int Proto2ShowerCalib::process_event(PHCompositeNode *topNode) { if (verbosity > 2) cout << "Proto2ShowerCalib::process_event() entered" << endl; // init eval objects _eval_run.reset(); _eval_3x3_raw.reset(); _eval_5x5_raw.reset(); _eval_3x3_prod.reset(); _eval_5x5_prod.reset(); _eval_3x3_temp.reset(); _eval_5x5_temp.reset(); _eval_3x3_recalib.reset(); _eval_5x5_recalib.reset(); Fun4AllHistoManager *hm = get_HistoManager(); assert(hm); if (not _is_sim) { PdbParameterMap *info = findNode::getClass<PdbParameterMap>(topNode, "RUN_INFO"); assert(info); PHG4Parameters run_info_copy("RunInfo"); run_info_copy.FillFrom(info); _eval_run.beam_mom = run_info_copy.get_double_param("beam_MTNRG_GeV"); TH1F * hBeam_Mom = dynamic_cast<TH1F *>(hm->getHisto("hBeam_Mom")); assert(hBeam_Mom); hBeam_Mom->Fill(_eval_run.beam_mom); } EventHeader* eventheader = findNode::getClass<EventHeader>(topNode, "EventHeader"); if (not _is_sim) { assert(eventheader); _eval_run.run = eventheader->get_RunNumber(); if (verbosity > 4) cout << __PRETTY_FUNCTION__ << _eval_run.run << endl; _eval_run.event = eventheader->get_EvtSequence(); } if (_is_sim) { PHG4TruthInfoContainer* truthInfoList = findNode::getClass< PHG4TruthInfoContainer>(topNode, "G4TruthInfo"); assert(truthInfoList); _eval_run.run = -1; const PHG4Particle * p = truthInfoList->GetPrimaryParticleRange().first->second; assert(p); const PHG4VtxPoint * v = truthInfoList->GetVtx(p->get_vtx_id()); assert(v); _eval_run.beam_mom = sqrt( p->get_px() * p->get_px() + p->get_py() * p->get_py() + p->get_pz() * p->get_pz()); _eval_run.truth_y = v->get_y(); _eval_run.truth_z = v->get_z(); } // normalization TH1F * hNormalization = dynamic_cast<TH1F *>(hm->getHisto("hNormalization")); assert(hNormalization); hNormalization->Fill("ALL", 1); RawTowerContainer* TOWER_RAW_CEMC = findNode::getClass<RawTowerContainer>( topNode, _is_sim ? "TOWER_RAW_LG_CEMC" : "TOWER_RAW_CEMC"); assert(TOWER_RAW_CEMC); RawTowerContainer* TOWER_CALIB_CEMC = findNode::getClass<RawTowerContainer>( topNode, _is_sim ? "TOWER_CALIB_LG_CEMC" : "TOWER_CALIB_CEMC"); assert(TOWER_CALIB_CEMC); // other nodes RawTowerContainer* TOWER_CALIB_TRIGGER_VETO = findNode::getClass< RawTowerContainer>(topNode, "TOWER_CALIB_TRIGGER_VETO"); if (not _is_sim) { assert(TOWER_CALIB_TRIGGER_VETO); } RawTowerContainer* TOWER_CALIB_HODO_HORIZONTAL = findNode::getClass< RawTowerContainer>(topNode, "TOWER_CALIB_HODO_HORIZONTAL"); if (not _is_sim) { assert(TOWER_CALIB_HODO_HORIZONTAL); } RawTowerContainer* TOWER_CALIB_HODO_VERTICAL = findNode::getClass< RawTowerContainer>(topNode, "TOWER_CALIB_HODO_VERTICAL"); if (not _is_sim) { assert(TOWER_CALIB_HODO_VERTICAL); } RawTowerContainer* TOWER_TEMPERATURE_EMCAL = findNode::getClass< RawTowerContainer>(topNode, "TOWER_TEMPERATURE_EMCAL"); if (not _is_sim) { assert(TOWER_TEMPERATURE_EMCAL); } RawTowerContainer* TOWER_CALIB_C1 = findNode::getClass<RawTowerContainer>( topNode, "TOWER_CALIB_C1"); if (not _is_sim) { assert(TOWER_CALIB_C1); } RawTowerContainer* TOWER_CALIB_C2 = findNode::getClass<RawTowerContainer>( topNode, "TOWER_CALIB_C2"); if (not _is_sim) { assert(TOWER_CALIB_C2); } // Cherenkov bool cherekov_e = false; if (not _is_sim) { RawTower * t_c2_in = NULL; RawTower * t_c2_out = NULL; assert(eventheader); if (eventheader->get_RunNumber() >= 2105) { t_c2_in = TOWER_CALIB_C2->getTower(10); t_c2_out = TOWER_CALIB_C2->getTower(11); } else { t_c2_in = TOWER_CALIB_C2->getTower(0); t_c2_out = TOWER_CALIB_C2->getTower(1); } assert(t_c2_in); assert(t_c2_out); const double c2_in = t_c2_in->get_energy(); const double c2_out = t_c2_out->get_energy(); const double c1 = TOWER_CALIB_C1->getTower(0)->get_energy(); _eval_run.C2_sum = c2_in + c2_out; cherekov_e = (_eval_run.C2_sum) > 100; hNormalization->Fill("C2-e", cherekov_e); TH2F * hCheck_Cherenkov = dynamic_cast<TH2F *>(hm->getHisto( "hCheck_Cherenkov")); assert(hCheck_Cherenkov); hCheck_Cherenkov->Fill(c1, "C1", 1); hCheck_Cherenkov->Fill(c2_in, "C2 in", 1); hCheck_Cherenkov->Fill(c2_out, "C2 out", 1); hCheck_Cherenkov->Fill(c2_in + c2_out, "C2 sum", 1); } // veto TH1F * hCheck_Veto = dynamic_cast<TH1F *>(hm->getHisto("hCheck_Veto")); assert(hCheck_Veto); bool trigger_veto_pass = true; if (not _is_sim) { auto range = TOWER_CALIB_TRIGGER_VETO->getTowers(); for (auto it = range.first; it != range.second; ++it) { RawTower* tower = it->second; assert(tower); hCheck_Veto->Fill(tower->get_energy()); if (abs(tower->get_energy()) > 15) trigger_veto_pass = false; } } hNormalization->Fill("trigger_veto_pass", trigger_veto_pass); _eval_run.trigger_veto_pass = trigger_veto_pass; // hodoscope TH1F * hCheck_Hodo_H = dynamic_cast<TH1F *>(hm->getHisto("hCheck_Hodo_H")); assert(hCheck_Hodo_H); int hodo_h_count = 0; if (not _is_sim) { auto range = TOWER_CALIB_HODO_HORIZONTAL->getTowers(); for (auto it = range.first; it != range.second; ++it) { RawTower* tower = it->second; assert(tower); hCheck_Hodo_H->Fill(tower->get_energy()); if (abs(tower->get_energy()) > 30) { hodo_h_count++; _eval_run.hodo_h = tower->get_id(); } } } const bool valid_hodo_h = hodo_h_count == 1; hNormalization->Fill("valid_hodo_h", valid_hodo_h); _eval_run.valid_hodo_h = valid_hodo_h; TH1F * hCheck_Hodo_V = dynamic_cast<TH1F *>(hm->getHisto("hCheck_Hodo_V")); assert(hCheck_Hodo_V); int hodo_v_count = 0; if (not _is_sim) { auto range = TOWER_CALIB_HODO_VERTICAL->getTowers(); for (auto it = range.first; it != range.second; ++it) { RawTower* tower = it->second; assert(tower); hCheck_Hodo_V->Fill(tower->get_energy()); if (abs(tower->get_energy()) > 30) { hodo_v_count++; _eval_run.hodo_v = tower->get_id(); } } } const bool valid_hodo_v = hodo_v_count == 1; _eval_run.valid_hodo_v = valid_hodo_v; hNormalization->Fill("valid_hodo_v", valid_hodo_v); const bool good_e = (valid_hodo_v and valid_hodo_h and cherekov_e and trigger_veto_pass) and (not _is_sim); hNormalization->Fill("good_e", good_e); // simple clustering pair<int, int> max_3x3 = find_max(TOWER_CALIB_CEMC, 3); pair<int, int> max_5x5 = find_max(TOWER_CALIB_CEMC, 5); _eval_3x3_raw.max_col = max_3x3.first; _eval_3x3_raw.max_row = max_3x3.second; _eval_3x3_prod.max_col = max_3x3.first; _eval_3x3_prod.max_row = max_3x3.second; _eval_3x3_temp.max_col = max_3x3.first; _eval_3x3_temp.max_row = max_3x3.second; _eval_3x3_recalib.max_col = max_3x3.first; _eval_3x3_recalib.max_row = max_3x3.second; _eval_5x5_raw.max_col = max_5x5.first; _eval_5x5_raw.max_row = max_5x5.second; _eval_5x5_prod.max_col = max_5x5.first; _eval_5x5_prod.max_row = max_5x5.second; _eval_5x5_temp.max_col = max_5x5.first; _eval_5x5_temp.max_row = max_5x5.second; _eval_5x5_recalib.max_col = max_5x5.first; _eval_5x5_recalib.max_row = max_5x5.second; // tower bool good_temp = true; double sum_energy_calib = 0; double sum_energy_T = 0; TH1F * hTemperature = dynamic_cast<TH1F *>(hm->getHisto("hTemperature")); assert(hTemperature); stringstream sdata; if (good_e) sdata << abs(_eval_run.beam_mom) << "\t"; // tower temperature and recalibration { auto range = TOWER_CALIB_CEMC->getTowers(); for (auto it = range.first; it != range.second; ++it) { RawTowerDefs::keytype key = it->first; RawTower* tower = it->second; assert(tower); const int col = tower->get_bineta(); const int row = tower->get_binphi(); if (col < 0 or col >= 8) continue; if (row < 0 or row >= 8) continue; const double energy_calib = tower->get_energy(); sum_energy_calib += energy_calib; RawTower* tower_raw = TOWER_RAW_CEMC->getTower(key); assert(tower_raw); double energy_T = 0; if (not _is_sim) { RawTower_Temperature * temp_t = dynamic_cast<RawTower_Temperature *>(TOWER_TEMPERATURE_EMCAL->getTower( tower->get_row(), tower->get_column())); // note swap of col/row in temperature storage assert(temp_t); const double T = temp_t->get_temperature_from_time( eventheader->get_TimeStamp()); hTemperature->Fill(T); if (T < 25 or T > 35) good_temp = false; energy_T = TemperatureCorrection::Apply(energy_calib, T); } // recalibration assert( _recalib_const.find(make_pair(col, row)) != _recalib_const.end()); const double energy_recalib = energy_T * _recalib_const[make_pair(col, row)]; // energy sums sum_energy_T += energy_T; // calibration file // sdata << tower->get_energy() << "\t"; // calibration file - only output 5x5 towers if (col >= max_5x5.first - 2 and col <= max_5x5.first + 2 and row >= max_5x5.second - 2 and row <= max_5x5.second + 2) { sdata << tower->get_energy() << "\t"; } else { sdata << 0 << "\t"; } // cluster 3x3 if (col >= max_3x3.first - 1 and col <= max_3x3.first + 1) if (row >= max_3x3.second - 1 and row <= max_3x3.second + 1) { // in cluster _eval_3x3_raw.average_col += abs(tower_raw->get_energy()) * col; _eval_3x3_raw.average_row += abs(tower_raw->get_energy()) * row; _eval_3x3_raw.sum_E += abs(tower_raw->get_energy()); _eval_3x3_prod.average_col += energy_calib * col; _eval_3x3_prod.average_row += energy_calib * row; _eval_3x3_prod.sum_E += energy_calib; _eval_3x3_temp.average_col += energy_T * col; _eval_3x3_temp.average_row += energy_T * row; _eval_3x3_temp.sum_E += energy_T; _eval_3x3_recalib.average_col += energy_recalib * col; _eval_3x3_recalib.average_row += energy_recalib * row; _eval_3x3_recalib.sum_E += energy_recalib; } // cluster 5x5 if (col >= max_5x5.first - 2 and col <= max_5x5.first + 2) if (row >= max_5x5.second - 2 and row <= max_5x5.second + 2) { // in cluster _eval_5x5_raw.average_col += abs(tower_raw->get_energy()) * col; _eval_5x5_raw.average_row += abs(tower_raw->get_energy()) * row; _eval_5x5_raw.sum_E += abs(tower_raw->get_energy()); _eval_5x5_prod.average_col += energy_calib * col; _eval_5x5_prod.average_row += energy_calib * row; _eval_5x5_prod.sum_E += energy_calib; _eval_5x5_temp.average_col += energy_T * col; _eval_5x5_temp.average_row += energy_T * row; _eval_5x5_temp.sum_E += energy_T; _eval_5x5_recalib.average_col += energy_recalib * col; _eval_5x5_recalib.average_row += energy_recalib * row; _eval_5x5_recalib.sum_E += energy_recalib; } } } _eval_3x3_raw.reweight_clus_pol(); _eval_5x5_raw.reweight_clus_pol(); _eval_3x3_prod.reweight_clus_pol(); _eval_5x5_prod.reweight_clus_pol(); _eval_3x3_temp.reweight_clus_pol(); _eval_5x5_temp.reweight_clus_pol(); _eval_3x3_recalib.reweight_clus_pol(); _eval_5x5_recalib.reweight_clus_pol(); const double EoP = sum_energy_T / abs(_eval_run.beam_mom); hNormalization->Fill("good_temp", good_temp); bool good_data = good_e and good_temp; hNormalization->Fill("good_data", good_data); _eval_run.good_temp = good_temp; _eval_run.good_e = good_e; _eval_run.good_data = good_data; _eval_run.sum_energy_T = sum_energy_T; _eval_run.EoP = EoP; // E/p if (good_data) { if (verbosity >= 3) cout << __PRETTY_FUNCTION__ << " sum_energy_calib = " << sum_energy_calib << " sum_energy_T = " << sum_energy_T << " _eval_run.beam_mom = " << _eval_run.beam_mom << endl; TH2F * hEoP = dynamic_cast<TH2F *>(hm->getHisto("hEoP")); assert(hEoP); hEoP->Fill(EoP, abs(_eval_run.beam_mom)); } // calibration file if (good_data and abs(_eval_run.beam_mom) >= 4 and abs(_eval_run.beam_mom) <= 8) { assert(fdata.is_open()); fdata << sdata.str(); fdata << endl; } TTree * T = dynamic_cast<TTree *>(hm->getHisto("T")); assert(T); T->Fill(); return Fun4AllReturnCodes::EVENT_OK; }
//____________________________________ int EventInfoSummary::process_event(PHCompositeNode* topNode) { Event* event = findNode::getClass<Event>(topNode, "PRDF"); if (event == NULL) { if (Verbosity() >= VERBOSITY_SOME) cout << "EventInfoSummary::Process_Event - Event not found" << endl; return Fun4AllReturnCodes::DISCARDEVENT; } // search for run info if (event->getEvtType() != DATAEVENT) return Fun4AllReturnCodes::EVENT_OK; else // DATAEVENT { if (verbosity >= VERBOSITY_SOME) { cout << "EventInfoSummary::process_event - with DATAEVENT events "; event->identify(); } map<int, Packet*> packet_list; PHParameters Params("EventInfo"); // spill indicator { RawTowerContainer* TOWER_RAW_SPILL_WARBLER = findNode::getClass< RawTowerContainer>(topNode, "TOWER_RAW_SPILL_WARBLER"); assert(TOWER_RAW_SPILL_WARBLER); RawTower_Prototype4* raw_tower = dynamic_cast<RawTower_Prototype4*>(TOWER_RAW_SPILL_WARBLER->getTower(0)); assert(raw_tower); accumulator_set<double, features<tag::variance>> acc; vector<double> vec_signal_samples; for (int i = 0; i < RawTower_Prototype4::NSAMPLES; i++) { acc(raw_tower->get_signal_samples(i)); } const double warbler_rms = variance(acc); const bool is_in_spill = warbler_rms > (1000 * 1000); Params.set_double_param("beam_SPILL_WARBLER_RMS", warbler_rms); Params.set_double_param("beam_Is_In_Spill", is_in_spill); Params.set_int_param("beam_Is_In_Spill", is_in_spill); } // energy sums { RawTowerContainer* TOWER_CALIB_CEMC = findNode::getClass< RawTowerContainer>(topNode, "TOWER_CALIB_CEMC"); assert(TOWER_CALIB_CEMC); RawTowerContainer* TOWER_CALIB_LG_HCALIN = findNode::getClass< RawTowerContainer>(topNode, "TOWER_CALIB_LG_HCALIN"); RawTowerContainer* TOWER_CALIB_LG_HCALOUT = findNode::getClass< RawTowerContainer>(topNode, "TOWER_CALIB_LG_HCALOUT"); // process inner HCAL if (TOWER_CALIB_CEMC) { double sum_energy_calib = 0; auto range = TOWER_CALIB_CEMC->getTowers(); for (auto it = range.first; it != range.second; ++it) { RawTower* tower = it->second; assert(tower); const int col = tower->get_bineta(); const int row = tower->get_binphi(); if (col < 0 or col >= 8) continue; if (row < 0 or row >= 8) continue; const double energy_calib = tower->get_energy(); sum_energy_calib += energy_calib; } // for (auto it = range.first; it != range.second; ++it) Params.set_double_param("CALIB_CEMC_Sum", sum_energy_calib); } // process inner HCAL // process inner HCAL if (TOWER_CALIB_LG_HCALIN) { double sum_energy_calib = 0; auto range = TOWER_CALIB_LG_HCALIN->getTowers(); for (auto it = range.first; it != range.second; ++it) { RawTower* tower = it->second; assert(tower); const int col = tower->get_bineta(); const int row = tower->get_binphi(); if (col < 0 or col >= 4) continue; if (row < 0 or row >= 4) continue; const double energy_calib = tower->get_energy(); sum_energy_calib += energy_calib; } // for (auto it = range.first; it != range.second; ++it) Params.set_double_param("CALIB_LG_HCALIN_Sum", sum_energy_calib); } // process inner HCAL // process outer HCAL if (TOWER_CALIB_LG_HCALOUT) { double sum_energy_calib = 0; auto range = TOWER_CALIB_LG_HCALOUT->getTowers(); for (auto it = range.first; it != range.second; ++it) { RawTower* tower = it->second; assert(tower); const int col = tower->get_bineta(); const int row = tower->get_binphi(); if (col < 0 or col >= 4) continue; if (row < 0 or row >= 4) continue; const double energy_calib = tower->get_energy(); sum_energy_calib += energy_calib; } // for (auto it = range.first; it != range.second; ++it) Params.set_double_param("CALIB_LG_HCALOUT_Sum", sum_energy_calib); } // process outer HCAL } // generic packets for (typ_channel_map::const_iterator it = channel_map.begin(); it != channel_map.end(); ++it) { const string& name = it->first; const channel_info& info = it->second; if (packet_list.find(info.packet_id) == packet_list.end()) { packet_list[info.packet_id] = event->getPacket(info.packet_id); } Packet* packet = packet_list[info.packet_id]; if (!packet) { // if (Verbosity() >= VERBOSITY_SOME) cout << "EventInfoSummary::process_event - failed to locate packet " << info.packet_id << " from "; event->identify(); Params.set_double_param(name, NAN); continue; } const int ivalue = packet->iValue(info.offset); const double dvalue = ivalue * info.calibration_const; if (verbosity >= VERBOSITY_SOME) { cout << "EventInfoSummary::process_event - " << name << " = " << dvalue << ", raw = " << ivalue << " @ packet " << info.packet_id << ", offset " << info.offset << endl; } Params.set_double_param(name, dvalue); } for (map<int, Packet*>::iterator it = packet_list.begin(); it != packet_list.end(); ++it) { if (it->second) delete it->second; } Params.SaveToNodeTree(topNode, eventinfo_node_name); if (verbosity >= VERBOSITY_SOME) Params.Print(); } return Fun4AllReturnCodes::EVENT_OK; }
void CaloEvaluator::fillOutputNtuples(PHCompositeNode *topNode) { if (verbosity > 2) cout << "CaloEvaluator::fillOutputNtuples() entered" << endl; CaloRawClusterEval* clustereval = _caloevalstack->get_rawcluster_eval(); CaloRawTowerEval* towereval = _caloevalstack->get_rawtower_eval(); CaloTruthEval* trutheval = _caloevalstack->get_truth_eval(); //---------------------- // fill the Event NTuple //---------------------- if (_do_gpoint_eval) { // need things off of the DST... PHG4TruthInfoContainer* truthinfo = findNode::getClass<PHG4TruthInfoContainer>(topNode,"G4TruthInfo"); if (!truthinfo) { cerr << PHWHERE << " ERROR: Can't find G4TruthInfo" << endl; exit(-1); } // need things off of the DST... SvtxVertexMap* vertexmap = findNode::getClass<SvtxVertexMap>(topNode,"SvtxVertexMap"); PHG4VtxPoint *gvertex = truthinfo->GetPrimaryVtx( truthinfo->GetPrimaryVertexIndex() ); float gvx = gvertex->get_x(); float gvy = gvertex->get_y(); float gvz = gvertex->get_z(); float vx = NAN; float vy = NAN; float vz = NAN; if (vertexmap) { if (!vertexmap->empty()) { SvtxVertex* vertex = (vertexmap->begin()->second); vx = vertex->get_x(); vy = vertex->get_y(); vz = vertex->get_z(); } } float gpoint_data[7] = {_ievent, gvx, gvy, gvz, vx, vy, vz }; _ntp_gpoint->Fill(gpoint_data); } //------------------------ // fill the Gshower NTuple //------------------------ if (_ntp_gshower) { if (verbosity > 1) cout << "CaloEvaluator::filling gshower ntuple..." << endl; PHG4TruthInfoContainer* truthinfo = findNode::getClass<PHG4TruthInfoContainer>(topNode,"G4TruthInfo"); if (!truthinfo) { cerr << PHWHERE << " ERROR: Can't find G4TruthInfo" << endl; exit(-1); } PHG4TruthInfoContainer::ConstRange range = truthinfo->GetPrimaryParticleRange(); for (PHG4TruthInfoContainer::ConstIterator iter = range.first; iter != range.second; ++iter) { PHG4Particle* primary = iter->second; if (primary->get_e() < _truth_e_threshold) continue; if (!_truth_trace_embed_flags.empty()) { if (_truth_trace_embed_flags.find(trutheval->get_embed(primary)) == _truth_trace_embed_flags.end()) continue; } float gparticleID = primary->get_track_id(); float gflavor = primary->get_pid(); std::set<PHG4Hit*> g4hits = trutheval->get_shower_from_primary(primary); float gnhits = g4hits.size(); float gpx = primary->get_px(); float gpy = primary->get_py(); float gpz = primary->get_pz(); float ge = primary->get_e(); float gpt = sqrt(gpx*gpx+gpy*gpy); float geta = NAN; if (gpt != 0.0) geta = asinh(gpz/gpt); float gphi = atan2(gpy,gpx); PHG4VtxPoint* vtx = trutheval->get_vertex(primary); float gvx = vtx->get_x(); float gvy = vtx->get_y(); float gvz = vtx->get_z(); float gembed = trutheval->get_embed(primary); float gedep = trutheval->get_shower_energy_deposit(primary); float gmrad = trutheval->get_shower_moliere_radius(primary); RawCluster* cluster = clustereval->best_cluster_from(primary); float clusterID = NAN; float ntowers = NAN; float eta = NAN; float phi = NAN; float e = NAN; float efromtruth = NAN; if (cluster) { clusterID = cluster->get_id(); ntowers = cluster->getNTowers(); eta = cluster->get_eta(); phi = cluster->get_phi(); e = cluster->get_energy(); efromtruth = clustereval->get_energy_contribution(cluster, primary); } float shower_data[20] = {_ievent, gparticleID, gflavor, gnhits, geta, gphi, ge, gpt, gvx, gvy, gvz, gembed, gedep, gmrad, clusterID, ntowers, eta, phi, e, efromtruth }; _ntp_gshower->Fill(shower_data); } } //---------------------- // fill the Tower NTuple //---------------------- if (_do_tower_eval) { if (verbosity > 1) cout << "CaloEvaluator::filling tower ntuple..." << endl; string towernode = "TOWER_CALIB_" + _caloname; RawTowerContainer* towers = findNode::getClass<RawTowerContainer>(topNode,towernode.c_str()); if (!towers) { cerr << PHWHERE << " ERROR: Can't find " << towernode << endl; exit(-1); } string towergeomnode = "TOWERGEOM_" + _caloname; RawTowerGeomContainer* towergeom = findNode::getClass<RawTowerGeomContainer>(topNode,towergeomnode.c_str()); if (!towergeom) { cerr << PHWHERE << " ERROR: Can't find " << towergeomnode << endl; exit(-1); } RawTowerContainer::ConstRange begin_end = towers->getTowers(); RawTowerContainer::ConstIterator rtiter; for (rtiter = begin_end.first; rtiter != begin_end.second; ++rtiter) { RawTower *tower = rtiter->second; if (tower->get_energy() < _reco_e_threshold) continue; float towerid = tower->get_id(); float ieta = tower->get_bineta(); float iphi = tower->get_binphi(); float eta = towergeom->get_etacenter(tower->get_bineta()); float phi = towergeom->get_phicenter(tower->get_binphi()); float e = tower->get_energy(); PHG4Particle* primary = towereval->max_truth_primary_by_energy(tower); float gparticleID = NAN; float gflavor = NAN; float gnhits = NAN; float gpx = NAN; float gpy = NAN; float gpz = NAN; float ge = NAN; float gpt = NAN; float geta = NAN; float gphi = NAN; float gvx = NAN; float gvy = NAN; float gvz = NAN; float gembed = NAN; float gedep = NAN; float gmrad = NAN; float efromtruth = NAN; if (primary) { gparticleID = primary->get_track_id(); gflavor = primary->get_pid(); std::set<PHG4Hit*> g4hits = trutheval->get_shower_from_primary(primary); gnhits = g4hits.size(); gpx = primary->get_px(); gpy = primary->get_py(); gpz = primary->get_pz(); ge = primary->get_e(); gpt = sqrt(gpx * gpx + gpy * gpy); if (gpt != 0.0) geta = asinh(gpz / gpt); gphi = atan2(gpy, gpx); PHG4VtxPoint* vtx = trutheval->get_vertex(primary); if (vtx) { gvx = vtx->get_x(); gvy = vtx->get_y(); gvz = vtx->get_z(); } gembed = trutheval->get_embed(primary); gedep = trutheval->get_shower_energy_deposit(primary); gmrad = trutheval->get_shower_moliere_radius(primary); efromtruth = towereval->get_energy_contribution(tower, primary); } float tower_data[21] = {_ievent, towerid, ieta, iphi, eta, phi, e, gparticleID, gflavor, gnhits, geta, gphi, ge, gpt, gvx, gvy, gvz, gembed, gedep, gmrad, efromtruth }; _ntp_tower->Fill(tower_data); } } //------------------------ // fill the Cluster NTuple //------------------------ if (_do_cluster_eval) { if (verbosity > 1) cout << "CaloEvaluator::filling gcluster ntuple..." << endl; string clusternode = "CLUSTER_" + _caloname; RawClusterContainer* clusters = findNode::getClass<RawClusterContainer>(topNode,clusternode.c_str()); if (!clusters) { cerr << PHWHERE << " ERROR: Can't find " << clusternode << endl; exit(-1); } // for every cluster for (unsigned int icluster = 0; icluster < clusters->size(); icluster++) { RawCluster *cluster = clusters->getCluster(icluster); if (cluster->get_energy() < _reco_e_threshold) continue; float clusterID = cluster->get_id(); float ntowers = cluster->getNTowers(); float eta = cluster->get_eta(); float phi = cluster->get_phi(); float e = cluster->get_energy(); PHG4Particle* primary = clustereval->max_truth_primary_by_energy(cluster); float gparticleID = NAN; float gflavor = NAN; float gnhits = NAN; float gpx = NAN; float gpy = NAN; float gpz = NAN; float ge = NAN; float gpt = NAN; float geta = NAN; float gphi = NAN; float gvx = NAN; float gvy = NAN; float gvz = NAN; float gembed = NAN; float gedep = NAN; float gmrad = NAN; float efromtruth = NAN; if (primary) { gparticleID = primary->get_track_id(); gflavor = primary->get_pid(); std::set<PHG4Hit*> g4hits = trutheval->get_shower_from_primary(primary); gnhits = g4hits.size(); gpx = primary->get_px(); gpy = primary->get_py(); gpz = primary->get_pz(); ge = primary->get_e(); gpt = sqrt(gpx * gpx + gpy * gpy); if (gpt != 0.0) geta = asinh(gpz / gpt); gphi = atan2(gpy, gpx); PHG4VtxPoint* vtx = trutheval->get_vertex(primary); if (vtx) { gvx = vtx->get_x(); gvy = vtx->get_y(); gvz = vtx->get_z(); } gembed = trutheval->get_embed(primary); gedep = trutheval->get_shower_energy_deposit(primary); gmrad = trutheval->get_shower_moliere_radius(primary); efromtruth = clustereval->get_energy_contribution(cluster, primary); } float cluster_data[20] = {_ievent, clusterID, ntowers, eta, phi, e, gparticleID, gflavor, gnhits, geta, gphi, ge, gpt, gvx, gvy, gvz, gembed, gedep, gmrad, efromtruth }; _ntp_cluster->Fill(cluster_data); } } return; }