/// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke /// has a try-range containing the call, a non-zero landing pad, and an /// appropriate action. The entry for an ordinary call has a try-range /// containing the call and zero for the landing pad and the action. Calls /// marked 'nounwind' have no entry and must not be contained in the try-range /// of any entry - they form gaps in the table. Entries must be ordered by /// try-range address. void DwarfException:: ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, const RangeMapType &PadMap, const SmallVectorImpl<const LandingPadInfo *> &LandingPads, const SmallVectorImpl<unsigned> &FirstActions) { // The end label of the previous invoke or nounwind try-range. MCSymbol *LastLabel = 0; // Whether there is a potentially throwing instruction (currently this means // an ordinary call) between the end of the previous try-range and now. bool SawPotentiallyThrowing = false; // Whether the last CallSite entry was for an invoke. bool PreviousIsInvoke = false; // Visit all instructions in order of address. for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { if (MI->isCall()) SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI); continue; } // End of the previous try-range? MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); if (BeginLabel == LastLabel) SawPotentiallyThrowing = false; // Beginning of a new try-range? RangeMapType::const_iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) // Nope, it was just some random label. continue; const PadRange &P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // For Dwarf exception handling (SjLj handling doesn't use this). If some // instruction between the previous try-range and this one may throw, // create a call-site entry with no landing pad for the region between the // try-ranges. if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) { CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 }; CallSites.push_back(Site); PreviousIsInvoke = false; } LastLabel = LandingPad->EndLabels[P.RangeIndex]; assert(BeginLabel && LastLabel && "Invalid landing pad!"); if (!LandingPad->LandingPadLabel) { // Create a gap. PreviousIsInvoke = false; } else { // This try-range is for an invoke. CallSiteEntry Site = { BeginLabel, LastLabel, LandingPad->LandingPadLabel, FirstActions[P.PadIndex] }; // Try to merge with the previous call-site. SJLJ doesn't do this if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) { CallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. if (Asm->MAI->isExceptionHandlingDwarf()) CallSites.push_back(Site); else { // SjLj EH must maintain the call sites in the order assigned // to them by the SjLjPrepare pass. unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel); if (CallSites.size() < SiteNo) CallSites.resize(SiteNo); CallSites[SiteNo - 1] = Site; } PreviousIsInvoke = true; } } } // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for the // region following the try-range. if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) { CallSiteEntry Site = { LastLabel, 0, 0, 0 }; CallSites.push_back(Site); } }
void WinException::extendIP2StateTable(const MachineFunction *MF, const Function *ParentF, WinEHFuncInfo &FuncInfo) { const Function *F = MF->getFunction(); // The Itanium LSDA table sorts similar landing pads together to simplify the // actions table, but we don't need that. SmallVector<const LandingPadInfo *, 64> LandingPads; const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); LandingPads.reserve(PadInfos.size()); for (const auto &LP : PadInfos) LandingPads.push_back(&LP); RangeMapType PadMap; computePadMap(LandingPads, PadMap); // The end label of the previous invoke or nounwind try-range. MCSymbol *LastLabel = Asm->getFunctionBegin(); // Whether there is a potentially throwing instruction (currently this means // an ordinary call) between the end of the previous try-range and now. bool SawPotentiallyThrowing = false; int LastEHState = -2; // The parent function and the catch handlers contribute to the 'ip2state' // table. // Include ip2state entries for the beginning of the main function and // for catch handler functions. if (F == ParentF) { FuncInfo.IPToStateList.push_back(std::make_pair(LastLabel, -1)); LastEHState = -1; } else if (FuncInfo.HandlerBaseState.count(F)) { FuncInfo.IPToStateList.push_back( std::make_pair(LastLabel, FuncInfo.HandlerBaseState[F])); LastEHState = FuncInfo.HandlerBaseState[F]; } for (const auto &MBB : *MF) { for (const auto &MI : MBB) { if (!MI.isEHLabel()) { if (MI.isCall()) SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI); continue; } // End of the previous try-range? MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol(); if (BeginLabel == LastLabel) SawPotentiallyThrowing = false; // Beginning of a new try-range? RangeMapType::const_iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) // Nope, it was just some random label. continue; const PadRange &P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // FIXME: Should this be using FuncInfo.HandlerBaseState? if (SawPotentiallyThrowing && LastEHState != -1) { FuncInfo.IPToStateList.push_back(std::make_pair(LastLabel, -1)); SawPotentiallyThrowing = false; LastEHState = -1; } if (LandingPad->WinEHState != LastEHState) FuncInfo.IPToStateList.push_back( std::make_pair(BeginLabel, LandingPad->WinEHState)); LastEHState = LandingPad->WinEHState; LastLabel = LandingPad->EndLabels[P.RangeIndex]; } } }
void Win64Exception::emitCXXFrameHandler3Table(const MachineFunction *MF) { const Function *F = MF->getFunction(); const Function *ParentF = MMI->getWinEHParent(F); auto &OS = *Asm->OutStreamer; WinEHFuncInfo &FuncInfo = MMI->getWinEHFuncInfo(ParentF); StringRef ParentLinkageName = GlobalValue::getRealLinkageName(ParentF->getName()); MCSymbol *FuncInfoXData = Asm->OutContext.getOrCreateSymbol(Twine("$cppxdata$", ParentLinkageName)); OS.EmitValue(createImageRel32(FuncInfoXData), 4); // The Itanium LSDA table sorts similar landing pads together to simplify the // actions table, but we don't need that. SmallVector<const LandingPadInfo *, 64> LandingPads; const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); LandingPads.reserve(PadInfos.size()); for (const auto &LP : PadInfos) LandingPads.push_back(&LP); RangeMapType PadMap; computePadMap(LandingPads, PadMap); // The end label of the previous invoke or nounwind try-range. MCSymbol *LastLabel = Asm->getFunctionBegin(); // Whether there is a potentially throwing instruction (currently this means // an ordinary call) between the end of the previous try-range and now. bool SawPotentiallyThrowing = false; int LastEHState = -2; // The parent function and the catch handlers contribute to the 'ip2state' // table. // Include ip2state entries for the beginning of the main function and // for catch handler functions. if (F == ParentF) { FuncInfo.IPToStateList.push_back(std::make_pair(LastLabel, -1)); LastEHState = -1; } else if (FuncInfo.HandlerBaseState.count(F)) { FuncInfo.IPToStateList.push_back(std::make_pair(LastLabel, FuncInfo.HandlerBaseState[F])); LastEHState = FuncInfo.HandlerBaseState[F]; } for (const auto &MBB : *MF) { for (const auto &MI : MBB) { if (!MI.isEHLabel()) { if (MI.isCall()) SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI); continue; } // End of the previous try-range? MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol(); if (BeginLabel == LastLabel) SawPotentiallyThrowing = false; // Beginning of a new try-range? RangeMapType::const_iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) // Nope, it was just some random label. continue; const PadRange &P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // FIXME: Should this be using FuncInfo.HandlerBaseState? if (SawPotentiallyThrowing && LastEHState != -1) { FuncInfo.IPToStateList.push_back(std::make_pair(LastLabel, -1)); SawPotentiallyThrowing = false; LastEHState = -1; } if (LandingPad->WinEHState != LastEHState) FuncInfo.IPToStateList.push_back( std::make_pair(BeginLabel, LandingPad->WinEHState)); LastEHState = LandingPad->WinEHState; LastLabel = LandingPad->EndLabels[P.RangeIndex]; } } // Defer emission until we've visited the parent function and all the catch // handlers. Cleanups don't contribute to the ip2state table yet, so don't // count them. if (ParentF != F && !FuncInfo.CatchHandlerMaxState.count(F)) return; ++FuncInfo.NumIPToStateFuncsVisited; if (FuncInfo.NumIPToStateFuncsVisited != FuncInfo.CatchHandlerMaxState.size()) return; MCSymbol *UnwindMapXData = nullptr; MCSymbol *TryBlockMapXData = nullptr; MCSymbol *IPToStateXData = nullptr; if (!FuncInfo.UnwindMap.empty()) UnwindMapXData = Asm->OutContext.getOrCreateSymbol( Twine("$stateUnwindMap$", ParentLinkageName)); if (!FuncInfo.TryBlockMap.empty()) TryBlockMapXData = Asm->OutContext.getOrCreateSymbol( Twine("$tryMap$", ParentLinkageName)); if (!FuncInfo.IPToStateList.empty()) IPToStateXData = Asm->OutContext.getOrCreateSymbol( Twine("$ip2state$", ParentLinkageName)); // FuncInfo { // uint32_t MagicNumber // int32_t MaxState; // UnwindMapEntry *UnwindMap; // uint32_t NumTryBlocks; // TryBlockMapEntry *TryBlockMap; // uint32_t IPMapEntries; // IPToStateMapEntry *IPToStateMap; // uint32_t UnwindHelp; // (x64/ARM only) // ESTypeList *ESTypeList; // int32_t EHFlags; // } // EHFlags & 1 -> Synchronous exceptions only, no async exceptions. // EHFlags & 2 -> ??? // EHFlags & 4 -> The function is noexcept(true), unwinding can't continue. OS.EmitLabel(FuncInfoXData); OS.EmitIntValue(0x19930522, 4); // MagicNumber OS.EmitIntValue(FuncInfo.UnwindMap.size(), 4); // MaxState OS.EmitValue(createImageRel32(UnwindMapXData), 4); // UnwindMap OS.EmitIntValue(FuncInfo.TryBlockMap.size(), 4); // NumTryBlocks OS.EmitValue(createImageRel32(TryBlockMapXData), 4); // TryBlockMap OS.EmitIntValue(FuncInfo.IPToStateList.size(), 4); // IPMapEntries OS.EmitValue(createImageRel32(IPToStateXData), 4); // IPToStateMap OS.EmitIntValue(FuncInfo.UnwindHelpFrameOffset, 4); // UnwindHelp OS.EmitIntValue(0, 4); // ESTypeList OS.EmitIntValue(1, 4); // EHFlags // UnwindMapEntry { // int32_t ToState; // void (*Action)(); // }; if (UnwindMapXData) { OS.EmitLabel(UnwindMapXData); for (const WinEHUnwindMapEntry &UME : FuncInfo.UnwindMap) { OS.EmitIntValue(UME.ToState, 4); // ToState OS.EmitValue(createImageRel32(UME.Cleanup), 4); // Action } } // TryBlockMap { // int32_t TryLow; // int32_t TryHigh; // int32_t CatchHigh; // int32_t NumCatches; // HandlerType *HandlerArray; // }; if (TryBlockMapXData) { OS.EmitLabel(TryBlockMapXData); SmallVector<MCSymbol *, 1> HandlerMaps; for (size_t I = 0, E = FuncInfo.TryBlockMap.size(); I != E; ++I) { WinEHTryBlockMapEntry &TBME = FuncInfo.TryBlockMap[I]; MCSymbol *HandlerMapXData = nullptr; if (!TBME.HandlerArray.empty()) HandlerMapXData = Asm->OutContext.getOrCreateSymbol(Twine("$handlerMap$") .concat(Twine(I)) .concat("$") .concat(ParentLinkageName)); HandlerMaps.push_back(HandlerMapXData); int CatchHigh = -1; for (WinEHHandlerType &HT : TBME.HandlerArray) CatchHigh = std::max(CatchHigh, FuncInfo.CatchHandlerMaxState[HT.Handler]); assert(TBME.TryLow <= TBME.TryHigh); OS.EmitIntValue(TBME.TryLow, 4); // TryLow OS.EmitIntValue(TBME.TryHigh, 4); // TryHigh OS.EmitIntValue(CatchHigh, 4); // CatchHigh OS.EmitIntValue(TBME.HandlerArray.size(), 4); // NumCatches OS.EmitValue(createImageRel32(HandlerMapXData), 4); // HandlerArray } for (size_t I = 0, E = FuncInfo.TryBlockMap.size(); I != E; ++I) { WinEHTryBlockMapEntry &TBME = FuncInfo.TryBlockMap[I]; MCSymbol *HandlerMapXData = HandlerMaps[I]; if (!HandlerMapXData) continue; // HandlerType { // int32_t Adjectives; // TypeDescriptor *Type; // int32_t CatchObjOffset; // void (*Handler)(); // int32_t ParentFrameOffset; // x64 only // }; OS.EmitLabel(HandlerMapXData); for (const WinEHHandlerType &HT : TBME.HandlerArray) { MCSymbol *ParentFrameOffset = Asm->OutContext.getOrCreateParentFrameOffsetSymbol( GlobalValue::getRealLinkageName(HT.Handler->getName())); const MCSymbolRefExpr *ParentFrameOffsetRef = MCSymbolRefExpr::Create( ParentFrameOffset, MCSymbolRefExpr::VK_None, Asm->OutContext); // Get the frame escape label with the offset of the catch object. If // the index is -1, then there is no catch object, and we should emit an // offset of zero, indicating that no copy will occur. const MCExpr *FrameAllocOffsetRef = nullptr; if (HT.CatchObjRecoverIdx >= 0) { MCSymbol *FrameAllocOffset = Asm->OutContext.getOrCreateFrameAllocSymbol( GlobalValue::getRealLinkageName(ParentF->getName()), HT.CatchObjRecoverIdx); FrameAllocOffsetRef = MCSymbolRefExpr::Create( FrameAllocOffset, MCSymbolRefExpr::VK_None, Asm->OutContext); } else { FrameAllocOffsetRef = MCConstantExpr::Create(0, Asm->OutContext); } OS.EmitIntValue(HT.Adjectives, 4); // Adjectives OS.EmitValue(createImageRel32(HT.TypeDescriptor), 4); // Type OS.EmitValue(FrameAllocOffsetRef, 4); // CatchObjOffset OS.EmitValue(createImageRel32(HT.Handler), 4); // Handler OS.EmitValue(ParentFrameOffsetRef, 4); // ParentFrameOffset } } } // IPToStateMapEntry { // void *IP; // int32_t State; // }; if (IPToStateXData) { OS.EmitLabel(IPToStateXData); for (auto &IPStatePair : FuncInfo.IPToStateList) { OS.EmitValue(createImageRel32(IPStatePair.first), 4); // IP OS.EmitIntValue(IPStatePair.second, 4); // State } } }
unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF, unsigned char* StartFunction, unsigned char* EndFunction) const { assert(MMI && "MachineModuleInfo not registered!"); // Map all labels and get rid of any dead landing pads. MMI->TidyLandingPads(JCE->getLabelLocations()); const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); if (PadInfos.empty()) return 0; // Sort the landing pads in order of their type ids. This is used to fold // duplicate actions. SmallVector<const LandingPadInfo *, 64> LandingPads; LandingPads.reserve(PadInfos.size()); for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) LandingPads.push_back(&PadInfos[i]); std::sort(LandingPads.begin(), LandingPads.end(), PadLT); // Negative type ids index into FilterIds, positive type ids index into // TypeInfos. The value written for a positive type id is just the type // id itself. For a negative type id, however, the value written is the // (negative) byte offset of the corresponding FilterIds entry. The byte // offset is usually equal to the type id, because the FilterIds entries // are written using a variable width encoding which outputs one byte per // entry as long as the value written is not too large, but can differ. // This kind of complication does not occur for positive type ids because // type infos are output using a fixed width encoding. // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i]. SmallVector<int, 16> FilterOffsets; FilterOffsets.reserve(FilterIds.size()); int Offset = -1; for(std::vector<unsigned>::const_iterator I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { FilterOffsets.push_back(Offset); Offset -= MCAsmInfo::getULEB128Size(*I); } // Compute the actions table and gather the first action index for each // landing pad site. SmallVector<ActionEntry, 32> Actions; SmallVector<unsigned, 64> FirstActions; FirstActions.reserve(LandingPads.size()); int FirstAction = 0; unsigned SizeActions = 0; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LP = LandingPads[i]; const std::vector<int> &TypeIds = LP->TypeIds; const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0; unsigned SizeSiteActions = 0; if (NumShared < TypeIds.size()) { unsigned SizeAction = 0; ActionEntry *PrevAction = 0; if (NumShared) { const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size(); assert(Actions.size()); PrevAction = &Actions.back(); SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) + MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); for (unsigned j = NumShared; j != SizePrevIds; ++j) { SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); SizeAction += -PrevAction->NextAction; PrevAction = PrevAction->Previous; } } // Compute the actions. for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) { int TypeID = TypeIds[I]; assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); SizeSiteActions += SizeAction; ActionEntry Action = {ValueForTypeID, NextAction, PrevAction}; Actions.push_back(Action); PrevAction = &Actions.back(); } // Record the first action of the landing pad site. FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; } // else identical - re-use previous FirstAction FirstActions.push_back(FirstAction); // Compute this sites contribution to size. SizeActions += SizeSiteActions; } // Compute the call-site table. Entries must be ordered by address. SmallVector<CallSiteEntry, 64> CallSites; RangeMapType PadMap; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LandingPad = LandingPads[i]; for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) { MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); PadRange P = { i, j }; PadMap[BeginLabel] = P; } } bool MayThrow = false; MCSymbol *LastLabel = 0; for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { MayThrow |= MI->getDesc().isCall(); continue; } MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); assert(BeginLabel && "Invalid label!"); if (BeginLabel == LastLabel) MayThrow = false; RangeMapType::iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) continue; PadRange P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // If some instruction between the previous try-range and this one may // throw, create a call-site entry with no landing pad for the region // between the try-ranges. if (MayThrow) { CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0}; CallSites.push_back(Site); } LastLabel = LandingPad->EndLabels[P.RangeIndex]; CallSiteEntry Site = {BeginLabel, LastLabel, LandingPad->LandingPadLabel, FirstActions[P.PadIndex]}; assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel && "Invalid landing pad!"); // Try to merge with the previous call-site. if (CallSites.size()) { CallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. CallSites.push_back(Site); } } // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for the // region following the try-range. if (MayThrow) { CallSiteEntry Site = {LastLabel, 0, 0, 0}; CallSites.push_back(Site); } // Final tallies. unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start. sizeof(int32_t) + // Site length. sizeof(int32_t)); // Landing pad. for (unsigned i = 0, e = CallSites.size(); i < e; ++i) SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action); unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize(); unsigned TypeOffset = sizeof(int8_t) + // Call site format // Call-site table length MCAsmInfo::getULEB128Size(SizeSites) + SizeSites + SizeActions + SizeTypes; // Begin the exception table. JCE->emitAlignmentWithFill(4, 0); // Asm->EOL("Padding"); unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue(); // Emit the header. JCE->emitByte(dwarf::DW_EH_PE_omit); // Asm->EOL("LPStart format (DW_EH_PE_omit)"); JCE->emitByte(dwarf::DW_EH_PE_absptr); // Asm->EOL("TType format (DW_EH_PE_absptr)"); JCE->emitULEB128Bytes(TypeOffset); // Asm->EOL("TType base offset"); JCE->emitByte(dwarf::DW_EH_PE_udata4); // Asm->EOL("Call site format (DW_EH_PE_udata4)"); JCE->emitULEB128Bytes(SizeSites); // Asm->EOL("Call-site table length"); // Emit the landing pad site information. for (unsigned i = 0; i < CallSites.size(); ++i) { CallSiteEntry &S = CallSites[i]; intptr_t BeginLabelPtr = 0; intptr_t EndLabelPtr = 0; if (!S.BeginLabel) { BeginLabelPtr = (intptr_t)StartFunction; JCE->emitInt32(0); } else { BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel); JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction); } // Asm->EOL("Region start"); if (!S.EndLabel) EndLabelPtr = (intptr_t)EndFunction; else EndLabelPtr = JCE->getLabelAddress(S.EndLabel); JCE->emitInt32(EndLabelPtr - BeginLabelPtr); //Asm->EOL("Region length"); if (!S.PadLabel) { JCE->emitInt32(0); } else { unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel); JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction); } // Asm->EOL("Landing pad"); JCE->emitULEB128Bytes(S.Action); // Asm->EOL("Action"); } // Emit the actions. for (unsigned I = 0, N = Actions.size(); I != N; ++I) { ActionEntry &Action = Actions[I]; JCE->emitSLEB128Bytes(Action.ValueForTypeID); //Asm->EOL("TypeInfo index"); JCE->emitSLEB128Bytes(Action.NextAction); //Asm->EOL("Next action"); } // Emit the type ids. for (unsigned M = TypeInfos.size(); M; --M) { const GlobalVariable *GV = TypeInfos[M - 1]; if (GV) { if (TD->getPointerSize() == sizeof(int32_t)) JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV)); else JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV)); } else { if (TD->getPointerSize() == sizeof(int32_t)) JCE->emitInt32(0); else JCE->emitInt64(0); } // Asm->EOL("TypeInfo"); } // Emit the filter typeids. for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) { unsigned TypeID = FilterIds[j]; JCE->emitULEB128Bytes(TypeID); //Asm->EOL("Filter TypeInfo index"); } JCE->emitAlignmentWithFill(4, 0); return DwarfExceptionTable; }
/// Compute the call-site table. The entry for an invoke has a try-range /// containing the call, a non-zero landing pad, and an appropriate action. The /// entry for an ordinary call has a try-range containing the call and zero for /// the landing pad and the action. Calls marked 'nounwind' have no entry and /// must not be contained in the try-range of any entry - they form gaps in the /// table. Entries must be ordered by try-range address. void EHStreamer:: computeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, const SmallVectorImpl<const LandingPadInfo *> &LandingPads, const SmallVectorImpl<unsigned> &FirstActions) { // Invokes and nounwind calls have entries in PadMap (due to being bracketed // by try-range labels when lowered). Ordinary calls do not, so appropriate // try-ranges for them need be deduced so we can put them in the LSDA. RangeMapType PadMap; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LandingPad = LandingPads[i]; for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); PadRange P = { i, j }; PadMap[BeginLabel] = P; } } // The end label of the previous invoke or nounwind try-range. MCSymbol *LastLabel = nullptr; // Whether there is a potentially throwing instruction (currently this means // an ordinary call) between the end of the previous try-range and now. bool SawPotentiallyThrowing = false; // Whether the last CallSite entry was for an invoke. bool PreviousIsInvoke = false; bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj; // Visit all instructions in order of address. for (const auto &MBB : *Asm->MF) { for (const auto &MI : MBB) { if (!MI.isEHLabel()) { if (MI.isCall()) SawPotentiallyThrowing |= !callToNoUnwindFunction(&MI); continue; } // End of the previous try-range? MCSymbol *BeginLabel = MI.getOperand(0).getMCSymbol(); if (BeginLabel == LastLabel) SawPotentiallyThrowing = false; // Beginning of a new try-range? RangeMapType::const_iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) // Nope, it was just some random label. continue; const PadRange &P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // For Dwarf exception handling (SjLj handling doesn't use this). If some // instruction between the previous try-range and this one may throw, // create a call-site entry with no landing pad for the region between the // try-ranges. if (SawPotentiallyThrowing && !IsSJLJ) { CallSiteEntry Site = { LastLabel, BeginLabel, nullptr, 0 }; CallSites.push_back(Site); PreviousIsInvoke = false; } LastLabel = LandingPad->EndLabels[P.RangeIndex]; assert(BeginLabel && LastLabel && "Invalid landing pad!"); if (!LandingPad->LandingPadLabel) { // Create a gap. PreviousIsInvoke = false; } else { // This try-range is for an invoke. CallSiteEntry Site = { BeginLabel, LastLabel, LandingPad->LandingPadLabel, FirstActions[P.PadIndex] }; // Try to merge with the previous call-site. SJLJ doesn't do this if (PreviousIsInvoke && !IsSJLJ) { CallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. if (!IsSJLJ) CallSites.push_back(Site); else { // SjLj EH must maintain the call sites in the order assigned // to them by the SjLjPrepare pass. unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel); if (CallSites.size() < SiteNo) CallSites.resize(SiteNo); CallSites[SiteNo - 1] = Site; } PreviousIsInvoke = true; } } } // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for the // region following the try-range. if (SawPotentiallyThrowing && !IsSJLJ) { CallSiteEntry Site = { LastLabel, nullptr, nullptr, 0 }; CallSites.push_back(Site); } }
/// PrepareMonoLSDA - Collect information needed by EmitMonoLSDA /// /// This function collects information available only during EndFunction which is needed /// by EmitMonoLSDA and stores it into EHFrameInfo. It is the same as the /// beginning of EmitExceptionTable. /// void DwarfMonoException::PrepareMonoLSDA(FunctionEHFrameInfo *EHFrameInfo) { const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); const MachineFunction *MF = Asm->MF; // Sort the landing pads in order of their type ids. This is used to fold // duplicate actions. SmallVector<const LandingPadInfo *, 64> LandingPads; LandingPads.reserve(PadInfos.size()); for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) LandingPads.push_back(&PadInfos[i]); std::sort(LandingPads.begin(), LandingPads.end(), [](const LandingPadInfo *L, const LandingPadInfo *R) { return L->TypeIds < R->TypeIds; }); // Invokes and nounwind calls have entries in PadMap (due to being bracketed // by try-range labels when lowered). Ordinary calls do not, so appropriate // try-ranges for them need be deduced when using DWARF exception handling. RangeMapType PadMap; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LandingPad = LandingPads[i]; for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) { MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); PadRange P = { i, j }; PadMap[BeginLabel] = P; } } // Compute the call-site table. SmallVector<MonoCallSiteEntry, 64> CallSites; MCSymbol *LastLabel = 0; for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { continue; } MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); assert(BeginLabel && "Invalid label!"); RangeMapType::iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) continue; PadRange P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // Mono emits one landing pad for each CLR exception clause, // and the type info contains the clause index assert (LandingPad->TypeIds.size() == 1); assert (LandingPad->LandingPadLabel); LastLabel = LandingPad->EndLabels[P.RangeIndex]; MonoCallSiteEntry Site = {BeginLabel, LastLabel, LandingPad->LandingPadLabel, LandingPad->TypeIds [0]}; assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel && "Invalid landing pad!"); // FIXME: This doesn't work because it includes ranges outside clauses #if 0 // Try to merge with the previous call-site. if (CallSites.size()) { MonoCallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.TypeID == Prev.TypeID) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } #endif // Otherwise, create a new call-site. CallSites.push_back(Site); } } // // Compute a mapping from method names to their AOT method index // if (FuncIndexes.size () == 0) { const Module *m = MMI->getModule (); NamedMDNode *indexes = m->getNamedMetadata ("mono.function_indexes"); if (indexes) { for (unsigned int i = 0; i < indexes->getNumOperands (); ++i) { MDNode *n = indexes->getOperand (i); MDString *s = (MDString*)n->getOperand (0); ConstantInt *idx = (ConstantInt*)n->getOperand (1); FuncIndexes.GetOrCreateValue (s->getString (), (int)idx->getLimitedValue () + 1); } } } MonoEHFrameInfo *MonoEH = &EHFrameInfo->MonoEH; // Save information for EmitMonoLSDA MonoEH->MF = Asm->MF; MonoEH->FunctionNumber = Asm->getFunctionNumber(); MonoEH->CallSites.insert(MonoEH->CallSites.begin(), CallSites.begin(), CallSites.end()); MonoEH->TypeInfos = TypeInfos; MonoEH->PadInfos = PadInfos; MonoEH->MonoMethodIdx = FuncIndexes.lookup (Asm->MF->getFunction ()->getName ()) - 1; //outs()<<"A:"<<Asm->MF->getFunction()->getName() << " " << MonoEH->MonoMethodIdx << "\n"; int ThisSlot = Asm->MF->getMonoInfo()->getThisStackSlot(); if (ThisSlot != -1) { unsigned FrameReg; MonoEH->ThisOffset = Asm->MF->getTarget ().getSubtargetImpl ()->getFrameLowering ()->getFrameIndexReference (*Asm->MF, ThisSlot, FrameReg); MonoEH->FrameReg = Asm->MF->getTarget ().getSubtargetImpl ()->getRegisterInfo ()->getDwarfRegNum (FrameReg, true); } else { MonoEH->FrameReg = -1; } }