Пример #1
0
void write(bx::WriterI* _writer, const uint8_t* _vertices, uint32_t _numVertices, const bgfx::VertexDecl& _decl, const uint16_t* _indices, uint32_t _numIndices, const std::string& _material, const PrimitiveArray& _primitives)
{
	uint32_t stride = _decl.getStride();
	bx::write(_writer, BGFX_CHUNK_MAGIC_VB);
	writeBounds(_writer, _vertices, _numVertices, stride);

	bx::write(_writer, _decl);
	bx::write(_writer, uint16_t(_numVertices) );
	bx::write(_writer, _vertices, _numVertices*stride);

	bx::write(_writer, BGFX_CHUNK_MAGIC_IB);
	bx::write(_writer, _numIndices);
	bx::write(_writer, _indices, _numIndices*2);

	bx::write(_writer, BGFX_CHUNK_MAGIC_PRI);
	uint16_t nameLen = uint16_t(_material.size() );
	bx::write(_writer, nameLen);
	bx::write(_writer, _material.c_str(), nameLen);
	bx::write(_writer, uint16_t(_primitives.size() ) );
	for (PrimitiveArray::const_iterator primIt = _primitives.begin(); primIt != _primitives.end(); ++primIt)
	{
		const Primitive& prim = *primIt;
		nameLen = uint16_t(prim.m_name.size() );
		bx::write(_writer, nameLen);
		bx::write(_writer, prim.m_name.c_str(), nameLen);
		bx::write(_writer, prim.m_startIndex);
		bx::write(_writer, prim.m_numIndices);
		bx::write(_writer, prim.m_startVertex);
		bx::write(_writer, prim.m_numVertices);
		writeBounds(_writer, &_vertices[prim.m_startVertex*stride], prim.m_numVertices, stride);
	}
}
Пример #2
0
int main(int _argc, const char* _argv[])
{
	bx::CommandLine cmdLine(_argc, _argv);

	const char* filePath = cmdLine.findOption('f');
	if (NULL == filePath)
	{
		help("Input file name must be specified.");
		return EXIT_FAILURE;
	}

	const char* outFilePath = cmdLine.findOption('o');
	if (NULL == outFilePath)
	{
		help("Output file name must be specified.");
		return EXIT_FAILURE;
	}

	float scale = 1.0f;
	const char* scaleArg = cmdLine.findOption('s', "scale");
	if (NULL != scaleArg)
	{
		scale = (float)atof(scaleArg);
	}

	cmdLine.hasArg(s_obbSteps, '\0', "obb");
	s_obbSteps = bx::uint32_min(bx::uint32_max(s_obbSteps, 1), 90);

	uint32_t packNormal = 0;
	cmdLine.hasArg(packNormal, '\0', "packnormal");

	uint32_t packUv = 0;
	cmdLine.hasArg(packUv, '\0', "packuv");
	
	bool ccw = cmdLine.hasArg("ccw");
	bool flipV = cmdLine.hasArg("flipv");
	bool hasTangent = cmdLine.hasArg("tangent");

	FILE* file = fopen(filePath, "r");
	if (NULL == file)
	{
		printf("Unable to open input file '%s'.", filePath);
		exit(EXIT_FAILURE);
	}

	int64_t parseElapsed = -bx::getHPCounter();
	int64_t triReorderElapsed = 0;

	uint32_t size = (uint32_t)fsize(file);
	char* data = new char[size+1];
	size = (uint32_t)fread(data, 1, size, file);
	data[size] = '\0';
	fclose(file);

	// https://en.wikipedia.org/wiki/Wavefront_.obj_file

	Vector3Array positions;
	Vector3Array normals;
	Vector3Array texcoords;
	Index3Map indexMap;
	TriangleArray triangles;
	GroupArray groups;

	uint32_t num = 0;

	Group group;
	group.m_startTriangle = 0;
	group.m_numTriangles = 0;

	char commandLine[2048];
	uint32_t len = sizeof(commandLine);
	int argc;
	char* argv[64];
	const char* next = data;
	do
	{
		next = bx::tokenizeCommandLine(next, commandLine, len, argc, argv, BX_COUNTOF(argv), '\n');
		if (0 < argc)
		{
			if (0 == strcmp(argv[0], "#") )
			{
				if (2 < argc
				&&  0 == strcmp(argv[2], "polygons") )
				{
				}
			}
			else if (0 == strcmp(argv[0], "f") )
			{
				Triangle triangle;
				memset(&triangle, 0, sizeof(Triangle) );

				for (uint32_t edge = 0, numEdges = argc-1; edge < numEdges; ++edge)
				{
					Index3 index;
					index.m_texcoord = -1;
					index.m_normal = -1;
					index.m_vertexIndex = -1;

					char* vertex = argv[edge+1];
					char* texcoord = strchr(vertex, '/');
					if (NULL != texcoord)
					{
						*texcoord++ = '\0';

						char* normal = strchr(texcoord, '/');
						if (NULL != normal)
						{
							*normal++ = '\0';
							index.m_normal = atoi(normal)-1;
						}

						index.m_texcoord = atoi(texcoord)-1;
					}

					index.m_position = atoi(vertex)-1;

					uint64_t hash0 = index.m_position;
					uint64_t hash1 = uint64_t(index.m_texcoord)<<20;
					uint64_t hash2 = uint64_t(index.m_normal)<<40;
					uint64_t hash = hash0^hash1^hash2;

					stl::pair<Index3Map::iterator, bool> result = indexMap.insert(stl::make_pair(hash, index) );
					if (!result.second)
					{
						Index3& oldIndex = result.first->second;
						BX_UNUSED(oldIndex);
						BX_CHECK(oldIndex.m_position == index.m_position
							&& oldIndex.m_texcoord == index.m_texcoord
							&& oldIndex.m_normal == index.m_normal
							, "Hash collision!"
							);
					}

					switch (edge)
					{
					case 0:
					case 1:
					case 2:
						triangle.m_index[edge] = hash;
						if (2 == edge)
						{
							if (ccw)
							{
								std::swap(triangle.m_index[1], triangle.m_index[2]);
							}
							triangles.push_back(triangle);
						}
						break;

					default:
						if (ccw)
						{
							triangle.m_index[2] = triangle.m_index[1];
							triangle.m_index[1] = hash;
						}
						else
						{
							triangle.m_index[1] = triangle.m_index[2];
							triangle.m_index[2] = hash;
						}
						triangles.push_back(triangle);
						break;
					}
				}
			}
			else if (0 == strcmp(argv[0], "g") )
			{
				EXPECT(1 < argc);
				group.m_name = argv[1];
			}
			else if (*argv[0] == 'v')
			{
				group.m_numTriangles = (uint32_t)(triangles.size() ) - group.m_startTriangle;
				if (0 < group.m_numTriangles)
				{
					groups.push_back(group);
					group.m_startTriangle = (uint32_t)(triangles.size() );
					group.m_numTriangles = 0;
				}

				if (0 == strcmp(argv[0], "vn") )
				{
					Vector3 normal;
					normal.x = (float)atof(argv[1]);
					normal.y = (float)atof(argv[2]);
					normal.z = (float)atof(argv[3]);

					normals.push_back(normal);
				}
				else if (0 == strcmp(argv[0], "vp") )
				{
					static bool once = true;
					if (once)
					{
						once = false;
						printf("warning: 'parameter space vertices' are unsupported.\n");
					}
				}
				else if (0 == strcmp(argv[0], "vt") )
				{
					Vector3 texcoord;
					texcoord.x = (float)atof(argv[1]);
					texcoord.y = 0.0f;
					texcoord.z = 0.0f;
					switch (argc)
					{
					case 4:
						texcoord.z = (float)atof(argv[3]);
						// fallthrough
					case 3:
						texcoord.y = (float)atof(argv[2]);
						break;

					default:
						break;
					}

					texcoords.push_back(texcoord);
				}
				else
				{
					float px = (float)atof(argv[1]);
					float py = (float)atof(argv[2]);
					float pz = (float)atof(argv[3]);
					float pw = 1.0f;
					if (argc > 4)
					{
						pw = (float)atof(argv[4]);
					}

					float invW = scale/pw;
					px *= invW;
					py *= invW;
					pz *= invW;

					Vector3 pos;
					pos.x = px;
					pos.y = py;
					pos.z = pz;

					positions.push_back(pos);
				}
			}
			else if (0 == strcmp(argv[0], "usemtl") )
			{
				std::string material(argv[1]);

				if (material != group.m_material)
				{
					group.m_numTriangles = (uint32_t)(triangles.size() ) - group.m_startTriangle;
					if (0 < group.m_numTriangles)
					{
						groups.push_back(group);
						group.m_startTriangle = (uint32_t)(triangles.size() );
						group.m_numTriangles = 0;
					}
				}

				group.m_material = material;
			}
// unsupported tags
// 				else if (0 == strcmp(argv[0], "mtllib") )
// 				{
// 				}
// 				else if (0 == strcmp(argv[0], "o") )
// 				{
// 				}
// 				else if (0 == strcmp(argv[0], "s") )
// 				{
// 				}
		}

		++num;
	}
	while ('\0' != *next);

	group.m_numTriangles = (uint32_t)(triangles.size() ) - group.m_startTriangle;
	if (0 < group.m_numTriangles)
	{
		groups.push_back(group);
		group.m_startTriangle = (uint32_t)(triangles.size() );
		group.m_numTriangles = 0;
	}

	delete [] data;

	int64_t now = bx::getHPCounter();
	parseElapsed += now;
	int64_t convertElapsed = -now;

	std::sort(groups.begin(), groups.end(), GroupSortByMaterial() );

	bool hasColor = false;
	bool hasNormal;
	bool hasTexcoord;
	{
		Index3Map::const_iterator it = indexMap.begin();
		hasNormal = -1 != it->second.m_normal;
		hasTexcoord = -1 != it->second.m_texcoord;

		if (!hasTexcoord
		&&  texcoords.size() == positions.size() )
		{
			hasTexcoord = true;

			for (Index3Map::iterator it = indexMap.begin(), itEnd = indexMap.end(); it != itEnd; ++it)
			{
				it->second.m_texcoord = it->second.m_position;
			}
		}

		if (!hasNormal
		&&  normals.size() == positions.size() )
		{
			hasNormal = true;

			for (Index3Map::iterator it = indexMap.begin(), itEnd = indexMap.end(); it != itEnd; ++it)
			{
				it->second.m_normal = it->second.m_position;
			}
		}
	}

	bgfx::VertexDecl decl;
	decl.begin();
	decl.add(bgfx::Attrib::Position, 3, bgfx::AttribType::Float);

	if (hasColor)
	{
		decl.add(bgfx::Attrib::Color0, 4, bgfx::AttribType::Uint8, true);
	}

	if (hasTexcoord)
	{
		switch (packUv)
		{
		default:
		case 0:
			decl.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Float);
			break;

		case 1:
			decl.add(bgfx::Attrib::TexCoord0, 2, bgfx::AttribType::Half);
			break;
		}
	}

	if (hasNormal)
	{
		hasTangent &= hasTexcoord;

		switch (packNormal)
		{
		default:
		case 0:
			decl.add(bgfx::Attrib::Normal, 3, bgfx::AttribType::Float);
			if (hasTangent)
			{
				decl.add(bgfx::Attrib::Tangent, 4, bgfx::AttribType::Float);
			}
			break;

		case 1:
			decl.add(bgfx::Attrib::Normal, 4, bgfx::AttribType::Uint8, true, true);
			if (hasTangent)
			{
				decl.add(bgfx::Attrib::Tangent, 4, bgfx::AttribType::Uint8, true, true);
			}
			break;
		}
	}
	decl.end();

	uint32_t stride = decl.getStride();
	uint8_t* vertexData = new uint8_t[triangles.size() * 3 * stride];
	uint16_t* indexData = new uint16_t[triangles.size() * 3];
	int32_t numVertices = 0;
	int32_t numIndices = 0;
	int32_t numPrimitives = 0;

	uint8_t* vertices = vertexData;
	uint16_t* indices = indexData;

	std::string material = groups.begin()->m_material;

	PrimitiveArray primitives;

	bx::CrtFileWriter writer;
	if (0 != writer.open(outFilePath) )
	{
		printf("Unable to open output file '%s'.", outFilePath);
		exit(EXIT_FAILURE);
	}

	Primitive prim;
	prim.m_startVertex = 0;
	prim.m_startIndex = 0;

	uint32_t positionOffset = decl.getOffset(bgfx::Attrib::Position);
	uint32_t color0Offset = decl.getOffset(bgfx::Attrib::Color0);

	uint32_t ii = 0;
	for (GroupArray::const_iterator groupIt = groups.begin(); groupIt != groups.end(); ++groupIt, ++ii)
	{
		for (uint32_t tri = groupIt->m_startTriangle, end = tri + groupIt->m_numTriangles; tri < end; ++tri)
		{
			if (material != groupIt->m_material
			||  65533 < numVertices)
			{
				prim.m_numVertices = numVertices - prim.m_startVertex;
				prim.m_numIndices = numIndices - prim.m_startIndex;
				if (0 < prim.m_numVertices)
				{
					primitives.push_back(prim);
				}

				triReorderElapsed -= bx::getHPCounter();
				for (PrimitiveArray::const_iterator primIt = primitives.begin(); primIt != primitives.end(); ++primIt)
				{
					const Primitive& prim = *primIt;
					triangleReorder(indexData + prim.m_startIndex, prim.m_numIndices, numVertices, 32);
				}
				triReorderElapsed += bx::getHPCounter();

				if (hasTangent)
				{
					calcTangents(vertexData, numVertices, decl, indexData, numIndices);
				}

				write(&writer, vertexData, numVertices, decl, indexData, numIndices, material, primitives);
				primitives.clear();

				for (Index3Map::iterator indexIt = indexMap.begin(); indexIt != indexMap.end(); ++indexIt)
				{
					indexIt->second.m_vertexIndex = -1;
				}

				vertices = vertexData;
				indices = indexData;
				numVertices = 0;
				numIndices = 0;
				prim.m_startVertex = 0;
				prim.m_startIndex = 0;
				++numPrimitives;

				material = groupIt->m_material;
			}

			Triangle& triangle = triangles[tri];
			for (uint32_t edge = 0; edge < 3; ++edge)
			{
				uint64_t hash = triangle.m_index[edge];
				Index3& index = indexMap[hash];
				if (index.m_vertexIndex == -1)
				{
		 			index.m_vertexIndex = numVertices++;

					float* position = (float*)(vertices + positionOffset);
					memcpy(position, &positions[index.m_position], 3*sizeof(float) );

					if (hasColor)
					{
						uint32_t* color0 = (uint32_t*)(vertices + color0Offset);
						*color0 = rgbaToAbgr(numVertices%255, numIndices%255, 0, 0xff);
					}

					if (hasTexcoord)
					{
						float uv[2];
						memcpy(uv, &texcoords[index.m_texcoord], 2*sizeof(float) );

						if (flipV)
						{
							uv[1] = -uv[1];
						}

						bgfx::vertexPack(uv, true, bgfx::Attrib::TexCoord0, decl, vertices);
					}

					if (hasNormal)
					{
						float normal[4];
						bx::vec3Norm(normal, (float*)&normals[index.m_normal]);
						bgfx::vertexPack(normal, true, bgfx::Attrib::Normal, decl, vertices);
					}

					vertices += stride;
				}

				*indices++ = (uint16_t)index.m_vertexIndex;
				++numIndices;
			}
		}

		if (0 < numVertices)
		{
			prim.m_numVertices = numVertices - prim.m_startVertex;
			prim.m_numIndices = numIndices - prim.m_startIndex;
			prim.m_name = groupIt->m_name;
			primitives.push_back(prim);
			prim.m_startVertex = numVertices;
			prim.m_startIndex = numIndices;
		}

		BX_TRACE("%3d: s %5d, n %5d, %s\n"
			, ii
			, groupIt->m_startTriangle
			, groupIt->m_numTriangles
			, groupIt->m_material.c_str()
			);
	}

	if (0 < primitives.size() )
	{
		triReorderElapsed -= bx::getHPCounter();
		for (PrimitiveArray::const_iterator primIt = primitives.begin(); primIt != primitives.end(); ++primIt)
		{
			const Primitive& prim = *primIt;
			triangleReorder(indexData + prim.m_startIndex, prim.m_numIndices, numVertices, 32);
		}
		triReorderElapsed += bx::getHPCounter();

		if (hasTangent)
		{
			calcTangents(vertexData, numVertices, decl, indexData, numIndices);
		}

		write(&writer, vertexData, numVertices, decl, indexData, numIndices, material, primitives);
	}

	printf("size: %d\n", uint32_t(writer.seek() ) );
	writer.close();

	delete [] indexData;
	delete [] vertexData;

	now = bx::getHPCounter();
	convertElapsed += now;

	printf("parse %f [s]\ntri reorder %f [s]\nconvert %f [s]\n# %d, g %d, p %d, v %d, i %d\n"
		, double(parseElapsed)/bx::getHPFrequency()
		, double(triReorderElapsed)/bx::getHPFrequency()
		, double(convertElapsed)/bx::getHPFrequency()
		, num
		, uint32_t(groups.size() )
		, numPrimitives
		, numVertices
		, numIndices
		);

	return EXIT_SUCCESS;
}