bool ON_Matrix::Invert( double zero_tolerance ) { ON_Workspace ws; int i, j, k, ix, jx, rank; double x; const int n = MinCount(); if ( n < 1 ) return false; ON_Matrix I(m_col_count, m_row_count); int* col = ws.GetIntMemory(n); I.SetDiagonal(1.0); rank = 0; double** this_m = ThisM(); for ( k = 0; k < n; k++ ) { // find largest value in sub matrix ix = jx = k; x = fabs(this_m[ix][jx]); for ( i = k; i < n; i++ ) { for ( j = k; j < n; j++ ) { if ( fabs(this_m[i][j]) > x ) { ix = i; jx = j; x = fabs(this_m[ix][jx]); } } } SwapRows( k, ix ); I.SwapRows( k, ix ); SwapCols( k, jx ); col[k] = jx; if ( x <= zero_tolerance ) { break; } x = 1.0/this_m[k][k]; this_m[k][k] = 1.0; ON_ArrayScale( m_col_count-k-1, x, &this_m[k][k+1], &this_m[k][k+1] ); I.RowScale( k, x ); // zero this_m[!=k][k]'s for ( i = 0; i < n; i++ ) { if ( i != k ) { x = -this_m[i][k]; this_m[i][k] = 0.0; if ( fabs(x) > zero_tolerance ) { ON_Array_aA_plus_B( m_col_count-k-1, x, &this_m[k][k+1], &this_m[i][k+1], &this_m[i][k+1] ); I.RowOp( i, x, k ); } } } } // take care of column swaps for ( i = k-1; i >= 0; i-- ) { if ( i != col[i] ) I.SwapRows(i,col[i]); } *this = I; return (k == n) ? true : false; }
bool ON_BrepExtrude( ON_Brep& brep, const ON_Curve& path_curve, bool bCap ) { ON_Workspace ws; const int vcount0 = brep.m_V.Count(); const int tcount0 = brep.m_T.Count(); const int lcount0 = brep.m_L.Count(); const int ecount0 = brep.m_E.Count(); const int fcount0 = brep.m_F.Count(); const ON_3dPoint PathStart = path_curve.PointAtStart(); ON_3dPoint P = path_curve.PointAtEnd(); if ( !PathStart.IsValid() || !P.IsValid() ) return false; const ON_3dVector height = P - PathStart; if ( !height.IsValid() || height.Length() <= ON_ZERO_TOLERANCE ) return false; ON_Xform tr; tr.Translation(height); // count number of new sides int side_count = 0; int i, vi, ei, fi; bool* bSideEdge = (bool*)ws.GetIntMemory(ecount0*sizeof(bSideEdge[0])); for ( ei = 0; ei < ecount0; ei++ ) { const ON_BrepEdge& e = brep.m_E[ei]; if ( 1 == e.m_ti.Count() ) { side_count++; bSideEdge[ei] = true; } else { bSideEdge[ei] = false; } } brep.m_V.Reserve( 2*vcount0 ); i = 4*side_count + (bCap?tcount0:0); brep.m_T.Reserve( tcount0 + i ); brep.m_C2.Reserve( brep.m_C2.Count() + i ); brep.m_L.Reserve( lcount0 + side_count + (bCap?lcount0:0) ); i = side_count + (bCap?ecount0:side_count); brep.m_E.Reserve( ecount0 + i ); brep.m_C3.Reserve( brep.m_C3.Count() + i ); i = side_count + (bCap?fcount0:0); brep.m_F.Reserve( fcount0 + i ); brep.m_S.Reserve( brep.m_S.Count() + i ); bool bOK = true; // build top vertices int* topvimap = ws.GetIntMemory(vcount0); memset(topvimap,0,vcount0*sizeof(topvimap[0])); if ( bCap ) { for ( vi = 0; vi < vcount0; vi++ ) { const ON_BrepVertex& bottomv = brep.m_V[vi]; ON_BrepVertex& topv = brep.NewVertex(bottomv.point+height,bottomv.m_tolerance); topvimap[vi] = topv.m_vertex_index; } } else { for ( ei = 0; ei < ecount0; ei++ ) { if ( bSideEdge[ei] ) { const ON_BrepEdge& bottome = brep.m_E[ei]; int bottomvi0 = bottome.m_vi[0]; if ( bottomvi0 < 0 || bottomvi0 >= vcount0 ) { bOK = false; break; } int bottomvi1 = bottome.m_vi[1]; if ( bottomvi1 < 0 || bottomvi1 >= vcount0 ) { bOK = false; break; } if ( !topvimap[bottomvi0] ) { const ON_BrepVertex& bottomv = brep.m_V[bottomvi0]; ON_BrepVertex& topv = brep.NewVertex(bottomv.point+height,bottomv.m_tolerance); topvimap[bottomvi0] = topv.m_vertex_index; } if ( !topvimap[bottomvi1] ) { const ON_BrepVertex& bottomv = brep.m_V[bottomvi1]; ON_BrepVertex& topv = brep.NewVertex(bottomv.point+height,bottomv.m_tolerance); topvimap[bottomvi1] = topv.m_vertex_index; } } } } // build top edges int* topeimap = ws.GetIntMemory(ecount0); memset(topeimap,0,ecount0*sizeof(topeimap[0])); if ( bOK ) for ( ei = 0; ei < ecount0; ei++ ) { if ( bCap || bSideEdge[ei] ) { const ON_BrepEdge& bottome = brep.m_E[ei]; ON_BrepVertex& topv0 = brep.m_V[topvimap[bottome.m_vi[0]]]; ON_BrepVertex& topv1 = brep.m_V[topvimap[bottome.m_vi[1]]]; ON_Curve* c3 = bottome.DuplicateCurve(); if ( !c3 ) { bOK = false; break; } c3->Transform(tr); int c3i = brep.AddEdgeCurve(c3); ON_BrepEdge& tope = brep.NewEdge(topv0,topv1,c3i,0,bottome.m_tolerance); topeimap[ei] = tope.m_edge_index; } } // build side edges int* sideveimap = ws.GetIntMemory(vcount0); memset(sideveimap,0,vcount0*sizeof(sideveimap[0])); if ( bOK ) for ( vi = 0; vi < vcount0; vi++ ) { ON_BrepVertex& bottomv = brep.m_V[vi]; for ( int vei = 0; vei < bottomv.m_ei.Count(); vei++ ) { if ( bSideEdge[bottomv.m_ei[vei]] && topvimap[vi] ) { ON_BrepVertex& topv = brep.m_V[topvimap[vi]]; ON_Curve* c3 = path_curve.DuplicateCurve(); if ( !c3 ) { bOK = false; } else { ON_3dVector D = bottomv.point - PathStart; c3->Translate(D); int c3i = brep.AddEdgeCurve(c3); const ON_BrepEdge& e = brep.NewEdge(bottomv,topv,c3i,0,0.0); sideveimap[vi] = e.m_edge_index; } break; } } } if ( bOK && bCap ) { // build top faces for (fi = 0; fi < fcount0; fi++ ) { const ON_BrepFace& bottomf = brep.m_F[fi]; ON_Surface* srf = bottomf.DuplicateSurface(); if ( !srf ) { bOK = false; break; } srf->Transform(tr); int si = brep.AddSurface(srf); ON_BrepFace& topf = brep.NewFace(si); topf.m_bRev = !bottomf.m_bRev; const int loop_count = bottomf.m_li.Count(); topf.m_li.Reserve(loop_count); for ( int fli = 0; fli < loop_count; fli++ ) { const ON_BrepLoop& bottoml = brep.m_L[bottomf.m_li[fli]]; ON_BrepLoop& topl = brep.NewLoop(bottoml.m_type,topf); const int loop_trim_count = bottoml.m_ti.Count(); topl.m_ti.Reserve(loop_trim_count); for ( int lti = 0; lti < loop_trim_count; lti++ ) { const ON_BrepTrim& bottomt = brep.m_T[bottoml.m_ti[lti]]; ON_NurbsCurve* c2 = ON_NurbsCurve::New(); if ( !bottomt.GetNurbForm(*c2) ) { delete c2; bOK = false; break; } int c2i = brep.AddTrimCurve(c2); ON_BrepTrim* topt = 0; if ( bottomt.m_ei >= 0 ) { ON_BrepEdge& tope = brep.m_E[topeimap[bottomt.m_ei]]; topt = &brep.NewTrim(tope,bottomt.m_bRev3d,topl,c2i); } else { // singular trim ON_BrepVertex& topv = brep.m_V[topvimap[bottomt.m_vi[0]]]; topt = &brep.NewSingularTrim(topv,topl,bottomt.m_iso,c2i); } topt->m_tolerance[0] = bottomt.m_tolerance[0]; topt->m_tolerance[1] = bottomt.m_tolerance[1]; topt->m_pbox = bottomt.m_pbox; topt->m_type = bottomt.m_type; topt->m_iso = bottomt.m_iso; } topl.m_pbox = bottoml.m_pbox; } } } // build sides int bRev3d[4] = {0,0,1,1}; int vid[4], eid[4]; if( bOK ) for ( ei = 0; ei < ecount0; ei++ ) { if ( bSideEdge[ei] && topeimap[ei] ) { ON_BrepEdge& bottome = brep.m_E[ei]; ON_BrepEdge& tope = brep.m_E[topeimap[ei]]; vid[0] = bottome.m_vi[0]; vid[1] = bottome.m_vi[1]; vid[2] = topvimap[vid[1]]; vid[3] = topvimap[vid[0]]; if ( sideveimap[vid[0]] && sideveimap[vid[1]] ) { ON_BrepEdge& leftedge = brep.m_E[sideveimap[vid[0]]]; ON_BrepEdge& rightedge = brep.m_E[sideveimap[vid[1]]]; ON_Curve* cx = bottome.DuplicateCurve(); if ( !cx ) { bOK = false; break; } ON_Curve* cy = leftedge.DuplicateCurve(); if ( !cy ) { delete cx; bOK = false; break; } ON_SumSurface* srf = new ON_SumSurface(); srf->m_curve[0] = cx; srf->m_curve[1] = cy; srf->m_basepoint = srf->m_curve[1]->PointAtStart(); srf->m_basepoint.x = -srf->m_basepoint.x; srf->m_basepoint.y = -srf->m_basepoint.y; srf->m_basepoint.z = -srf->m_basepoint.z; eid[0] = bottome.m_edge_index; eid[1] = rightedge.m_edge_index; eid[2] = tope.m_edge_index; eid[3] = leftedge.m_edge_index; ON_BrepFace* face = brep.NewFace(srf,vid,eid,bRev3d); if ( !face ) { bOK = false; break; } else if ( bottome.m_ti.Count() == 2 ) { const ON_BrepTrim& trim0 = brep.m_T[bottome.m_ti[0]]; const ON_BrepTrim& trim1 = brep.m_T[bottome.m_ti[1]]; const ON_BrepLoop& loop0 = brep.m_L[trim0.m_li]; const ON_BrepLoop& loop1 = brep.m_L[trim1.m_li]; bool bBottomFaceRev = brep.m_F[(loop0.m_fi != face->m_face_index) ? loop0.m_fi : loop1.m_fi].m_bRev; bool bSideFaceRev = ( trim0.m_bRev3d != trim1.m_bRev3d ) ? bBottomFaceRev : !bBottomFaceRev; face->m_bRev = bSideFaceRev; } } } } if ( !bOK ) { for ( vi = brep.m_V.Count(); vi >= vcount0; vi-- ) { brep.DeleteVertex(brep.m_V[vi]); } } return bOK; }