Пример #1
0
/** Compute the sqrt of a function.
 \param f function
*/
Piecewise<SBasis> sqrt(Piecewise<SBasis> const &f, double tol, int order){
    Piecewise<SBasis> result;
    Piecewise<SBasis> zero = Piecewise<SBasis>(Linear(tol*tol));
    zero.setDomain(f.domain());
    Piecewise<SBasis> ff=max(f,zero);

    for (unsigned i=0; i<ff.size(); i++){
        Piecewise<SBasis> sqrtfi = sqrt_internal(ff.segs[i],tol,order);
        sqrtfi.setDomain(Interval(ff.cuts[i],ff.cuts[i+1]));
        result.concat(sqrtfi);
    }
    return result;
}
Пример #2
0
/** Return a function which gives the angle of vect at each point.
 \param vect a piecewise parameteric curve.
 \param tol the maximum error allowed.
 \param order the maximum degree to use for approximation
 \relates Piecewise
*/
Piecewise<SBasis>
Geom::atan2(Piecewise<D2<SBasis> > const &vect, double tol, unsigned order){
    Piecewise<SBasis> result;
    Piecewise<D2<SBasis> > v = cutAtRoots(vect,tol);
    result.cuts.push_back(v.cuts.front());
    for (unsigned i=0; i<v.size(); i++){

        D2<SBasis> vi = RescaleForNonVanishingEnds(v.segs[i]);
        SBasis x=vi[0], y=vi[1];
        Piecewise<SBasis> angle;
        angle = divide (x*derivative(y)-y*derivative(x), x*x+y*y, tol, order);

        //TODO: I don't understand this - sign.
        angle = integral(-angle);
        Point vi0 = vi.at0(); 
        angle += -std::atan2(vi0[1],vi0[0]) - angle[0].at0();
        //TODO: deal with 2*pi jumps form one seg to the other...
        //TODO: not exact at t=1 because of the integral.
        //TODO: force continuity?

        angle.setDomain(Interval(v.cuts[i],v.cuts[i+1]));
        result.concat(angle);   
    }
    return result;
}
Пример #3
0
/** Compute the cosine of a function.
 \param f function
 \param tol maximum error
 \param order maximum degree polynomial to use
*/
Piecewise<SBasis> cos(Piecewise<SBasis> const &f, double tol, int order){
    Piecewise<SBasis> result;
    for (unsigned i=0; i<f.size(); i++){
        Piecewise<SBasis> cosfi = cos(f.segs[i],tol,order);
        cosfi.setDomain(Interval(f.cuts[i],f.cuts[i+1]));
        result.concat(cosfi);
    }
    return result;
}