/// Get the number of possible values that can be switched on for the type T.
///
/// \return - 0 if bitcount could not be determined
///         - numeric_limits<std::size_t>::max() when overflow appeared due to
///           more than 64 bits type size.
static std::size_t getNumberOfPossibleValues(QualType T,
                                             const ASTContext &Context) {
  // `isBooleanType` must come first because `bool` is an integral type as well
  // and would not return 2 as result.
  if (T->isBooleanType())
    return 2;
  else if (T->isIntegralType(Context))
    return twoPow(Context.getTypeSize(T));
  else
    return 1;
}
Пример #2
0
static Stmt *create_OSAtomicCompareAndSwap(ASTContext &C, const FunctionDecl *D)
{
  // There are exactly 3 arguments.
  if (D->param_size() != 3)
    return nullptr;

  // Signature:
  // _Bool OSAtomicCompareAndSwapPtr(void *__oldValue,
  //                                 void *__newValue,
  //                                 void * volatile *__theValue)
  // Generate body:
  //   if (oldValue == *theValue) {
  //    *theValue = newValue;
  //    return YES;
  //   }
  //   else return NO;

  QualType ResultTy = D->getReturnType();
  bool isBoolean = ResultTy->isBooleanType();
  if (!isBoolean && !ResultTy->isIntegralType(C))
    return nullptr;

  const ParmVarDecl *OldValue = D->getParamDecl(0);
  QualType OldValueTy = OldValue->getType();

  const ParmVarDecl *NewValue = D->getParamDecl(1);
  QualType NewValueTy = NewValue->getType();
  
  assert(OldValueTy == NewValueTy);
  
  const ParmVarDecl *TheValue = D->getParamDecl(2);
  QualType TheValueTy = TheValue->getType();
  const PointerType *PT = TheValueTy->getAs<PointerType>();
  if (!PT)
    return nullptr;
  QualType PointeeTy = PT->getPointeeType();
  
  ASTMaker M(C);
  // Construct the comparison.
  Expr *Comparison =
    M.makeComparison(
      M.makeLvalueToRvalue(M.makeDeclRefExpr(OldValue), OldValueTy),
      M.makeLvalueToRvalue(
        M.makeDereference(
          M.makeLvalueToRvalue(M.makeDeclRefExpr(TheValue), TheValueTy),
          PointeeTy),
        PointeeTy),
      BO_EQ);

  // Construct the body of the IfStmt.
  Stmt *Stmts[2];
  Stmts[0] =
    M.makeAssignment(
      M.makeDereference(
        M.makeLvalueToRvalue(M.makeDeclRefExpr(TheValue), TheValueTy),
        PointeeTy),
      M.makeLvalueToRvalue(M.makeDeclRefExpr(NewValue), NewValueTy),
      NewValueTy);
  
  Expr *BoolVal = M.makeObjCBool(true);
  Expr *RetVal = isBoolean ? M.makeIntegralCastToBoolean(BoolVal)
                           : M.makeIntegralCast(BoolVal, ResultTy);
  Stmts[1] = M.makeReturn(RetVal);
  CompoundStmt *Body = M.makeCompound(Stmts);
  
  // Construct the else clause.
  BoolVal = M.makeObjCBool(false);
  RetVal = isBoolean ? M.makeIntegralCastToBoolean(BoolVal)
                     : M.makeIntegralCast(BoolVal, ResultTy);
  Stmt *Else = M.makeReturn(RetVal);
  
  /// Construct the If.
  Stmt *If = new (C) IfStmt(C, SourceLocation(), false, nullptr, nullptr,
                            Comparison, Body, SourceLocation(), Else);

  return If;  
}
Пример #3
0
/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
/// @code new (memory) int[size][4] @endcode
/// or
/// @code ::new Foo(23, "hello") @endcode
/// For the interpretation of this heap of arguments, consult the base version.
Action::OwningExprResult
Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
                  SourceLocation PlacementRParen, bool ParenTypeId,
                  Declarator &D, SourceLocation ConstructorLParen,
                  MultiExprArg ConstructorArgs,
                  SourceLocation ConstructorRParen)
{
  Expr *ArraySize = 0;
  unsigned Skip = 0;
  // If the specified type is an array, unwrap it and save the expression.
  if (D.getNumTypeObjects() > 0 &&
      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
    DeclaratorChunk &Chunk = D.getTypeObject(0);
    if (Chunk.Arr.hasStatic)
      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
        << D.getSourceRange());
    if (!Chunk.Arr.NumElts)
      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
        << D.getSourceRange());
    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
    Skip = 1;
  }

  QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, Skip);
  if (D.getInvalidType())
    return ExprError();

  if (CheckAllocatedType(AllocType, D))
    return ExprError();

  QualType ResultType = AllocType->isDependentType()
                          ? Context.DependentTy
                          : Context.getPointerType(AllocType);

  // That every array dimension except the first is constant was already
  // checked by the type check above.

  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
  //   or enumeration type with a non-negative value."
  if (ArraySize && !ArraySize->isTypeDependent()) {
    QualType SizeType = ArraySize->getType();
    if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
      return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
                            diag::err_array_size_not_integral)
        << SizeType << ArraySize->getSourceRange());
    // Let's see if this is a constant < 0. If so, we reject it out of hand.
    // We don't care about special rules, so we tell the machinery it's not
    // evaluated - it gives us a result in more cases.
    if (!ArraySize->isValueDependent()) {
      llvm::APSInt Value;
      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
        if (Value < llvm::APSInt(
                        llvm::APInt::getNullValue(Value.getBitWidth()), false))
          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
                           diag::err_typecheck_negative_array_size)
            << ArraySize->getSourceRange());
      }
    }
  }

  FunctionDecl *OperatorNew = 0;
  FunctionDecl *OperatorDelete = 0;
  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
  unsigned NumPlaceArgs = PlacementArgs.size();
  if (!AllocType->isDependentType() &&
      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
      FindAllocationFunctions(StartLoc,
                              SourceRange(PlacementLParen, PlacementRParen),
                              UseGlobal, AllocType, ArraySize, PlaceArgs,
                              NumPlaceArgs, OperatorNew, OperatorDelete))
    return ExprError();

  bool Init = ConstructorLParen.isValid();
  // --- Choosing a constructor ---
  // C++ 5.3.4p15
  // 1) If T is a POD and there's no initializer (ConstructorLParen is invalid)
  //   the object is not initialized. If the object, or any part of it, is
  //   const-qualified, it's an error.
  // 2) If T is a POD and there's an empty initializer, the object is value-
  //   initialized.
  // 3) If T is a POD and there's one initializer argument, the object is copy-
  //   constructed.
  // 4) If T is a POD and there's more initializer arguments, it's an error.
  // 5) If T is not a POD, the initializer arguments are used as constructor
  //   arguments.
  //
  // Or by the C++0x formulation:
  // 1) If there's no initializer, the object is default-initialized according
  //    to C++0x rules.
  // 2) Otherwise, the object is direct-initialized.
  CXXConstructorDecl *Constructor = 0;
  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
  unsigned NumConsArgs = ConstructorArgs.size();
  if (AllocType->isDependentType()) {
    // Skip all the checks.
  }
  // FIXME: Should check for primitive/aggregate here, not record.
  else if (const RecordType *RT = AllocType->getAsRecordType()) {
    // FIXME: This is incorrect for when there is an empty initializer and
    // no user-defined constructor. Must zero-initialize, not default-construct.
    Constructor = PerformInitializationByConstructor(
                      AllocType, ConsArgs, NumConsArgs,
                      D.getSourceRange().getBegin(),
                      SourceRange(D.getSourceRange().getBegin(),
                                  ConstructorRParen),
                      RT->getDecl()->getDeclName(),
                      NumConsArgs != 0 ? IK_Direct : IK_Default);
    if (!Constructor)
      return ExprError();
  } else {
    if (!Init) {
      // FIXME: Check that no subpart is const.
      if (AllocType.isConstQualified())
        return ExprError(Diag(StartLoc, diag::err_new_uninitialized_const)
          << D.getSourceRange());
    } else if (NumConsArgs == 0) {
      // Object is value-initialized. Do nothing.
    } else if (NumConsArgs == 1) {
      // Object is direct-initialized.
      // FIXME: WHAT DeclarationName do we pass in here?
      if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc,
                                DeclarationName() /*AllocType.getAsString()*/,
                                /*DirectInit=*/true))
        return ExprError();
    } else {
      return ExprError(Diag(StartLoc,
                            diag::err_builtin_direct_init_more_than_one_arg)
        << SourceRange(ConstructorLParen, ConstructorRParen));
    }
  }

  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)

  PlacementArgs.release();
  ConstructorArgs.release();
  return Owned(new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs,
                        NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init,
                        ConsArgs, NumConsArgs, OperatorDelete, ResultType,
                        StartLoc, Init ? ConstructorRParen : SourceLocation()));
}
Пример #4
0
  bool DeclExtractor::CheckTagDeclaration(TagDecl* NewTD,
                                          LookupResult& Previous){
    // If the decl is already known invalid, don't check it.
    if (NewTD->isInvalidDecl())
      return false;

    IdentifierInfo* Name = NewTD->getIdentifier();
    // If this is not a definition, it must have a name.
    assert((Name != 0 || NewTD->isThisDeclarationADefinition()) &&
           "Nameless record must be a definition!");

    // Figure out the underlying type if this a enum declaration. We need to do
    // this early, because it's needed to detect if this is an incompatible
    // redeclaration.

    TagDecl::TagKind Kind = NewTD->getTagKind();
    bool Invalid = false;
    assert(NewTD->getNumTemplateParameterLists() == 0
           && "Cannot handle that yet!");
    bool isExplicitSpecialization = false;

    if (Kind == TTK_Enum) {
      EnumDecl* ED = cast<EnumDecl>(NewTD);
      bool ScopedEnum = ED->isScoped();
      const QualType QT = ED->getIntegerType();

      if (QT.isNull() && ScopedEnum)
        // No underlying type explicitly specified, or we failed to parse the
        // type, default to int.
        ; //EnumUnderlying = m_Context->IntTy.getTypePtr();
      else if (!QT.isNull()) {
        // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
        // integral type; any cv-qualification is ignored.

        SourceLocation UnderlyingLoc;
        TypeSourceInfo* TI = 0;
        if ((TI = ED->getIntegerTypeSourceInfo()))
          UnderlyingLoc = TI->getTypeLoc().getBeginLoc();

        if (!QT->isDependentType() && !QT->isIntegralType(*m_Context)) {
          m_Sema->Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
            << QT;
        }
        if (TI)
          m_Sema->DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
                                                Sema::UPPC_FixedUnderlyingType);
      }
    }

    DeclContext *SearchDC = m_Sema->CurContext;
    DeclContext *DC = m_Sema->CurContext;
    //bool isStdBadAlloc = false;
    SourceLocation NameLoc = NewTD->getLocation();
    // if (Name && SS.isNotEmpty()) {
    //   // We have a nested-name tag ('struct foo::bar').

    //   // Check for invalid 'foo::'.
    //   if (SS.isInvalid()) {
    //     Name = 0;
    //     goto CreateNewDecl;
    //   }

    //   // If this is a friend or a reference to a class in a dependent
    //   // context, don't try to make a decl for it.
    //   if (TUK == TUK_Friend || TUK == TUK_Reference) {
    //     DC = computeDeclContext(SS, false);
    //     if (!DC) {
    //       IsDependent = true;
    //       return 0;
    //     }
    //   } else {
    //     DC = computeDeclContext(SS, true);
    //     if (!DC) {
    //       Diag(SS.getRange().getBegin(),
    //            diag::err_dependent_nested_name_spec)
    //         << SS.getRange();
    //       return 0;
    //     }
    //   }

    //   if (RequireCompleteDeclContext(SS, DC))
    //     return 0;

    //   SearchDC = DC;
    //   // Look-up name inside 'foo::'.
    //   LookupQualifiedName(Previous, DC);

    //   if (Previous.isAmbiguous())
    //     return 0;

    //   if (Previous.empty()) {
    //     // Name lookup did not find anything. However, if the
    //     // nested-name-specifier refers to the current instantiation,
    //     // and that current instantiation has any dependent base
    //     // classes, we might find something at instantiation time: treat
    //     // this as a dependent elaborated-type-specifier.
    //     // But this only makes any sense for reference-like lookups.
    //     if (Previous.wasNotFoundInCurrentInstantiation() &&
    //         (TUK == TUK_Reference || TUK == TUK_Friend)) {
    //       IsDependent = true;
    //       return 0;
    //     }

    //     // A tag 'foo::bar' must already exist.
    //     Diag(NameLoc, diag::err_not_tag_in_scope)
    //       << Kind << Name << DC << SS.getRange();
    //     Name = 0;
    //     Invalid = true;
    //   goto CreateNewDecl;
    // }
    //} else
    if (Name) {
      // If this is a named struct, check to see if there was a previous forward
      // declaration or definition.
      // FIXME: We're looking into outer scopes here, even when we
      // shouldn't be. Doing so can result in ambiguities that we
      // shouldn't be diagnosing.

      //LookupName(Previous, S);

      if (Previous.isAmbiguous()) {
        LookupResult::Filter F = Previous.makeFilter();
        while (F.hasNext()) {
          NamedDecl *ND = F.next();
          if (ND->getDeclContext()->getRedeclContext() != SearchDC)
            F.erase();
        }
        F.done();
      }

      // Note:  there used to be some attempt at recovery here.
      if (Previous.isAmbiguous()) {
        return false;
      }

      if (!m_Sema->getLangOpts().CPlusPlus) {
        // FIXME: This makes sure that we ignore the contexts associated
        // with C structs, unions, and enums when looking for a matching
        // tag declaration or definition. See the similar lookup tweak
        // in Sema::LookupName; is there a better way to deal with this?
        while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
          SearchDC = SearchDC->getParent();
      }
    } else if (m_Sema->getScopeForContext(m_Sema->CurContext)
               ->isFunctionPrototypeScope()) {
      // If this is an enum declaration in function prototype scope, set its
      // initial context to the translation unit.
      SearchDC = m_Context->getTranslationUnitDecl();
    }

    if (Previous.isSingleResult() &&
        Previous.getFoundDecl()->isTemplateParameter()) {
      // Maybe we will complain about the shadowed template parameter.
      m_Sema->DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
      // Just pretend that we didn't see the previous declaration.
      Previous.clear();
    }

    if (m_Sema->getLangOpts().CPlusPlus && Name && DC && m_Sema->StdNamespace
        && DC->Equals(m_Sema->getStdNamespace()) && Name->isStr("bad_alloc")) {
      // This is a declaration of or a reference to "std::bad_alloc".
      //isStdBadAlloc = true;

      if (Previous.empty() && m_Sema->StdBadAlloc) {
        // std::bad_alloc has been implicitly declared (but made invisible to
        // name lookup). Fill in this implicit declaration as the previous
        // declaration, so that the declarations get chained appropriately.
        Previous.addDecl(m_Sema->getStdBadAlloc());
      }
    }

    if (!Previous.empty()) {
      NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();

      // It's okay to have a tag decl in the same scope as a typedef
      // which hides a tag decl in the same scope.  Finding this
      // insanity with a redeclaration lookup can only actually happen
      // in C++.
      //
      // This is also okay for elaborated-type-specifiers, which is
      // technically forbidden by the current standard but which is
      // okay according to the likely resolution of an open issue;
      // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
      if (m_Sema->getLangOpts().CPlusPlus) {
        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
          if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
            TagDecl *Tag = TT->getDecl();
            if (Tag->getDeclName() == Name &&
                Tag->getDeclContext()->getRedeclContext()
                ->Equals(TD->getDeclContext()->getRedeclContext())) {
              PrevDecl = Tag;
              Previous.clear();
              Previous.addDecl(Tag);
              Previous.resolveKind();
            }
          }
        }
      }

      if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
        // If this is a use of a previous tag, or if the tag is already declared
        // in the same scope (so that the definition/declaration completes or
        // rementions the tag), reuse the decl.
        if (m_Sema->isDeclInScope(PrevDecl, SearchDC,
                                 m_Sema->getScopeForContext(m_Sema->CurContext),
                                  isExplicitSpecialization)) {
          // Make sure that this wasn't declared as an enum and now used as a
          // struct or something similar.
          SourceLocation KWLoc = NewTD->getLocStart();
          if (!m_Sema->isAcceptableTagRedeclaration(PrevTagDecl, Kind,
                                          NewTD->isThisDeclarationADefinition(),
                                                    KWLoc, *Name)) {
            bool SafeToContinue
              = (PrevTagDecl->getTagKind() != TTK_Enum && Kind != TTK_Enum);

            if (SafeToContinue)
              m_Sema->Diag(KWLoc, diag::err_use_with_wrong_tag)
                << Name
                << FixItHint::CreateReplacement(SourceRange(KWLoc),
                                                PrevTagDecl->getKindName());
            else
              m_Sema->Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
            m_Sema->Diag(PrevTagDecl->getLocation(), diag::note_previous_use);

            if (SafeToContinue)
              Kind = PrevTagDecl->getTagKind();
            else {
              // Recover by making this an anonymous redefinition.
              Name = 0;
              Previous.clear();
              Invalid = true;
            }
          }

          if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
            const EnumDecl *NewEnum = cast<EnumDecl>(NewTD);
            const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);

            // All conflicts with previous declarations are recovered by
            // returning the previous declaration.
            if (NewEnum->isScoped() != PrevEnum->isScoped()) {
              m_Sema->Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
                << PrevEnum->isScoped();
              m_Sema->Diag(PrevTagDecl->getLocation(), diag::note_previous_use);

              return false;
            }
            else if (PrevEnum->isFixed()) {
              QualType T = NewEnum->getIntegerType();

              if (!m_Context->hasSameUnqualifiedType(T,
                                                  PrevEnum->getIntegerType())) {
                m_Sema->Diag(NameLoc.isValid() ? NameLoc : KWLoc,
                             diag::err_enum_redeclare_type_mismatch)
                  << T
                  << PrevEnum->getIntegerType();
                m_Sema->Diag(PrevTagDecl->getLocation(),
                             diag::note_previous_use);

                return false;
              }
            }
            else if (NewEnum->isFixed() != PrevEnum->isFixed()) {
              m_Sema->Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
                << PrevEnum->isFixed();
              m_Sema->Diag(PrevTagDecl->getLocation(), diag::note_previous_use);

              return false;
            }
          }

          if (!Invalid) {
            // If this is a use, just return the declaration we found.

            // Diagnose attempts to redefine a tag.
            if (NewTD->isThisDeclarationADefinition()) {
              if (TagDecl* Def = PrevTagDecl->getDefinition()) {
                // If we're defining a specialization and the previous
                // definition is from an implicit instantiation, don't emit an
                // error here; we'll catch this in the general case below.
                if (!isExplicitSpecialization ||
                    !isa<CXXRecordDecl>(Def) ||
                    cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
                    == TSK_ExplicitSpecialization) {
                  m_Sema->Diag(NameLoc, diag::err_redefinition) << Name;
                  m_Sema->Diag(Def->getLocation(),
                               diag::note_previous_definition);
                  // If this is a redefinition, recover by making this
                  // struct be anonymous, which will make any later
                  // references get the previous definition.
                  Name = 0;
                  Previous.clear();
                  Invalid = true;
                }
              } else {
                // If the type is currently being defined, complain
                // about a nested redefinition.
                const TagType *Tag
                  = cast<TagType>(m_Context->getTagDeclType(PrevTagDecl));
                if (Tag->isBeingDefined()) {
                  m_Sema->Diag(NameLoc, diag::err_nested_redefinition) << Name;
                  m_Sema->Diag(PrevTagDecl->getLocation(),
                               diag::note_previous_definition);
                  Name = 0;
                  Previous.clear();
                  Invalid = true;
                }
              }

              // Okay, this is definition of a previously declared or referenced
              // tag PrevDecl. We're going to create a new Decl for it.
            }
          }
          // If we get here we have (another) forward declaration or we
          // have a definition.  Just create a new decl.

        } else {
          // If we get here, this is a definition of a new tag type in a nested
          // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
          // new decl/type.  We set PrevDecl to NULL so that the entities
          // have distinct types.
          Previous.clear();
        }
        // If we get here, we're going to create a new Decl. If PrevDecl
        // is non-NULL, it's a definition of the tag declared by
        // PrevDecl. If it's NULL, we have a new definition.


        // Otherwise, PrevDecl is not a tag, but was found with tag
        // lookup.  This is only actually possible in C++, where a few
        // things like templates still live in the tag namespace.
      } else {
        assert(m_Sema->getLangOpts().CPlusPlus);

        // Diagnose if the declaration is in scope.
        if (!m_Sema->isDeclInScope(PrevDecl, SearchDC,
                                 m_Sema->getScopeForContext(m_Sema->CurContext),
                                   isExplicitSpecialization)) {
          // do nothing

          // Otherwise it's a declaration.  Call out a particularly common
          // case here.
        } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
          unsigned Kind = 0;
          if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
          m_Sema->Diag(NameLoc, diag::err_tag_definition_of_typedef)
            << Name << Kind << TND->getUnderlyingType();
          m_Sema->Diag(PrevDecl->getLocation(),
                       diag::note_previous_decl) << PrevDecl;
          Invalid = true;

          // Otherwise, diagnose.
        } else {
          // The tag name clashes with something else in the target scope,
          // issue an error and recover by making this tag be anonymous.
          m_Sema->Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
          m_Sema->Diag(PrevDecl->getLocation(), diag::note_previous_definition);
          Name = 0;
          Invalid = true;
        }

        // The existing declaration isn't relevant to us; we're in a
        // new scope, so clear out the previous declaration.
        Previous.clear();
      }
    }
    if (Invalid) {
      return false;
    }

    return true;
  }
Пример #5
0
/// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is
/// valid.
/// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code
/// like this:
/// char *bytes = reinterpret_cast\<char*\>(int_ptr);
void
CheckReinterpretCast(Sema &Self, Expr *&SrcExpr, QualType DestType,
                     const SourceRange &OpRange, const SourceRange &DestRange)
{
  QualType OrigDestType = DestType, OrigSrcType = SrcExpr->getType();

  DestType = Self.Context.getCanonicalType(DestType);
  QualType SrcType = SrcExpr->getType();
  if (const LValueReferenceType *DestTypeTmp =
        DestType->getAsLValueReferenceType()) {
    if (SrcExpr->isLvalue(Self.Context) != Expr::LV_Valid) {
      // Cannot cast non-lvalue to reference type.
      Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue)
        << "reinterpret_cast" << OrigDestType << SrcExpr->getSourceRange();
      return;
    }

    // C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the
    //   same effect as the conversion *reinterpret_cast<T*>(&x) with the
    //   built-in & and * operators.
    // This code does this transformation for the checked types.
    DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
    SrcType = Self.Context.getPointerType(SrcType);
  } else if (const RValueReferenceType *DestTypeTmp =
               DestType->getAsRValueReferenceType()) {
    // Both the reference conversion and the rvalue rules apply.
    Self.DefaultFunctionArrayConversion(SrcExpr);
    SrcType = SrcExpr->getType();

    DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
    SrcType = Self.Context.getPointerType(SrcType);
  } else {
    // C++ 5.2.10p1: [...] the lvalue-to-rvalue, array-to-pointer, and
    //   function-to-pointer standard conversions are performed on the
    //   expression v.
    Self.DefaultFunctionArrayConversion(SrcExpr);
    SrcType = SrcExpr->getType();
  }

  // Canonicalize source for comparison.
  SrcType = Self.Context.getCanonicalType(SrcType);

  const MemberPointerType *DestMemPtr = DestType->getAsMemberPointerType(),
                          *SrcMemPtr = SrcType->getAsMemberPointerType();
  if (DestMemPtr && SrcMemPtr) {
    // C++ 5.2.10p9: An rvalue of type "pointer to member of X of type T1"
    //   can be explicitly converted to an rvalue of type "pointer to member
    //   of Y of type T2" if T1 and T2 are both function types or both object
    //   types.
    if (DestMemPtr->getPointeeType()->isFunctionType() !=
        SrcMemPtr->getPointeeType()->isFunctionType()) {
      Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic)
        << "reinterpret_cast" << OrigDestType << OrigSrcType << OpRange;
      return;
    }

    // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away
    //   constness.
    if (CastsAwayConstness(Self, SrcType, DestType)) {
      Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_const_away)
        << "reinterpret_cast" << OrigDestType << OrigSrcType << OpRange;
      return;
    }

    // A valid member pointer cast.
    return;
  }

  // See below for the enumeral issue.
  if (SrcType->isNullPtrType() && DestType->isIntegralType() &&
      !DestType->isEnumeralType()) {
    // C++0x 5.2.10p4: A pointer can be explicitly converted to any integral
    //   type large enough to hold it. A value of std::nullptr_t can be
    //   converted to an integral type; the conversion has the same meaning
    //   and validity as a conversion of (void*)0 to the integral type.
    if (Self.Context.getTypeSize(SrcType) >
        Self.Context.getTypeSize(DestType)) {
      Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_small_int)
        << OrigDestType << DestRange;
    }
    return;
  }

  bool destIsPtr = DestType->isPointerType();
  bool srcIsPtr = SrcType->isPointerType();
  if (!destIsPtr && !srcIsPtr) {
    // Except for std::nullptr_t->integer and lvalue->reference, which are
    // handled above, at least one of the two arguments must be a pointer.
    Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic)
      << "reinterpret_cast" << OrigDestType << OrigSrcType << OpRange;
    return;
  }

  if (SrcType == DestType) {
    // C++ 5.2.10p2 has a note that mentions that, subject to all other
    // restrictions, a cast to the same type is allowed. The intent is not
    // entirely clear here, since all other paragraphs explicitly forbid casts
    // to the same type. However, the behavior of compilers is pretty consistent
    // on this point: allow same-type conversion if the involved types are
    // pointers, disallow otherwise.
    return;
  }

  // Note: Clang treats enumeration types as integral types. If this is ever
  // changed for C++, the additional check here will be redundant.
  if (DestType->isIntegralType() && !DestType->isEnumeralType()) {
    assert(srcIsPtr && "One type must be a pointer");
    // C++ 5.2.10p4: A pointer can be explicitly converted to any integral
    //   type large enough to hold it.
    if (Self.Context.getTypeSize(SrcType) >
        Self.Context.getTypeSize(DestType)) {
      Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_small_int)
        << OrigDestType << DestRange;
    }
    return;
  }

  if (SrcType->isIntegralType() || SrcType->isEnumeralType()) {
    assert(destIsPtr && "One type must be a pointer");
    // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly
    //   converted to a pointer.
    return;
  }

  if (!destIsPtr || !srcIsPtr) {
    // With the valid non-pointer conversions out of the way, we can be even
    // more stringent.
    Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_generic)
      << "reinterpret_cast" << OrigDestType << OrigSrcType << OpRange;
    return;
  }

  // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness.
  if (CastsAwayConstness(Self, SrcType, DestType)) {
    Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_const_away)
      << "reinterpret_cast" << OrigDestType << OrigSrcType << OpRange;
    return;
  }

  // Not casting away constness, so the only remaining check is for compatible
  // pointer categories.

  if (SrcType->isFunctionPointerType()) {
    if (DestType->isFunctionPointerType()) {
      // C++ 5.2.10p6: A pointer to a function can be explicitly converted to
      // a pointer to a function of a different type.
      return;
    }

    // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to
    //   an object type or vice versa is conditionally-supported.
    // Compilers support it in C++03 too, though, because it's necessary for
    // casting the return value of dlsym() and GetProcAddress().
    // FIXME: Conditionally-supported behavior should be configurable in the
    // TargetInfo or similar.
    if (!Self.getLangOptions().CPlusPlus0x) {
      Self.Diag(OpRange.getBegin(), diag::ext_reinterpret_cast_fn_obj)
        << OpRange;
    }
    return;
  }

  if (DestType->isFunctionPointerType()) {
    // See above.
    if (!Self.getLangOptions().CPlusPlus0x) {
      Self.Diag(OpRange.getBegin(), diag::ext_reinterpret_cast_fn_obj)
        << OpRange;
    }
    return;
  }

  // C++ 5.2.10p7: A pointer to an object can be explicitly converted to
  //   a pointer to an object of different type.
  // Void pointers are not specified, but supported by every compiler out there.
  // So we finish by allowing everything that remains - it's got to be two
  // object pointers.
}