void QTriangulatingStroker::cubicTo(const qreal *pts) { const QPointF *p = (const QPointF *) pts; QBezier bezier = QBezier::fromPoints(*(p - 1), p[0], p[1], p[2]); QRectF bounds = bezier.bounds(); float rad = qMax(bounds.width(), bounds.height()); int threshold = qMin<float>(64, (rad + m_curvyness_add) * m_curvyness_mul); if (threshold < 4) threshold = 4; qreal threshold_minus_1 = threshold - 1; float vx, vy; float cx = m_cx, cy = m_cy; float x, y; for (int i=1; i<threshold; ++i) { qreal t = qreal(i) / threshold_minus_1; QPointF p = bezier.pointAt(t); x = p.x(); y = p.y(); normalVector(cx, cy, x, y, &vx, &vy); emitLineSegment(x, y, vx, vy); cx = x; cy = y; } m_cx = cx; m_cy = cy; m_nvx = vx; m_nvy = vy; }
void QDashedStrokeProcessor::process(const QVectorPath &path, const QPen &pen, const QRectF &clip) { const qreal *pts = path.points(); const QPainterPath::ElementType *types = path.elements(); int count = path.elementCount(); bool cosmetic = pen.isCosmetic(); m_points.reset(); m_types.reset(); m_points.reserve(path.elementCount()); m_types.reserve(path.elementCount()); qreal width = qpen_widthf(pen); if (width == 0) width = 1; m_dash_stroker.setDashPattern(pen.dashPattern()); m_dash_stroker.setStrokeWidth(cosmetic ? width * m_inv_scale : width); m_dash_stroker.setDashOffset(pen.dashOffset()); m_dash_stroker.setMiterLimit(pen.miterLimit()); m_dash_stroker.setClipRect(clip); float curvynessAdd, curvynessMul; // simplify pens that are thin in device size (2px wide or less) if (width < 2.5 && (cosmetic || m_inv_scale == 1)) { curvynessAdd = 0.5; curvynessMul = CURVE_FLATNESS / m_inv_scale; } else if (cosmetic) { curvynessAdd= width / 2; curvynessMul= CURVE_FLATNESS; } else { curvynessAdd = width * m_inv_scale; curvynessMul = CURVE_FLATNESS / m_inv_scale; } if (count < 2) return; const qreal *endPts = pts + (count<<1); m_dash_stroker.begin(this); if (!types) { m_dash_stroker.moveTo(pts[0], pts[1]); pts += 2; while (pts < endPts) { m_dash_stroker.lineTo(pts[0], pts[1]); pts += 2; } } else { while (pts < endPts) { switch (*types) { case QPainterPath::MoveToElement: m_dash_stroker.moveTo(pts[0], pts[1]); pts += 2; ++types; break; case QPainterPath::LineToElement: m_dash_stroker.lineTo(pts[0], pts[1]); pts += 2; ++types; break; case QPainterPath::CurveToElement: { QBezier b = QBezier::fromPoints(*(((const QPointF *) pts) - 1), *(((const QPointF *) pts)), *(((const QPointF *) pts) + 1), *(((const QPointF *) pts) + 2)); QRectF bounds = b.bounds(); float rad = qMax(bounds.width(), bounds.height()); int threshold = qMin<float>(64, (rad + curvynessAdd) * curvynessMul); if (threshold < 4) threshold = 4; qreal threshold_minus_1 = threshold - 1; for (int i=0; i<threshold; ++i) { QPointF pt = b.pointAt(i / threshold_minus_1); m_dash_stroker.lineTo(pt.x(), pt.y()); } pts += 6; types += 3; break; } default: break; } } } m_dash_stroker.end(); }
void QGL2PEXVertexArray::addPath(const QVectorPath &path, GLfloat curveInverseScale, bool outline) { const QPointF* const points = reinterpret_cast<const QPointF*>(path.points()); const QPainterPath::ElementType* const elements = path.elements(); if (boundingRectDirty) { minX = maxX = points[0].x(); minY = maxY = points[0].y(); boundingRectDirty = false; } if (!outline && !path.isConvex()) addCentroid(path, 0); int lastMoveTo = vertexArray.size(); vertexArray.add(points[0]); // The first element is always a moveTo do { if (!elements) { // qDebug("QVectorPath has no elements"); // If the path has a null elements pointer, the elements implicitly // start with a moveTo (already added) and continue with lineTos: for (int i=1; i<path.elementCount(); ++i) lineToArray(points[i].x(), points[i].y()); break; } // qDebug("QVectorPath has element types"); for (int i=1; i<path.elementCount(); ++i) { switch (elements[i]) { case QPainterPath::MoveToElement: if (!outline) addClosingLine(lastMoveTo); // qDebug("element[%d] is a MoveToElement", i); vertexArrayStops.add(vertexArray.size()); if (!outline) { if (!path.isConvex()) addCentroid(path, i); lastMoveTo = vertexArray.size(); } lineToArray(points[i].x(), points[i].y()); // Add the moveTo as a new vertex break; case QPainterPath::LineToElement: // qDebug("element[%d] is a LineToElement", i); lineToArray(points[i].x(), points[i].y()); break; case QPainterPath::CurveToElement: { QBezier b = QBezier::fromPoints(*(((const QPointF *) points) + i - 1), points[i], points[i+1], points[i+2]); QRectF bounds = b.bounds(); // threshold based on same algorithm as in qtriangulatingstroker.cpp int threshold = qMin<float>(64, qMax(bounds.width(), bounds.height()) * 3.14f / (curveInverseScale * 6)); if (threshold < 3) threshold = 3; qreal one_over_threshold_minus_1 = qreal(1) / (threshold - 1); for (int t=0; t<threshold; ++t) { QPointF pt = b.pointAt(t * one_over_threshold_minus_1); lineToArray(pt.x(), pt.y()); } i += 2; break; } default: break; } } } while (0); if (!outline) addClosingLine(lastMoveTo); vertexArrayStops.add(vertexArray.size()); }
void QDashedStrokeProcessor::process(const QVectorPath &path, const QPen &pen) { const qreal *pts = path.points(); const QPainterPath::ElementType *types = path.elements(); int count = path.elementCount(); m_points.reset(); m_types.reset(); qreal width = qpen_widthf(pen); if (width == 0) width = 1; m_dash_stroker.setDashPattern(pen.dashPattern()); m_dash_stroker.setStrokeWidth(pen.isCosmetic() ? width * m_inv_scale : width); m_dash_stroker.setMiterLimit(pen.miterLimit()); qreal curvyness = sqrt(width) * m_inv_scale / 8; if (count < 2) return; const qreal *endPts = pts + (count<<1); m_dash_stroker.begin(this); if (!types) { m_dash_stroker.moveTo(pts[0], pts[1]); pts += 2; while (pts < endPts) { m_dash_stroker.lineTo(pts[0], pts[1]); pts += 2; } } else { while (pts < endPts) { switch (*types) { case QPainterPath::MoveToElement: m_dash_stroker.moveTo(pts[0], pts[1]); pts += 2; ++types; break; case QPainterPath::LineToElement: m_dash_stroker.lineTo(pts[0], pts[1]); pts += 2; ++types; break; case QPainterPath::CurveToElement: { QBezier b = QBezier::fromPoints(*(((const QPointF *) pts) - 1), *(((const QPointF *) pts)), *(((const QPointF *) pts) + 1), *(((const QPointF *) pts) + 2)); QRectF bounds = b.bounds(); int threshold = qMin<float>(64, qMax(bounds.width(), bounds.height()) * curvyness); if (threshold < 4) threshold = 4; qreal threshold_minus_1 = threshold - 1; for (int i=0; i<threshold; ++i) { QPointF pt = b.pointAt(i / threshold_minus_1); m_dash_stroker.lineTo(pt.x(), pt.y()); } pts += 6; types += 3; break; } default: break; } } } m_dash_stroker.end(); }