Пример #1
0
bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
                                         PredicatedScalarEvolution &PSE,
                                         InductionDescriptor &D,
                                         bool Assume) {
  Type *PhiTy = Phi->getType();

  // Handle integer and pointer inductions variables.
  // Now we handle also FP induction but not trying to make a
  // recurrent expression from the PHI node in-place.

  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
      !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
    return false;

  if (PhiTy->isFloatingPointTy())
    return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);

  const SCEV *PhiScev = PSE.getSCEV(Phi);
  const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);

  // We need this expression to be an AddRecExpr.
  if (Assume && !AR)
    AR = PSE.getAsAddRec(Phi);

  if (!AR) {
    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
    return false;
  }

  return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
}
Пример #2
0
bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
                                         PredicatedScalarEvolution &PSE,
                                         InductionDescriptor &D, bool Assume) {
  Type *PhiTy = Phi->getType();

  // Handle integer and pointer inductions variables.
  // Now we handle also FP induction but not trying to make a
  // recurrent expression from the PHI node in-place.

  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
      !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
    return false;

  if (PhiTy->isFloatingPointTy())
    return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);

  const SCEV *PhiScev = PSE.getSCEV(Phi);
  const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);

  // We need this expression to be an AddRecExpr.
  if (Assume && !AR)
    AR = PSE.getAsAddRec(Phi);

  if (!AR) {
    LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
    return false;
  }

  // Record any Cast instructions that participate in the induction update
  const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
  // If we started from an UnknownSCEV, and managed to build an addRecurrence
  // only after enabling Assume with PSCEV, this means we may have encountered
  // cast instructions that required adding a runtime check in order to
  // guarantee the correctness of the AddRecurrence respresentation of the
  // induction.
  if (PhiScev != AR && SymbolicPhi) {
    SmallVector<Instruction *, 2> Casts;
    if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
      return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
  }

  return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
}
Пример #3
0
bool InductionDescriptor::isInductionPHI(PHINode *Phi,
                                         PredicatedScalarEvolution &PSE,
                                         InductionDescriptor &D,
                                         bool Assume) {
  Type *PhiTy = Phi->getType();
  // We only handle integer and pointer inductions variables.
  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
    return false;

  const SCEV *PhiScev = PSE.getSCEV(Phi);
  const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);

  // We need this expression to be an AddRecExpr.
  if (Assume && !AR)
    AR = PSE.getAsAddRec(Phi);

  if (!AR) {
    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
    return false;
  }

  return isInductionPHI(Phi, PSE.getSE(), D, AR);
}