Handle poly_ffi(TaskData *taskData, Handle args, Handle code) { unsigned c = get_C_unsigned(taskData, code->Word()); switch (c) { case 0: // malloc { POLYUNSIGNED size = getPolyUnsigned(taskData, args->Word()); return toSysWord(taskData, malloc(size)); } case 1: // free { void *mem = *(void**)(args->WordP()); free(mem); return taskData->saveVec.push(TAGGED(0)); } case 2: // Load library { TempString libName(args->Word()); #if (defined(_WIN32) && ! defined(__CYGWIN__)) HINSTANCE lib = LoadLibrary(libName); if (lib == NULL) { char buf[256]; #if (defined(UNICODE)) _snprintf(buf, sizeof(buf), "Loading <%S> failed. Error %lu", (LPCTSTR)libName, GetLastError()); #else _snprintf(buf, sizeof(buf), "Loading <%s> failed. Error %lu", (const char*)libName, GetLastError()); #endif buf[sizeof(buf)-1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #else void *lib = dlopen(libName, RTLD_LAZY); if (lib == NULL) { char buf[256]; snprintf(buf, sizeof(buf), "Loading <%s> failed: %s", (const char *)libName, dlerror()); buf[sizeof(buf)-1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #endif return toSysWord(taskData, lib); } case 3: // Load address of executable. { #if (defined(_WIN32) && ! defined(__CYGWIN__)) HINSTANCE lib = hApplicationInstance; #else void *lib = dlopen(NULL, RTLD_LAZY); if (lib == NULL) { char buf[256]; snprintf(buf, sizeof(buf), "Loading address of executable failed: %s", dlerror()); buf[sizeof(buf)-1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #endif return toSysWord(taskData, lib); } case 4: // Unload library - Is this actually going to be used? { #if (defined(_WIN32) && ! defined(__CYGWIN__)) HMODULE hMod = *(HMODULE*)(args->WordP()); if (! FreeLibrary(hMod)) raise_syscall(taskData, "FreeLibrary failed", -(int)GetLastError()); #else void *lib = *(void**)(args->WordP()); if (dlclose(lib) != 0) { char buf[256]; snprintf(buf, sizeof(buf), "dlclose failed: %s", dlerror()); buf[sizeof(buf)-1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #endif return taskData->saveVec.push(TAGGED(0)); } case 5: // Load the address of a symbol from a library. { TempCString symName(args->WordP()->Get(1)); #if (defined(_WIN32) && ! defined(__CYGWIN__)) HMODULE hMod = *(HMODULE*)(args->WordP()->Get(0).AsAddress()); void *sym = (void*)GetProcAddress(hMod, symName); if (sym == NULL) { char buf[256]; _snprintf(buf, sizeof(buf), "Loading symbol <%s> failed. Error %lu", (LPCSTR)symName, GetLastError()); buf[sizeof(buf)-1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #else void *lib = *(void**)(args->WordP()->Get(0).AsAddress()); void *sym = dlsym(lib, symName); if (sym == NULL) { char buf[256]; snprintf(buf, sizeof(buf), "load_sym <%s> : %s", (const char *)symName, dlerror()); buf[sizeof(buf)-1] = 0; // Terminate just in case raise_exception_string(taskData, EXC_foreign, buf); } #endif return toSysWord(taskData, sym); } // Libffi functions case 50: // Return a list of available ABIs return makeList(taskData, sizeof(abiTable)/sizeof(abiTable[0]), (char*)abiTable, sizeof(abiTable[0]), 0, mkAbitab); case 51: // A constant from the table { unsigned index = get_C_unsigned(taskData, args->Word()); if (index >= sizeof(constantTable) / sizeof(constantTable[0])) raise_exception_string(taskData, EXC_foreign, "Index out of range"); return Make_arbitrary_precision(taskData, constantTable[index]); } case 52: // Return an FFI type { unsigned index = get_C_unsigned(taskData, args->Word()); if (index >= sizeof(ffiTypeTable) / sizeof(ffiTypeTable[0])) raise_exception_string(taskData, EXC_foreign, "Index out of range"); return toSysWord(taskData, ffiTypeTable[index]); } case 53: // Extract fields from ffi type. { ffi_type *ffit = *(ffi_type**)(args->WordP()); Handle sizeHandle = Make_arbitrary_precision(taskData, ffit->size); Handle alignHandle = Make_arbitrary_precision(taskData, ffit->alignment); Handle typeHandle = Make_arbitrary_precision(taskData, ffit->type); Handle elemHandle = toSysWord(taskData, ffit->elements); Handle resHandle = alloc_and_save(taskData, 4); resHandle->WordP()->Set(0, sizeHandle->Word()); resHandle->WordP()->Set(1, alignHandle->Word()); resHandle->WordP()->Set(2, typeHandle->Word()); resHandle->WordP()->Set(3, elemHandle->Word()); return resHandle; } case 54: // Construct an ffi type. { // This is probably only used to create structs. size_t size = getPolyUnsigned(taskData, args->WordP()->Get(0)); unsigned short align = get_C_ushort(taskData, args->WordP()->Get(1)); unsigned short type = get_C_ushort(taskData, args->WordP()->Get(2)); unsigned nElems = 0; for (PolyWord p = args->WordP()->Get(3); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t) nElems++; size_t space = sizeof(ffi_type); // If we need the elements add space for the elements plus // one extra for the zero terminator. if (nElems != 0) space += (nElems+1) * sizeof(ffi_type *); ffi_type *result = (ffi_type*)malloc(space); // Raise an exception rather than returning zero. if (result == 0) raise_syscall(taskData, "Insufficient memory", ENOMEM); ffi_type **elem = 0; if (nElems != 0) elem = (ffi_type **)(result+1); memset(result, 0, sizeof(ffi_type)); // Zero it in case they add fields result->size = size; result->alignment = align; result->type = type; result->elements = elem; if (elem != 0) { for (PolyWord p = args->WordP()->Get(3); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t) { PolyWord e = ((ML_Cons_Cell*)p.AsObjPtr())->h; *elem++ = *(ffi_type**)(e.AsAddress()); } *elem = 0; } return toSysWord(taskData, result); } case 55: // Create a CIF. This contains all the types and some extra information. // The result is in allocated memory followed immediately by the argument type vector. { ffi_abi abi = (ffi_abi)get_C_ushort(taskData, args->WordP()->Get(0)); ffi_type *rtype = *(ffi_type **)args->WordP()->Get(1).AsAddress(); unsigned nArgs = 0; for (PolyWord p = args->WordP()->Get(2); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t) nArgs++; // Allocate space for the cif followed by the argument type vector size_t space = sizeof(ffi_cif) + nArgs * sizeof(ffi_type*); ffi_cif *cif = (ffi_cif *)malloc(space); if (cif == 0) raise_syscall(taskData, "Insufficient memory", ENOMEM); ffi_type **atypes = (ffi_type **)(cif+1); // Copy the arguments types. ffi_type **at = atypes; for (PolyWord p = args->WordP()->Get(2); !ML_Cons_Cell::IsNull(p); p = ((ML_Cons_Cell*)p.AsObjPtr())->t) { PolyWord e = ((ML_Cons_Cell*)p.AsObjPtr())->h; *at++ = *(ffi_type**)(e.AsAddress()); } ffi_status status = ffi_prep_cif(cif, abi, nArgs, rtype, atypes); if (status == FFI_BAD_TYPEDEF) raise_exception_string(taskData, EXC_foreign, "Bad typedef in ffi_prep_cif"); else if (status == FFI_BAD_ABI) raise_exception_string(taskData, EXC_foreign, "Bad ABI in ffi_prep_cif"); else if (status != FFI_OK) raise_exception_string(taskData, EXC_foreign, "Error in ffi_prep_cif"); return toSysWord(taskData, cif); } case 56: // Call a function. { ffi_cif *cif = *(ffi_cif **)args->WordP()->Get(0).AsAddress(); void *f = *(void**)args->WordP()->Get(1).AsAddress(); void *res = *(void**)args->WordP()->Get(2).AsAddress(); void **arg = *(void***)args->WordP()->Get(3).AsAddress(); // We release the ML memory across the call so a GC can occur // even if this thread is blocked in the C code. processes->ThreadReleaseMLMemory(taskData); ffi_call(cif, FFI_FN(f), res, arg); processes->ThreadUseMLMemory(taskData); return taskData->saveVec.push(TAGGED(0)); } case 57: // Create a callback. { #ifdef INTERPRETED raise_exception_string(taskData, EXC_foreign, "Callbacks are not implemented in the byte code interpreter"); #endif Handle mlFunction = taskData->saveVec.push(args->WordP()->Get(0)); ffi_cif *cif = *(ffi_cif **)args->WordP()->Get(1).AsAddress(); void *resultFunction; // Allocate the memory. resultFunction is set to the executable address in or related to // the memory. ffi_closure *closure = (ffi_closure *)ffi_closure_alloc(sizeof(ffi_closure), &resultFunction); if (closure == 0) raise_exception_string(taskData, EXC_foreign, "Callbacks not implemented or insufficient memory"); PLocker pLocker(&callbackTableLock); // Find a free entry in the table if there is one. unsigned entryNo = 0; while (entryNo < callBackEntries && callbackTable[entryNo].closureSpace != 0) entryNo++; if (entryNo == callBackEntries) { // Need to grow the table. struct _cbStructEntry *newTable = (struct _cbStructEntry*)realloc(callbackTable, (callBackEntries+1)*sizeof(struct _cbStructEntry)); if (newTable == 0) raise_exception_string(taskData, EXC_foreign, "Unable to allocate memory for callback table"); callbackTable = newTable; callBackEntries++; } callbackTable[entryNo].mlFunction = mlFunction->Word(); callbackTable[entryNo].closureSpace = closure; callbackTable[entryNo].resultFunction = resultFunction; if (ffi_prep_closure_loc(closure, cif, callbackEntryPt, (void*)((uintptr_t)entryNo), resultFunction) != FFI_OK) raise_exception_string(taskData, EXC_foreign,"libffi error: ffi_prep_closure_loc failed"); return toSysWord(taskData, resultFunction); } case 58: // Free an existing callback. { // The address returned from call 57 above is the executable address that can // be passed as a callback function. The writable memory address returned // as the result of ffi_closure_alloc may or may not be the same. To be safe // we need to search the table. void *resFun = *(void**)args->Word().AsAddress(); PLocker pLocker(&callbackTableLock); for (unsigned i = 0; i < callBackEntries; i++) { if (callbackTable[i].resultFunction == resFun) { ffi_closure_free(callbackTable[i].closureSpace); callbackTable[i].closureSpace = 0; callbackTable[i].resultFunction = 0; callbackTable[i].mlFunction = TAGGED(0); // Release the ML function return taskData->saveVec.push(TAGGED(0)); } } raise_exception_string(taskData, EXC_foreign, "Invalid callback entry"); } default: { char msg[100]; sprintf(msg, "Unknown ffi function: %d", c); raise_exception_string(taskData, EXC_foreign, msg); return 0; } } }
// We use _OBJ_GC_MARK to detect when we have visited a cell but not yet // computed the depth. We have to be careful that this bit is removed // before we finish in the case that we run out of memory and throw an // exception. PushToStack may throw the exception if the stack needs to // grow. POLYUNSIGNED ProcessAddToVector::AddObjectsToDepthVectors(PolyWord old) { // If this is a tagged integer or an IO pointer that's simply a constant. if (old.IsTagged() || old == PolyWord::FromUnsigned(0)) return 0; MemSpace *space = gMem.SpaceForAddress(old.AsAddress()); if (space == 0 || space->spaceType == ST_IO) return 0; PolyObject *obj = old.AsObjPtr(); POLYUNSIGNED L = obj->LengthWord(); if (OBJ_IS_DEPTH(L)) // tombstone contains genuine depth or 0. return OBJ_GET_DEPTH(L); if (obj->LengthWord() & _OBJ_GC_MARK) return 0; // Marked but not yet scanned. Circular structure. ASSERT (OBJ_IS_LENGTH(L)); if (obj->IsMutable()) { // Mutable data in the local or permanent areas if (! obj->IsByteObject()) { // Add it to the vector so we will update any addresses it contains. m_parent->AddToVector(0, L, old.AsObjPtr()); // and follow any addresses to try to merge those. PushToStack(obj); obj->SetLengthWord(L | _OBJ_GC_MARK); // To prevent rescan } return 0; // Level is zero } if (space->spaceType == ST_PERMANENT && ((PermanentMemSpace*)space)->hierarchy == 0) { // Immutable data in the permanent area can't be merged // because it's read only. We need to follow the addresses // because they may point to mutable areas containing data // that can be. A typical case is the root function pointing // at the global name table containing new declarations. Bitmap *bm = &((PermanentMemSpace*)space)->shareBitmap; if (! bm->TestBit((PolyWord*)obj - space->bottom)) { bm->SetBit((PolyWord*)obj - space->bottom); if (! obj->IsByteObject()) PushToStack(obj); } return 0; } /* There's a problem sharing code objects if they have relative calls/jumps in them to other code. The code of two functions may be identical (e.g. they both call functions 100 bytes ahead) and so they will appear the same but if the functions they jump to are different they are actually different. For that reason we don't share code segments. DCJM 4/1/01 */ if (obj->IsCodeObject()) { // We want to update addresses in the code segment. m_parent->AddToVector(0, L, old.AsObjPtr()); PushToStack(obj); obj->SetLengthWord(L | _OBJ_GC_MARK); // To prevent rescan return 0; } // Byte objects always have depth 1 and can't contain addresses. if (obj->IsByteObject()) { m_parent->AddToVector (1, L, old.AsObjPtr());// add to vector at correct depth obj->SetLengthWord(OBJ_SET_DEPTH(1)); return 1; } ASSERT(OBJ_IS_WORD_OBJECT(L)); // That leaves immutable data objects. PushToStack(obj); obj->SetLengthWord(L | _OBJ_GC_MARK); // To prevent rescan return 0; }