Пример #1
0
// ====================================================================== 
Operator GetTranspose(const Operator& A, const bool byrow = true) 
{
  ML_Operator* ML_transp;
  ML_transp = ML_Operator_Create(GetML_Comm());
  if (byrow)
    ML_Operator_Transpose_byrow(A.GetML_Operator(),ML_transp);
  else
    ML_Operator_Transpose(A.GetML_Operator(),ML_transp);

  Operator transp(A.GetRangeSpace(),A.GetDomainSpace(), ML_transp,true);
  return(transp);
}
Пример #2
0
// ====================================================================== 
Operator GetJacobiIterationOperator(const Operator& Amat, double Damping)
{

  struct ML_AGG_Matrix_Context* widget = new struct ML_AGG_Matrix_Context;
  widget->near_bdry = 0;
  widget->aggr_info = 0;
  widget->drop_tol  = 0.0;

  widget->Amat = Amat.GetML_Operator();
  widget->omega = Damping;

  ML_Operator* tmp_ML = ML_Operator_Create(GetML_Comm());
  ML_Operator_Set_ApplyFuncData(tmp_ML, widget->Amat->invec_leng,
                                widget->Amat->outvec_leng, widget,
                                widget->Amat->matvec->Nrows, NULL, 0);

  tmp_ML->data_destroy = widget_destroy;

  ML_Operator_Set_Getrow(tmp_ML, widget->Amat->getrow->Nrows, 
                         ML_AGG_JacobiSmoother_Getrows);

  // Creates a new copy of pre_comm, so that the old pre_comm
  // can be destroyed without worry
  ML_CommInfoOP_Clone(&(tmp_ML->getrow->pre_comm),
                      widget->Amat->getrow->pre_comm);

  Operator tmp(Amat.GetDomainSpace(), Amat.GetRangeSpace(), tmp_ML, true,
               Amat.GetRCPOperatorBox());

  return(tmp);
}
Пример #3
0
// ====================================================================== 
double MaxEigPowerMethod(const Operator& Op, const bool DiagonalScaling) 
{

  ML_Krylov *kdata;
  double MaxEigen;

    kdata = ML_Krylov_Create(GetML_Comm());
    if (DiagonalScaling == false)
      kdata->ML_dont_scale_by_diag = ML_TRUE;
    else
      kdata->ML_dont_scale_by_diag = ML_FALSE;
    ML_Krylov_Set_PrintFreq(kdata, 0);
    ML_Krylov_Set_ComputeNonSymEigenvalues(kdata);
    ML_Krylov_Set_Amatrix(kdata, Op.GetML_Operator());
    ML_Krylov_Solve(kdata, Op.GetML_Operator()->outvec_leng, NULL, NULL);
    MaxEigen = ML_Krylov_Get_MaxEigenvalue(kdata);
  ML_Krylov_Destroy(&kdata);

  return(MaxEigen);
}
Пример #4
0
Operator GetRAP(const Operator& R, const Operator& A, 
                const Operator& P)
{
  ML_Operator* Rmat = R.GetML_Operator();
  ML_Operator* Amat = A.GetML_Operator();
  ML_Operator* Pmat = P.GetML_Operator();
  ML_Operator* result = 0;

  result = ML_Operator_Create (Rmat->comm);

/* The fixing of coarse matrix only works if it is in MSR format */
   int myMatrixType = ML_MSR_MATRIX;
   ML_rap(Rmat, Amat, Pmat, result, myMatrixType);
   result->num_PDEs = Pmat->num_PDEs;
#ifdef  MB_MODIF_QR
   ML_fixCoarseMtx(result, myMatrixType);
#endif/*MB_MODIF_QR*/

  Operator op(P.GetDomainSpace(),P.GetDomainSpace(), result);
  return(op);
}
Пример #5
0
// ====================================================================== 
Operator GetScaledOperator(const Operator& A, const double alpha) 
{
  ML_Operator* ScaledA = 0;
  ScaledA = ML_Operator_ExplicitlyScale(A.GetML_Operator(),
                                        (double)alpha);

  if (ScaledA == 0)
    ML_THROW("ML_Operator_ExplicitlyScale returned 0", -1);

  Operator res;
  res.Reshape(A.GetDomainSpace(), A.GetRangeSpace(), ScaledA,
              true, A.GetRCPOperatorBox());
    
  return(res);
}
Пример #6
0
// ====================================================================== 
double MaxEigAnasazi(const Operator& Op, const bool DiagonalScaling) 
{

  double MaxEigen = 0.0;

#if defined(HAVE_ML_EPETRA) && defined(HAVE_ML_ANASAxI) && defined(HAVE_ML_TEUCHOS)
  bool DiagScal;
  if (DiagonalScaling)
    DiagScal = ML_TRUE;
  else
    DiagScal = ML_FALSE;

  ML_Anasazi_Get_SpectralNorm_Anasazi(Op.GetML_Operator(), 0, 10, 1e-5,
                                      ML_FALSE, DiagScal, &MaxEigen);
#else
  //ML_THROW("Configure w/ --enable-epetra --enable-anasazi --enable-teuchos", -1);
  ML_THROW("Anasazi is no longer supported", -1);
#endif
  return(MaxEigen);
}
Пример #7
0
// ====================================================================== 
MultiVector GetDiagonal(const Operator& A, const int offset)
{
  // FIXME
  if (A.GetDomainSpace() != A.GetRangeSpace())
    ML_THROW("Currently only square matrices are supported", -1);

  MultiVector D(A.GetDomainSpace());
  D = 0.0;
  
  ML_Operator* matrix = A.GetML_Operator();

  if (matrix->getrow == NULL)
    ML_THROW("getrow() not set!", -1);

  int row_length;
  int allocated = 128;
  int*    bindx = (int    *)  ML_allocate(allocated*sizeof(int   ));
  double* val   = (double *)  ML_allocate(allocated*sizeof(double));

  for (int i = 0 ; i < matrix->getrow->Nrows; i++) {
    int GlobalRow = A.GetGRID(i);
    ML_get_matrix_row(matrix, 1, &i, &allocated, &bindx, &val,
                      &row_length, 0);
    for  (int j = 0; j < row_length; j++) {
      D(i) = 0.0;
      if (A.GetGCID(bindx[j]) == GlobalRow + offset) {
        D(i) = val[j];
        break;
      }
    }
  }

  ML_free(val);
  ML_free(bindx);
  return (D);

}
Пример #8
0
// ====================================================================== 
double MaxEigAnorm(const Operator& Op, const bool DiagonalScaling) 
{
  return(ML_Operator_MaxNorm(Op.GetML_Operator(), DiagonalScaling));
}
Пример #9
0
// ======================================================================
void GetPtent(const Operator& A, Teuchos::ParameterList& List,
              const MultiVector& ThisNS,
              Operator& Ptent, MultiVector& NextNS)
{
  std::string CoarsenType     = List.get("aggregation: type", "Uncoupled");
  /* old version
  int    NodesPerAggr    = List.get("aggregation: per aggregate", 64);
  */
  double Threshold       = List.get("aggregation: threshold", 0.0);
  int    NumPDEEquations = List.get("PDE equations", 1);

  ML_Aggregate* agg_object;
  ML_Aggregate_Create(&agg_object);
  ML_Aggregate_Set_MaxLevels(agg_object,2);
  ML_Aggregate_Set_StartLevel(agg_object,0);
  ML_Aggregate_Set_Threshold(agg_object,Threshold);
  //agg_object->curr_threshold = 0.0;

  ML_Operator* ML_Ptent = 0;
  ML_Ptent = ML_Operator_Create(GetML_Comm());

  if (ThisNS.GetNumVectors() == 0)
    ML_THROW("zero-dimension null space", -1);

  int size = ThisNS.GetMyLength();

  double* null_vect = 0;
  ML_memory_alloc((void **)(&null_vect), sizeof(double) * size * ThisNS.GetNumVectors(), "ns");

  int incr = 1;
  for (int v = 0 ; v < ThisNS.GetNumVectors() ; ++v)
    DCOPY_F77(&size, (double*)ThisNS.GetValues(v), &incr,
              null_vect + v * ThisNS.GetMyLength(), &incr);


  ML_Aggregate_Set_NullSpace(agg_object, NumPDEEquations,
                             ThisNS.GetNumVectors(), null_vect,
                             ThisNS.GetMyLength());

  if (CoarsenType == "Uncoupled")
    agg_object->coarsen_scheme = ML_AGGR_UNCOUPLED;
  else if (CoarsenType == "Uncoupled-MIS")
    agg_object->coarsen_scheme = ML_AGGR_HYBRIDUM;
  else if (CoarsenType == "MIS") {
   /* needed for MIS, otherwise it sets the number of equations to
    * the null space dimension */
    agg_object->max_levels  = -7;
    agg_object->coarsen_scheme = ML_AGGR_MIS;
  }
  else if (CoarsenType == "METIS")
    agg_object->coarsen_scheme = ML_AGGR_METIS;
  else {
    ML_THROW("Requested aggregation scheme (" + CoarsenType +
             ") not recognized", -1);
  }

  int NextSize = ML_Aggregate_Coarsen(agg_object, A.GetML_Operator(),
                                      &ML_Ptent, GetML_Comm());

  /* This is the old version
  int NextSize;

  if (CoarsenType == "Uncoupled") {
    NextSize = ML_Aggregate_CoarsenUncoupled(agg_object, A.GetML_Operator(),
  }
  else if (CoarsenType == "MIS") {
    NextSize = ML_Aggregate_CoarsenMIS(agg_object, A.GetML_Operator(),
                                       &ML_Ptent, GetML_Comm());
  }
  else if (CoarsenType == "METIS") {
    ML ml_object;
    ml_object.ML_num_levels = 1; // crap for line below
    ML_Aggregate_Set_NodesPerAggr(&ml_object,agg_object,0,NodesPerAggr);
    NextSize = ML_Aggregate_CoarsenMETIS(agg_object, A.GetML_Operator(),
                                         &ML_Ptent, GetML_Comm());
  }
  else {
    ML_THROW("Requested aggregation scheme (" + CoarsenType +
             ") not recognized", -1);
  }
  */

  ML_Operator_ChangeToSinglePrecision(ML_Ptent);

  int NumMyElements = NextSize;
  Space CoarseSpace(-1,NumMyElements);
  Ptent.Reshape(CoarseSpace,A.GetRangeSpace(),ML_Ptent,true);

  assert (NextSize * ThisNS.GetNumVectors() != 0);

  NextNS.Reshape(CoarseSpace, ThisNS.GetNumVectors());

  size = NextNS.GetMyLength();
  for (int v = 0 ; v < NextNS.GetNumVectors() ; ++v)
    DCOPY_F77(&size, agg_object->nullspace_vect + v * size, &incr,
              NextNS.GetValues(v), &incr);

  ML_Aggregate_Destroy(&agg_object);
  ML_memory_free((void**)(&null_vect));
}