); if (fromEdge == 0) { myErrorMsgHandler->inform("The connection-source edge '" + from + "' to reset is not known."); return; } if (toEdge == 0) { myErrorMsgHandler->inform("The connection-destination edge '" + to + "' to reset is not known."); return; } if (!fromEdge->isConnectedTo(toEdge) && fromEdge->getStep() >= NBEdge::EDGE2EDGES) { WRITE_WARNING("Target edge '" + toEdge->getID() + "' is not connected with '" + fromEdge->getID() + "'; the connection cannot be reset."); return; } int fromLane = -1; // Assume all lanes are to be reset. int toLane = -1; if (attrs.hasAttribute(SUMO_ATTR_LANE) || attrs.hasAttribute(SUMO_ATTR_FROM_LANE) || attrs.hasAttribute(SUMO_ATTR_TO_LANE)) { if (!parseLaneInfo(attrs, fromEdge, toEdge, &fromLane, &toLane)) { return; } // we could be trying to reset a connection loaded from a sumo net and which has become obsolete. // In this case it's ok to encounter invalid lance indices if (!fromEdge->hasConnectionTo(toEdge, toLane) && fromEdge->getStep() >= NBEdge::LANES2EDGES) { WRITE_WARNING("Edge '" + fromEdge->getID() + "' has no connection to lane " + toString(toLane) + " of edge '" + toEdge->getID() + "'; the connection cannot be reset."); } } fromEdge->removeFromConnections(toEdge, fromLane, toLane, true); } if (element == SUMO_TAG_CONNECTION) { bool ok = true; std::string from = attrs.get<std::string>(SUMO_ATTR_FROM, "connection", ok); std::string to = attrs.getOpt<std::string>(SUMO_ATTR_TO, "connection", ok, ""); if (!ok || myEdgeCont.wasIgnored(from) || myEdgeCont.wasIgnored(to)) { return; } // extract edges NBEdge* fromEdge = myEdgeCont.retrieve(from); NBEdge* toEdge = to.length() != 0 ? myEdgeCont.retrieve(to) : 0; // check whether they are valid if (fromEdge == 0) { myErrorMsgHandler->inform("The connection-source edge '" + from + "' is not known."); return; } if (toEdge == 0 && to.length() != 0) { myErrorMsgHandler->inform("The connection-destination edge '" + to + "' is not known."); return; } fromEdge->getToNode()->invalidateTLS(myTLLogicCont, true, false); // parse optional lane information if (attrs.hasAttribute(SUMO_ATTR_LANE) || attrs.hasAttribute(SUMO_ATTR_FROM_LANE) || attrs.hasAttribute(SUMO_ATTR_TO_LANE)) { parseLaneBound(attrs, fromEdge, toEdge); } else { fromEdge->addEdge2EdgeConnection(toEdge); } } if (element == SUMO_TAG_PROHIBITION) { bool ok = true; std::string prohibitor = attrs.getOpt<std::string>(SUMO_ATTR_PROHIBITOR, 0, ok, ""); std::string prohibited = attrs.getOpt<std::string>(SUMO_ATTR_PROHIBITED, 0, ok, ""); if (!ok) { return; } NBConnection prohibitorC = parseConnection("prohibitor", prohibitor); NBConnection prohibitedC = parseConnection("prohibited", prohibited); if (prohibitorC == NBConnection::InvalidConnection || prohibitedC == NBConnection::InvalidConnection) { // something failed return; } NBNode* n = prohibitorC.getFrom()->getToNode(); n->addSortedLinkFoes(prohibitorC, prohibitedC); } if (element == SUMO_TAG_CROSSING) { addCrossing(attrs); } if (element == SUMO_TAG_WALKINGAREA) { addWalkingArea(attrs); } }
bool NIVissimDisturbance::addToNode(NBNode* node, NBDistrictCont& dc, NBNodeCont& nc, NBEdgeCont& ec) { myNode = 0; NIVissimConnection* pc = NIVissimConnection::dictionary(myEdge.getEdgeID()); NIVissimConnection* bc = NIVissimConnection::dictionary(myDisturbance.getEdgeID()); if (pc == nullptr && bc == nullptr) { // This has not been tested completely, yet // Both competing abstract edges are normal edges // We have to find a crossing point, build a node here, // split both edges and add the connections NIVissimEdge* e1 = NIVissimEdge::dictionary(myEdge.getEdgeID()); NIVissimEdge* e2 = NIVissimEdge::dictionary(myDisturbance.getEdgeID()); WRITE_WARNING("Ugly split to prohibit '" + toString<int>(e1->getID()) + "' by '" + toString<int>(e2->getID()) + "'."); Position pos = e1->crossesEdgeAtPoint(e2); std::string id1 = toString<int>(e1->getID()) + "x" + toString<int>(e2->getID()); std::string id2 = toString<int>(e2->getID()) + "x" + toString<int>(e1->getID()); NBNode* node1 = nc.retrieve(id1); NBNode* node2 = nc.retrieve(id2); NBNode* node = nullptr; assert(node1 == 0 || node2 == 0); if (node1 == nullptr && node2 == nullptr) { refusedProhibits++; return false; /* node = new NBNode(id1, pos.x(), pos.y(), "priority"); if(!myNodeCont.insert(node)) { "nope, NIVissimDisturbance" << endl; throw 1; }*/ } else { node = node1 == nullptr ? node2 : node1; } ec.splitAt(dc, ec.retrievePossiblySplit(toString<int>(e1->getID()), myEdge.getPosition()), node); ec.splitAt(dc, ec.retrievePossiblySplit(toString<int>(e2->getID()), myDisturbance.getPosition()), node); // !!! in some cases, one of the edges is not being build because it's too short // !!! what to do in these cases? NBEdge* mayDriveFrom = ec.retrieve(toString<int>(e1->getID()) + "[0]"); NBEdge* mayDriveTo = ec.retrieve(toString<int>(e1->getID()) + "[1]"); NBEdge* mustStopFrom = ec.retrieve(toString<int>(e2->getID()) + "[0]"); NBEdge* mustStopTo = ec.retrieve(toString<int>(e2->getID()) + "[1]"); if (mayDriveFrom != nullptr && mayDriveTo != nullptr && mustStopFrom != nullptr && mustStopTo != nullptr) { node->addSortedLinkFoes( NBConnection(mayDriveFrom, mayDriveTo), NBConnection(mayDriveFrom, mayDriveTo)); } else { refusedProhibits++; return false; // !!! warning } // } } else if (pc != nullptr && bc == nullptr) { // The prohibited abstract edge is a connection, the other // is not; // The connection will be prohibitesd by all connections // outgoing from the "real" edge NBEdge* e = ec.retrievePossiblySplit(toString<int>(myDisturbance.getEdgeID()), myDisturbance.getPosition()); if (e == nullptr) { WRITE_WARNING("Could not prohibit '" + toString<int>(myEdge.getEdgeID()) + "' by '" + toString<int>(myDisturbance.getEdgeID()) + "'. Have not found disturbance."); refusedProhibits++; return false; } if (e->getFromNode() == e->getToNode()) { WRITE_WARNING("Could not prohibit '" + toString<int>(myEdge.getEdgeID()) + "' by '" + toString<int>(myDisturbance.getEdgeID()) + "'. Disturbance connects same node."); refusedProhibits++; // What to do with self-looping edges? return false; } // get the begin of the prohibited connection std::string id_pcoe = toString<int>(pc->getFromEdgeID()); std::string id_pcie = toString<int>(pc->getToEdgeID()); NBEdge* pcoe = ec.retrievePossiblySplit(id_pcoe, id_pcie, true); NBEdge* pcie = ec.retrievePossiblySplit(id_pcie, id_pcoe, false); // check whether it's ending node is the node the prohibited // edge end at if (pcoe != nullptr && pcie != nullptr && pcoe->getToNode() == e->getToNode()) { // if so, simply prohibit the connections NBNode* node = e->getToNode(); const EdgeVector& connected = e->getConnectedEdges(); for (EdgeVector::const_iterator i = connected.begin(); i != connected.end(); i++) { node->addSortedLinkFoes( NBConnection(e, *i), NBConnection(pcoe, pcie)); } } else { WRITE_WARNING("Would have to split edge '" + e->getID() + "' to build a prohibition"); refusedProhibits++; // quite ugly - why was it not build? return false; /* std::string nid1 = e->getID() + "[0]"; std::string nid2 = e->getID() + "[1]"; if(ec.splitAt(e, node)) { node->addSortedLinkFoes( NBConnection( ec.retrieve(nid1), ec.retrieve(nid2) ), getConnection(node, myEdge.getEdgeID()) ); } */ } } else if (bc != nullptr && pc == nullptr) { // The prohibiting abstract edge is a connection, the other // is not; // We have to split the other one and add the prohibition // description NBEdge* e = ec.retrievePossiblySplit(toString<int>(myEdge.getEdgeID()), myEdge.getPosition()); if (e == nullptr) { WRITE_WARNING("Could not prohibit '" + toString<int>(myEdge.getEdgeID()) + "' - it was not built."); return false; } std::string nid1 = e->getID() + "[0]"; std::string nid2 = e->getID() + "[1]"; if (e->getFromNode() == e->getToNode()) { WRITE_WARNING("Could not prohibit '" + toString<int>(myEdge.getEdgeID()) + "' by '" + toString<int>(myDisturbance.getEdgeID()) + "'."); refusedProhibits++; // What to do with self-looping edges? return false; } // get the begin of the prohibiting connection std::string id_bcoe = toString<int>(bc->getFromEdgeID()); std::string id_bcie = toString<int>(bc->getToEdgeID()); NBEdge* bcoe = ec.retrievePossiblySplit(id_bcoe, id_bcie, true); NBEdge* bcie = ec.retrievePossiblySplit(id_bcie, id_bcoe, false); // check whether it's ending node is the node the prohibited // edge end at if (bcoe != nullptr && bcie != nullptr && bcoe->getToNode() == e->getToNode()) { // if so, simply prohibit the connections NBNode* node = e->getToNode(); const EdgeVector& connected = e->getConnectedEdges(); for (EdgeVector::const_iterator i = connected.begin(); i != connected.end(); i++) { node->addSortedLinkFoes( NBConnection(bcoe, bcie), NBConnection(e, *i)); } } else { WRITE_WARNING("Would have to split edge '" + e->getID() + "' to build a prohibition"); refusedProhibits++; return false; /* // quite ugly - why was it not build? if(ec.splitAt(e, node)) { node->addSortedLinkFoes( getConnection(node, myDisturbance.getEdgeID()), NBConnection( ec.retrieve(nid1), ec.retrieve(nid2) ) ); } */ } } else { // both the prohibiting and the prohibited abstract edges // are connections // We can retrieve the conected edges and add the desription NBConnection conn1 = getConnection(node, myDisturbance.getEdgeID()); NBConnection conn2 = getConnection(node, myEdge.getEdgeID()); if (!conn1.check(ec) || !conn2.check(ec)) { refusedProhibits++; return false; } node->addSortedLinkFoes(conn1, conn2); } return true; }
void NIImporter_SUMO::_loadNetwork(OptionsCont& oc) { // check whether the option is set (properly) if (!oc.isUsableFileList("sumo-net-file")) { return; } // parse file(s) std::vector<std::string> files = oc.getStringVector("sumo-net-file"); for (std::vector<std::string>::const_iterator file = files.begin(); file != files.end(); ++file) { if (!FileHelpers::isReadable(*file)) { WRITE_ERROR("Could not open sumo-net-file '" + *file + "'."); return; } setFileName(*file); PROGRESS_BEGIN_MESSAGE("Parsing sumo-net from '" + *file + "'"); XMLSubSys::runParser(*this, *file, true); PROGRESS_DONE_MESSAGE(); } // build edges for (std::map<std::string, EdgeAttrs*>::const_iterator i = myEdges.begin(); i != myEdges.end(); ++i) { EdgeAttrs* ed = (*i).second; // skip internal edges if (ed->func == EDGEFUNC_INTERNAL || ed->func == EDGEFUNC_CROSSING || ed->func == EDGEFUNC_WALKINGAREA) { continue; } // get and check the nodes NBNode* from = myNodeCont.retrieve(ed->fromNode); NBNode* to = myNodeCont.retrieve(ed->toNode); if (from == 0) { WRITE_ERROR("Edge's '" + ed->id + "' from-node '" + ed->fromNode + "' is not known."); continue; } if (to == 0) { WRITE_ERROR("Edge's '" + ed->id + "' to-node '" + ed->toNode + "' is not known."); continue; } // edge shape PositionVector geom; if (ed->shape.size() > 0) { geom = ed->shape; } else { // either the edge has default shape consisting only of the two node // positions or we have a legacy network geom = reconstructEdgeShape(ed, from->getPosition(), to->getPosition()); } // build and insert the edge NBEdge* e = new NBEdge(ed->id, from, to, ed->type, ed->maxSpeed, (unsigned int) ed->lanes.size(), ed->priority, NBEdge::UNSPECIFIED_WIDTH, NBEdge::UNSPECIFIED_OFFSET, geom, ed->streetName, "", ed->lsf, true); // always use tryIgnoreNodePositions to keep original shape e->setLoadedLength(ed->length); if (!myNetBuilder.getEdgeCont().insert(e)) { WRITE_ERROR("Could not insert edge '" + ed->id + "'."); delete e; continue; } ed->builtEdge = myNetBuilder.getEdgeCont().retrieve(ed->id); } // assign further lane attributes (edges are built) for (std::map<std::string, EdgeAttrs*>::const_iterator i = myEdges.begin(); i != myEdges.end(); ++i) { EdgeAttrs* ed = (*i).second; NBEdge* nbe = ed->builtEdge; if (nbe == 0) { // inner edge or removed by explicit list, vclass, ... continue; } for (unsigned int fromLaneIndex = 0; fromLaneIndex < (unsigned int) ed->lanes.size(); ++fromLaneIndex) { LaneAttrs* lane = ed->lanes[fromLaneIndex]; // connections const std::vector<Connection>& connections = lane->connections; for (std::vector<Connection>::const_iterator c_it = connections.begin(); c_it != connections.end(); c_it++) { const Connection& c = *c_it; if (myEdges.count(c.toEdgeID) == 0) { WRITE_ERROR("Unknown edge '" + c.toEdgeID + "' given in connection."); continue; } NBEdge* toEdge = myEdges[c.toEdgeID]->builtEdge; if (toEdge == 0) { // removed by explicit list, vclass, ... continue; } if (nbe->hasConnectionTo(toEdge, c.toLaneIdx)) { WRITE_WARNING("Target lane '" + toEdge->getLaneID(c.toLaneIdx) + "' has multiple connections from '" + nbe->getID() + "'."); } nbe->addLane2LaneConnection( fromLaneIndex, toEdge, c.toLaneIdx, NBEdge::L2L_VALIDATED, true, c.mayDefinitelyPass, c.keepClear, c.contPos); // maybe we have a tls-controlled connection if (c.tlID != "" && myRailSignals.count(c.tlID) == 0) { const std::map<std::string, NBTrafficLightDefinition*>& programs = myTLLCont.getPrograms(c.tlID); if (programs.size() > 0) { std::map<std::string, NBTrafficLightDefinition*>::const_iterator it; for (it = programs.begin(); it != programs.end(); it++) { NBLoadedSUMOTLDef* tlDef = dynamic_cast<NBLoadedSUMOTLDef*>(it->second); if (tlDef) { tlDef->addConnection(nbe, toEdge, fromLaneIndex, c.toLaneIdx, c.tlLinkNo); } else { throw ProcessError("Corrupt traffic light definition '" + c.tlID + "' (program '" + it->first + "')"); } } } else { WRITE_ERROR("The traffic light '" + c.tlID + "' is not known."); } } } // allow/disallow XXX preferred nbe->setPermissions(parseVehicleClasses(lane->allow, lane->disallow), fromLaneIndex); // width, offset nbe->setLaneWidth(fromLaneIndex, lane->width); nbe->setEndOffset(fromLaneIndex, lane->endOffset); nbe->setSpeed(fromLaneIndex, lane->maxSpeed); } nbe->declareConnectionsAsLoaded(); if (!nbe->hasLaneSpecificWidth() && nbe->getLanes()[0].width != NBEdge::UNSPECIFIED_WIDTH) { nbe->setLaneWidth(-1, nbe->getLaneWidth(0)); } if (!nbe->hasLaneSpecificEndOffset() && nbe->getEndOffset(0) != NBEdge::UNSPECIFIED_OFFSET) { nbe->setEndOffset(-1, nbe->getEndOffset(0)); } } // insert loaded prohibitions for (std::vector<Prohibition>::const_iterator it = myProhibitions.begin(); it != myProhibitions.end(); it++) { NBEdge* prohibitedFrom = myEdges[it->prohibitedFrom]->builtEdge; NBEdge* prohibitedTo = myEdges[it->prohibitedTo]->builtEdge; NBEdge* prohibitorFrom = myEdges[it->prohibitorFrom]->builtEdge; NBEdge* prohibitorTo = myEdges[it->prohibitorTo]->builtEdge; if (prohibitedFrom == 0) { WRITE_WARNING("Edge '" + it->prohibitedFrom + "' in prohibition was not built"); } else if (prohibitedTo == 0) { WRITE_WARNING("Edge '" + it->prohibitedTo + "' in prohibition was not built"); } else if (prohibitorFrom == 0) { WRITE_WARNING("Edge '" + it->prohibitorFrom + "' in prohibition was not built"); } else if (prohibitorTo == 0) { WRITE_WARNING("Edge '" + it->prohibitorTo + "' in prohibition was not built"); } else { NBNode* n = prohibitedFrom->getToNode(); n->addSortedLinkFoes( NBConnection(prohibitorFrom, prohibitorTo), NBConnection(prohibitedFrom, prohibitedTo)); } } if (!myHaveSeenInternalEdge) { myNetBuilder.haveLoadedNetworkWithoutInternalEdges(); } if (oc.isDefault("lefthand")) { oc.set("lefthand", toString(myAmLefthand)); } if (oc.isDefault("junctions.corner-detail")) { oc.set("junctions.corner-detail", toString(myCornerDetail)); } if (oc.isDefault("junctions.internal-link-detail") && myLinkDetail > 0) { oc.set("junctions.internal-link-detail", toString(myLinkDetail)); } if (!deprecatedVehicleClassesSeen.empty()) { WRITE_WARNING("Deprecated vehicle class(es) '" + toString(deprecatedVehicleClassesSeen) + "' in input network."); deprecatedVehicleClassesSeen.clear(); } // add loaded crossings if (!oc.getBool("no-internal-links")) { for (std::map<std::string, std::vector<Crossing> >::const_iterator it = myPedestrianCrossings.begin(); it != myPedestrianCrossings.end(); ++it) { NBNode* node = myNodeCont.retrieve((*it).first); for (std::vector<Crossing>::const_iterator it_c = (*it).second.begin(); it_c != (*it).second.end(); ++it_c) { const Crossing& crossing = (*it_c); EdgeVector edges; for (std::vector<std::string>::const_iterator it_e = crossing.crossingEdges.begin(); it_e != crossing.crossingEdges.end(); ++it_e) { NBEdge* edge = myNetBuilder.getEdgeCont().retrieve(*it_e); // edge might have been removed due to options if (edge != 0) { edges.push_back(edge); } } if (edges.size() > 0) { node->addCrossing(edges, crossing.width, crossing.priority, true); } } } } // add roundabouts for (std::vector<std::vector<std::string> >::const_iterator it = myRoundabouts.begin(); it != myRoundabouts.end(); ++it) { EdgeSet roundabout; for (std::vector<std::string>::const_iterator it_r = it->begin(); it_r != it->end(); ++it_r) { NBEdge* edge = myNetBuilder.getEdgeCont().retrieve(*it_r); if (edge == 0) { if (!myNetBuilder.getEdgeCont().wasIgnored(*it_r)) { WRITE_ERROR("Unknown edge '" + (*it_r) + "' in roundabout"); } } else { roundabout.insert(edge); } } myNetBuilder.getEdgeCont().addRoundabout(roundabout); } }