void GPartitionPolicy::addBarrel(MergeBarrelEntry* pEntry) { Partition* pPartition = NULL; int32_t nPartition = getPartition(curPartitionSize_); map<int32_t,Partition*>::iterator iter = partitionMap_.find(nPartition); if (iter != partitionMap_.end()) { pPartition = iter->second; pPartition->nPartitionSize_ += curPartitionSize_;///update partition size pPartition->add(pEntry); if ((int32_t)pPartition->pBarrelQueue_->size() >= 2) ///collision,trigger a merge event { triggerMerge(pPartition,nPartition); } } else { pPartition = new Partition(nPartition,curPartitionSize_,2*MAX_TRIGGERS); pPartition->add(pEntry); partitionMap_.insert(make_pair(nPartition,pPartition)); } }
// starts the first fit algorithm void FirstFit::begin() { // for every job search every partition std::list<Job>::iterator iterator; for (iterator = jobs.begin(); iterator != jobs.end(); ++iterator) { Job tempJ = *iterator; std::list<Partition>::iterator iterator2; for (iterator2 = parts.begin(); iterator2 != parts.end(); ++iterator2) { Partition tempP = *iterator2; // if the partition is not busy, it fits, and the job is not already running, // assign the job to the partition if(!tempP.isBusy() && tempJ.getSize() <= tempP.getSize() && !tempJ.isRunning()){ tempP.add(tempJ); tempJ.setRunning(tempP.getPartNum()); } *iterator2 = tempP; } *iterator = tempJ; } }