Пример #1
0
void NodeSetTest::test_set_get_clear_simple()
{
  NodeSet set;
  for (unsigned i = 0; i < NodeSet::NUM_CORNER_BITS; ++i) {
    CPPUNIT_ASSERT( !set.corner_node(i) );
    set.set_corner_node( i );
    CPPUNIT_ASSERT( set.corner_node(i) );
    set.clear_corner_node( i );
    CPPUNIT_ASSERT( !set.corner_node(i) );
  }
  for (unsigned i = 0; i < NodeSet::NUM_EDGE_BITS; ++i) {
    CPPUNIT_ASSERT( !set.mid_edge_node(i) );
    set.set_mid_edge_node( i );
    CPPUNIT_ASSERT( set.mid_edge_node(i) );
    set.clear_mid_edge_node( i );
    CPPUNIT_ASSERT( !set.mid_edge_node(i) );
  }
  for (unsigned i = 0; i < NodeSet::NUM_FACE_BITS; ++i) {
    CPPUNIT_ASSERT( !set.mid_face_node(i) );
    set.set_mid_face_node( i );
    CPPUNIT_ASSERT( set.mid_face_node(i) );
    set.clear_mid_face_node( i );
    CPPUNIT_ASSERT( !set.mid_face_node(i) );
  }
  for (unsigned i = 0; i < NodeSet::NUM_REGION_BITS; ++i) {
    CPPUNIT_ASSERT( !set.mid_region_node(i) );
    set.set_mid_region_node( i );
    CPPUNIT_ASSERT( set.mid_region_node(i) );
    set.clear_mid_region_node( i );
    CPPUNIT_ASSERT( !set.mid_region_node(i) );
  }
}
Пример #2
0
void QuadLagrangeShape::coefficients( Sample loc,
                                      NodeSet nodeset,
                                      double* coeff_out,
                                      size_t* indices_out,
                                      size_t& num_coeff,
                                      MsqError& err ) const
{
  switch (loc.dimension) {
    case 0:
      num_coeff = 1;
      indices_out[0] = loc.number;
      coeff_out[0] = 1.0;
      break;
    case 1:
      coeff_out[0] = coeff_out[1] = coeff_out[2] =
      coeff_out[3] = coeff_out[4] = coeff_out[5] = 
      coeff_out[6] = coeff_out[7] = coeff_out[8] = 0.0;
      if (nodeset.mid_edge_node(loc.number)) {  
          // if mid-edge node is present
        num_coeff = 1;
        indices_out[0] = loc.number+4;
        coeff_out[0] = 1.0;
      }
      else {
          // If mid-edge node is not present, mapping function value
          // for linear edge is even weight of adjacent vertices.
        num_coeff = 2;
        indices_out[0] = loc.number;
        indices_out[1] = (loc.number+1)%4;
        coeff_out[0] = 0.5;
        coeff_out[1] = 0.5;
      }
      break;
    case 2:
      if (nodeset.mid_face_node(0)) { // if quad center node is present
        num_coeff = 1;
        indices_out[0] = 8;
        coeff_out[0] = 1.0;
      } 
      else {
          // for linear element, (no mid-edge nodes), all corners contribute 1/4.
        num_coeff = 4;
        indices_out[0] = 0;
        indices_out[1] = 1;
        indices_out[2] = 2;
        indices_out[3] = 3;
        coeff_out[0] = 0.25;
        coeff_out[1] = 0.25;
        coeff_out[2] = 0.25;
        coeff_out[3] = 0.25;
          // add in contribution for any mid-edge nodes present
        for (int i = 0; i < 4; ++i) { // for each edge
          if (nodeset.mid_edge_node(i))
          {
            indices_out[num_coeff] = i+4;
            coeff_out[num_coeff] = 0.5;
            coeff_out[ i     ] -= 0.25;
            coeff_out[(i+1)%4] -= 0.25;
            ++num_coeff;
          }
        }
      }
      break;
    default:
      MSQ_SETERR(err)(MsqError::UNSUPPORTED_ELEMENT,
                  "Request for dimension %d mapping function value"
                  "for a quadrilateral element", loc.dimension);
  }
}
Пример #3
0
static void derivatives_at_mid_edge( unsigned edge, 
                                     NodeSet nodeset,
                                     size_t* vertices,
                                     MsqVector<2>* derivs,
                                     size_t& num_vtx )
{
  static const double values[][9] = { {-0.5, -0.5, 0.5,  0.5, -1.0,  2.0,  1.0,  2.0,  4.0},
                                      {-0.5,  0.5, 0.5, -0.5, -2.0,  1.0, -2.0, -1.0, -4.0},
                                      {-0.5, -0.5, 0.5,  0.5, -1.0, -2.0,  1.0, -2.0, -4.0},
                                      {-0.5,  0.5, 0.5, -0.5,  2.0,  1.0,  2.0, -1.0,  4.0} };
  static const double edge_values[][2] = { {-1,  1},
                                           {-1,  1},
                                           { 1, -1},
                                           { 1, -1} }; 
  const unsigned prev_corner = edge;           // index of start vertex of edge
  const unsigned next_corner = (edge+1)%4;     // index of end vertex of edge
  const unsigned is_eta_edge = edge % 2;       // edge is xi = +/- 0
  const unsigned is_xi_edge  = 1 - is_eta_edge;// edge is eta = +/- 0
  //const unsigned mid_edge_node = edge + 4;     // mid-edge node index
  const unsigned prev_opposite = (prev_corner+3)%4; // index of corner adjacent to prev_corner
  const unsigned next_opposite = (next_corner+1)%4; // index of corner adjacent to next_corner;
 
    // First do derivatives along edge (e.g. wrt xi if edge is eta = +/-1)
  num_vtx = 2;
  vertices[0] = prev_corner;
  vertices[1] = next_corner;
  derivs[0][is_eta_edge] = edge_values[edge][0];
  derivs[0][is_xi_edge]  = 0.0;
  derivs[1][is_eta_edge] = edge_values[edge][1];
  derivs[1][is_xi_edge]  = 0.0;
    // That's it for the edge-direction derivatives.  No other vertices contribute.
    
    // Next handle the linear element case.  Handle this as a special case first,
    // so the generalized solution doesn't impact performance for linear elements
    // too much.
  if (!nodeset.have_any_mid_node()) {
    num_vtx = 4;
    vertices[2] = prev_opposite;
    vertices[3] = next_opposite;
    derivs[0][is_xi_edge] = values[edge][prev_corner];
    derivs[1][is_xi_edge] = values[edge][next_corner];
    derivs[2][is_xi_edge] = values[edge][prev_opposite];
    derivs[2][is_eta_edge] = 0.0;
    derivs[3][is_xi_edge] = values[edge][next_opposite];
    derivs[3][is_eta_edge] = 0.0;
    return;
  }
  
    // Initial (linear) contribution for each corner
  double v[4] = { values[edge][0], 
                  values[edge][1], 
                  values[edge][2], 
                  values[edge][3] };

    // If mid-face node is present
  double v8 = 0.0;
  if (nodeset.mid_face_node(0)) {
    v8 = values[edge][8];
    vertices[num_vtx] = 8;
    derivs[num_vtx][is_eta_edge] = 0.0;
    derivs[num_vtx][is_xi_edge] = v8;
    v[0] -= 0.25 * v8;
    v[1] -= 0.25 * v8;
    v[2] -= 0.25 * v8;
    v[3] -= 0.25 * v8;
    ++num_vtx;
  }

    // If mid-edge nodes are present
  for (unsigned i = 0; i < 4; ++i) {
    if (nodeset.mid_edge_node(i)) {
      const double value = values[edge][i+4] - 0.5 * v8;
      if (fabs(value) > 0.125) {
        v[ i     ] -= 0.5 * value;
        v[(i+1)%4] -= 0.5 * value;
        vertices[num_vtx] = i+4;
        derivs[num_vtx][is_eta_edge] = 0.0;
        derivs[num_vtx][is_xi_edge] = value;
        ++num_vtx;
      }
    }
  }

    // update values for adjacent corners
  derivs[0][is_xi_edge] = v[prev_corner];
  derivs[1][is_xi_edge] = v[next_corner];
    // do other two corners
  if (fabs(v[prev_opposite]) > 0.125) {
    vertices[num_vtx] = prev_opposite;
    derivs[num_vtx][is_eta_edge] = 0.0;
    derivs[num_vtx][is_xi_edge] = v[prev_opposite];
    ++num_vtx;
  }
  if (fabs(v[next_opposite]) > 0.125) {
    vertices[num_vtx] = next_opposite;
    derivs[num_vtx][is_eta_edge] = 0.0;
    derivs[num_vtx][is_xi_edge] = v[next_opposite];
    ++num_vtx;
  }
}