float
TrackProjectionTools::getE33Barrel( string detName, float phi, float eta ){

  string towernodename = "TOWER_CALIB_" + detName;
  // Grab the towers
  RawTowerContainer* towerList = findNode::getClass<RawTowerContainer>(_topNode, towernodename.c_str());
  if (!towerList)
    {
      std::cout << PHWHERE << ": Could not find node " << towernodename.c_str() << std::endl;
      return -1;
    }
  string towergeomnodename = "TOWERGEOM_" + detName;
  RawTowerGeomContainer *towergeo = findNode::getClass<RawTowerGeomContainer>(_topNode, towergeomnodename.c_str());
  if (! towergeo)
    {
      cout << PHWHERE << ": Could not find node " << towergeomnodename.c_str() << endl;
      return -1;
    }

  // calculate 3x3 and 5x5 tower energies
  int binphi = towergeo->get_phibin(phi);
  int bineta = towergeo->get_etabin(eta);

  float energy_3x3 = 0.0;
  float energy_5x5 = 0.0;

  for (int iphi = binphi-2; iphi <= binphi+2; ++iphi) {
    for (int ieta = bineta-2; ieta <= bineta+2; ++ieta) {

      // wrap around
      int wrapphi = iphi;
      if (wrapphi < 0) {
        wrapphi = towergeo->get_phibins() + wrapphi;
      }
      if (wrapphi >= towergeo->get_phibins()) {
        wrapphi = wrapphi - towergeo->get_phibins();
      }

      // edges
      if (ieta < 0) continue;
      if (ieta >= towergeo->get_etabins()) continue;

      RawTower* tower = towerList->getTower(ieta,wrapphi);
      if (tower) {
        energy_5x5 += tower->get_energy();
        if (abs(iphi - binphi)<=1 and abs(ieta - bineta)<=1 )
          energy_3x3 += tower->get_energy();
      }

    }
  }

  return energy_3x3;
}
Пример #2
0
int PHG4SvtxTrackProjection::process_event(PHCompositeNode *topNode)
{
  if(verbosity > 1) cout << "PHG4SvtxTrackProjection::process_event -- entered" << endl;

  //---------------------------------
  // Get Objects off of the Node Tree
  //---------------------------------

  // Pull the reconstructed track information off the node tree...
  SvtxTrackMap* _g4tracks = findNode::getClass<SvtxTrackMap>(topNode, "SvtxTrackMap");
  if (!_g4tracks) {
    cerr << PHWHERE << " ERROR: Can't find SvtxTrackMap." << endl;
    return Fun4AllReturnCodes::ABORTRUN;
  }

  for (int i=0;i<_num_cal_layers;++i) {

    if (isnan(_cal_radii[i])) continue;

    if (verbosity > 1) cout << "Projecting tracks into: " << _cal_names[i] << endl;

    // pull the tower geometry
    string towergeonodename = "TOWERGEOM_" + _cal_names[i];
    RawTowerGeom *towergeo = findNode::getClass<RawTowerGeom>(topNode,towergeonodename.c_str());
    if (!towergeo) {
      cerr << PHWHERE << " ERROR: Can't find node " << towergeonodename << endl;
      return Fun4AllReturnCodes::ABORTRUN;
    }

    // pull the towers
    string towernodename = "TOWER_CALIB_" + _cal_names[i];
    RawTowerContainer *towerList = findNode::getClass<RawTowerContainer>(topNode,towernodename.c_str());
    if (!towerList) {
      cerr << PHWHERE << " ERROR: Can't find node " << towernodename << endl;
      return Fun4AllReturnCodes::ABORTRUN;
    }

    // pull the clusters
    string clusternodename = "CLUSTER_" + _cal_names[i];
    RawClusterContainer *clusterList = findNode::getClass<RawClusterContainer>(topNode,clusternodename.c_str());
    if (!clusterList) {
      cerr << PHWHERE << " ERROR: Can't find node " << clusternodename << endl;
      return Fun4AllReturnCodes::ABORTRUN;
    }    
    
    // loop over all tracks
    for (SvtxTrackMap::Iter iter = _g4tracks->begin();
	 iter != _g4tracks->end();
	 ++iter) {
      SvtxTrack *track = iter->second;

      if (verbosity > 1) cout << "projecting track id " << track->get_id() << endl;

      if (verbosity > 1) {
	cout << " track pt = " << track->get_pt() << endl;
      }

      // curved tracks inside mag field
      // straight projections thereafter
      std::vector<double> point;
      point.assign(3,-9999.);
      //if (_cal_radii[i] < _mag_extent) {
      // curved projections inside field

      _hough.projectToRadius(track,_magfield,_cal_radii[i],point);

      if (isnan(point[0])) continue;
      if (isnan(point[1])) continue;
      if (isnan(point[2])) continue;
      // } else {
      // 	// straight line projections after mag field exit
      // 	_hough.projectToRadius(track,_mag_extent-0.05,point);
      // 	if (isnan(point[0])) continue;
      // 	if (isnan(point[1])) continue;
      // 	if (isnan(point[2])) continue;

      // 	std::vector<double> point2;
      // 	point2.assign(3,-9999.);
      // 	_hough.projectToRadius(track,_mag_extent+0.05,point2);
      // 	if (isnan(point2[0])) continue;
      // 	if (isnan(point2[1])) continue;
      // 	if (isnan(point2[2])) continue;

      // 	// find intersection of r and z


      // find x,y of intersection
      //}
      double x = point[0];
      double y = point[1];
      double z = point[2];

      double phi = atan2(y,x);
      double eta = asinh(z/sqrt(x*x+y*y));

      if (verbosity > 1) {
	cout << " initial track phi = " << track->get_phi();
	cout << ", eta = " << track->get_eta() << endl;
	cout << " calorimeter phi = " << phi << ", eta = " << eta << endl;
      }

      // projection is outside the detector extent
      // \todo towergeo doesn't make this easy to extract, but this should be
      // fetched from the node tree instead of hardcoded
      if (fabs(eta) >= 1.0) continue;

      // calculate 3x3 tower energy
      int binphi = towergeo->get_phibin(phi);
      int bineta = towergeo->get_etabin(eta);

      double energy_3x3 = 0.0;
      for (int iphi = binphi-1; iphi < binphi+2; ++iphi) { 
      	for (int ieta = bineta-1; ieta < bineta+2; ++ieta) { 

	  // wrap around
	  int wrapphi = iphi;
	  if (wrapphi < 0) {
	    wrapphi = towergeo->get_phibins() + wrapphi;
	  }
	  if (wrapphi >= towergeo->get_phibins()) {
	    wrapphi = wrapphi - towergeo->get_phibins();
	  }

	  // edges
	  if (ieta < 0) continue;
	  if (ieta >= towergeo->get_etabins()) continue;

	  RawTower* tower = towerList->getTower(ieta,wrapphi);
	  if (tower) {
	    energy_3x3 += tower->get_energy();

	    if (verbosity > 1) cout << " tower " << ieta << " " << wrapphi << " energy = " << tower->get_energy() << endl;
	  }
      	}
      }

      track->set_cal_energy_3x3(_cal_types[i],energy_3x3);

      // loop over all clusters and find nearest
      double min_r = DBL_MAX;
      double min_index = -9999;
      double min_dphi = NAN;
      double min_deta = NAN;
      double min_e = NAN;
      for (unsigned int k = 0; k < clusterList->size(); ++k) {

	RawCluster *cluster = clusterList->getCluster(k);

	double dphi = atan2(sin(phi-cluster->get_phi()),cos(phi-cluster->get_phi()));
	double deta = eta-cluster->get_eta();
	double r = sqrt(pow(dphi,2)+pow(deta,2));

	if (r < min_r) {
	  min_index = k;
	  min_r = r;
	  min_dphi = dphi;
	  min_deta = deta;
	  min_e = cluster->get_energy();
	}
      }

      if (min_index != -9999) {
	track->set_cal_dphi(_cal_types[i],min_dphi);
	track->set_cal_deta(_cal_types[i],min_deta);
	track->set_cal_cluster_id(_cal_types[i],min_index);
	track->set_cal_cluster_e(_cal_types[i],min_e);

	if (verbosity > 1) {
	  cout << " nearest cluster dphi = " << min_dphi << " deta = " << min_deta << " e = " << min_e << endl;
	}
      }

    } // end track loop
  } // end calorimeter layer loop

 
  if(verbosity > 1) cout << "PHG4SvtxTrackProjection::process_event -- exited" << endl;

  return Fun4AllReturnCodes::EVENT_OK;
}
int PHG4GenFitTrackProjection::process_event(PHCompositeNode *topNode) {
	if (verbosity > 1)
		cout << "PHG4GenFitTrackProjection::process_event -- entered" << endl;

	//---------------------------------
	// Get Objects off of the Node Tree
	//---------------------------------

	// Pull the reconstructed track information off the node tree...
	SvtxTrackMap* _g4tracks = findNode::getClass<SvtxTrackMap>(topNode,
			"SvtxTrackMap");
	if (!_g4tracks) {
		cerr << PHWHERE << " ERROR: Can't find SvtxTrackMap." << endl;
		return Fun4AllReturnCodes::ABORTRUN;
	}

	for (int i = 0; i < _num_cal_layers; ++i) {

		if (std::isnan(_cal_radii[i]))
			continue;

		if (verbosity > 1)
			cout << "Projecting tracks into: " << _cal_names[i] << endl;

		// pull the tower geometry
		string towergeonodename = "TOWERGEOM_" + _cal_names[i];
		RawTowerGeomContainer *towergeo = findNode::getClass<
				RawTowerGeomContainer>(topNode, towergeonodename.c_str());
		if (!towergeo) {
			cerr << PHWHERE << " ERROR: Can't find node " << towergeonodename
					<< endl;
			return Fun4AllReturnCodes::ABORTRUN;
		}

		// pull the towers
		string towernodename = "TOWER_CALIB_" + _cal_names[i];
		RawTowerContainer *towerList = findNode::getClass<RawTowerContainer>(
				topNode, towernodename.c_str());
		if (!towerList) {
			cerr << PHWHERE << " ERROR: Can't find node " << towernodename
					<< endl;
			return Fun4AllReturnCodes::ABORTRUN;
		}

		// pull the clusters
		string clusternodename = "CLUSTER_" + _cal_names[i];
		RawClusterContainer *clusterList = findNode::getClass<
				RawClusterContainer>(topNode, clusternodename.c_str());
		if (!clusterList) {
			cerr << PHWHERE << " ERROR: Can't find node " << clusternodename
					<< endl;
			return Fun4AllReturnCodes::ABORTRUN;
		}

		// loop over all tracks
		for (SvtxTrackMap::Iter iter = _g4tracks->begin();
				iter != _g4tracks->end(); ++iter) {
			SvtxTrack *track = iter->second;
#ifdef DEBUG
			cout
			<<__LINE__
			<<": track->get_charge(): "<<track->get_charge()
			<<endl;
#endif
			if(!track) {
				if(verbosity >= 2) LogWarning("!track");
				continue;
			}

			if (verbosity > 1)
				cout << "projecting track id " << track->get_id() << endl;

			if (verbosity > 1) {
				cout << " track pt = " << track->get_pt() << endl;
			}

			std::vector<double> point;
			point.assign(3, -9999.);

			auto last_state_iter = --track->end_states();

			SvtxTrackState * trackstate = last_state_iter->second;

			if(!trackstate) {
				if(verbosity >= 2) LogWarning("!trackstate");
				continue;
			}

			auto pdg = unique_ptr<TDatabasePDG> (TDatabasePDG::Instance());
			int reco_charge = track->get_charge();
			int gues_charge = pdg->GetParticle(_pid_guess)->Charge();
			if(reco_charge*gues_charge<0) _pid_guess *= -1;
#ifdef DEBUG
			cout
			<<__LINE__
			<<": guess charge: " << gues_charge
			<<": reco charge: " << reco_charge
			<<": pid: " << _pid_guess
			<<": pT: " << sqrt(trackstate->get_px()*trackstate->get_px() + trackstate->get_py()*trackstate->get_py())
			<<endl;
#endif

			auto rep = unique_ptr<genfit::AbsTrackRep> (new genfit::RKTrackRep(_pid_guess));

			unique_ptr<genfit::MeasuredStateOnPlane> msop80 = nullptr;

			{
				TVector3 pos(trackstate->get_x(), trackstate->get_y(), trackstate->get_z());
				//pos.SetXYZ(0.01,0,0);

				TVector3 mom(trackstate->get_px(), trackstate->get_py(), trackstate->get_pz());
				//mom.SetXYZ(1,0,0);

				TMatrixDSym cov(6);
				for (int i = 0; i < 6; ++i) {
					for (int j = 0; j < 6; ++j) {
						cov[i][j] = trackstate->get_error(i, j);
					}
				}

				msop80 = unique_ptr<genfit::MeasuredStateOnPlane> (new genfit::MeasuredStateOnPlane(rep.get()));

				msop80->setPosMomCov(pos, mom, cov);
			}

#ifdef DEBUG
			{
				double x = msop80->getPos().X();
				double y = msop80->getPos().Y();
				double z = msop80->getPos().Z();
//				double px = msop80->getMom().X();
//				double py = msop80->getMom().Y();
				double pz = msop80->getMom().Z();
				genfit::FieldManager *field_mgr = genfit::FieldManager::getInstance();
				double Bx=0, By=0, Bz=0;
				field_mgr->getFieldVal(x,y,z,Bx,By,Bz);
				cout
				<< __LINE__
				<< ": { " << msop80->getPos().Perp() << ", " << msop80->getPos().Phi() << ", " << msop80->getPos().Eta() << "} @ "
				//<< "{ " << Bx << ", " << By << ", " << Bz << "}"
				<< "{ " << msop80->getMom().Perp() << ", " << msop80->getMom().Phi() << ", " << pz << "} "
				<<endl;
				//msop80->Print();
			}
#endif
			try {
				rep->extrapolateToCylinder(*msop80, _cal_radii[i], TVector3(0,0,0),  TVector3(0,0,1));
				//rep->extrapolateToCylinder(*msop80, 5., TVector3(0,0,0),  TVector3(0,0,1));
			} catch (...) {
				if(verbosity >= 2) LogWarning("extrapolateToCylinder failed");
				continue;
			}

#ifdef DEBUG
			{
				cout<<__LINE__<<endl;
				//msop80->Print();
				double x = msop80->getPos().X();
				double y = msop80->getPos().Y();
				double z = msop80->getPos().Z();
//				double px = msop80->getMom().X();
//				double py = msop80->getMom().Y();
				double pz = msop80->getMom().Z();
				genfit::FieldManager *field_mgr = genfit::FieldManager::getInstance();
				double Bx=0, By=0, Bz=0;
				field_mgr->getFieldVal(x,y,z,Bx,By,Bz);
				cout
				<< __LINE__
				<< ": { " << msop80->getPos().Perp() << ", " << msop80->getPos().Phi() << ", " << msop80->getPos().Eta() << "} @ "
				//<< "{ " << Bx << ", " << By << ", " << Bz << "}"
				<< "{ " << msop80->getMom().Perp() << ", " << msop80->getMom().Phi() << ", " << pz << "} "
				<<endl;
			}
#endif

			point[0] = msop80->getPos().X();
			point[1] = msop80->getPos().Y();
			point[2] = msop80->getPos().Z();

#ifdef DEBUG
			cout
			<<__LINE__
			<<": GenFit: {"
			<< point[0] <<", "
			<< point[1] <<", "
			<< point[2] <<" }"
			<<endl;
#endif

			if (std::isnan(point[0]))
				continue;
			if (std::isnan(point[1]))
				continue;
			if (std::isnan(point[2]))
				continue;

			double x = point[0];
			double y = point[1];
			double z = point[2];

			double phi = atan2(y, x);
			double eta = asinh(z / sqrt(x * x + y * y));

			if (verbosity > 1) {
				cout << " initial track phi = " << track->get_phi();
				cout << ", eta = " << track->get_eta() << endl;
				cout << " calorimeter phi = " << phi << ", eta = " << eta
						<< endl;
			}

			// projection is outside the detector extent
			// TODO towergeo doesn't make this easy to extract, but this should be
			// fetched from the node tree instead of hardcoded
			if (fabs(eta) >= 1.0)
				continue;

			// calculate 3x3 tower energy
			int binphi = towergeo->get_phibin(phi);
			int bineta = towergeo->get_etabin(eta);

			double energy_3x3 = 0.0;
			double energy_5x5 = 0.0;
			for (int iphi = binphi - 2; iphi <= binphi + 2; ++iphi) {
				for (int ieta = bineta - 2; ieta <= bineta + 2; ++ieta) {

					// wrap around
					int wrapphi = iphi;
					if (wrapphi < 0) {
						wrapphi = towergeo->get_phibins() + wrapphi;
					}
					if (wrapphi >= towergeo->get_phibins()) {
						wrapphi = wrapphi - towergeo->get_phibins();
					}

					// edges
					if (ieta < 0)
						continue;
					if (ieta >= towergeo->get_etabins())
						continue;

					RawTower* tower = towerList->getTower(ieta, wrapphi);
					if (tower) {

						energy_5x5 += tower->get_energy();
						if (abs(iphi - binphi) <= 1 and abs(ieta - bineta) <= 1)
							energy_3x3 += tower->get_energy();

						if (verbosity > 1)
							cout << " tower " << ieta << " " << wrapphi
									<< " energy = " << tower->get_energy()
									<< endl;
					}
				}
			}

			track->set_cal_energy_3x3(_cal_types[i], energy_3x3);
			track->set_cal_energy_5x5(_cal_types[i], energy_5x5);

			// loop over all clusters and find nearest
			double min_r = DBL_MAX;
			double min_index = -9999;
			double min_dphi = NAN;
			double min_deta = NAN;
			double min_e = NAN;
#ifdef DEBUG
			double min_cluster_phi = NAN;
#endif
			for (unsigned int k = 0; k < clusterList->size(); ++k) {

				RawCluster *cluster = clusterList->getCluster(k);

				double dphi = atan2(sin(phi - cluster->get_phi()),
						cos(phi - cluster->get_phi()));
				double deta = eta - cluster->get_eta();
				double r = sqrt(pow(dphi, 2) + pow(deta, 2));

				if (r < min_r) {
					min_index = k;
					min_r = r;
					min_dphi = dphi;
					min_deta = deta;
					min_e = cluster->get_energy();
#ifdef DEBUG
					min_cluster_phi = cluster->get_phi();
#endif
				}
			}

			if (min_index != -9999) {
				track->set_cal_dphi(_cal_types[i], min_dphi);
				track->set_cal_deta(_cal_types[i], min_deta);
				track->set_cal_cluster_id(_cal_types[i], min_index);
				track->set_cal_cluster_e(_cal_types[i], min_e);

#ifdef DEBUG
			cout
			<<__LINE__
			<<": min_cluster_phi: "<<min_cluster_phi
			<<endl;
#endif

				if (verbosity > 1) {
					cout << " nearest cluster dphi = " << min_dphi << " deta = "
							<< min_deta << " e = " << min_e << endl;
				}
			}

		} // end track loop
	} // end calorimeter layer loop

	if (verbosity > 1)
		cout << "PHG4GenFitTrackProjection::process_event -- exited" << endl;

	return Fun4AllReturnCodes::EVENT_OK;
}
float
TrackProjectionTools::getE33Forward( string detName, float tkx, float tky )
{
  float twr_sum = 0;

  string towernodename = "TOWER_CALIB_" + detName;
  // Grab the towers
  RawTowerContainer* towers = findNode::getClass<RawTowerContainer>(_topNode, towernodename.c_str());
  if (!towers)
    {
      std::cout << PHWHERE << ": Could not find node " << towernodename.c_str() << std::endl;
      return -1;
    }
  string towergeomnodename = "TOWERGEOM_" + detName;
  RawTowerGeomContainer *towergeom = findNode::getClass<RawTowerGeomContainer>(_topNode, towergeomnodename.c_str());
  if (! towergeom)
    {
      cout << PHWHERE << ": Could not find node " << towergeomnodename.c_str() << endl;
      return -1;
    }

  // Locate the central tower
  float r_dist = 9999.0;
  int twr_j = -1;
  int twr_k = -1;
  RawTowerDefs::CalorimeterId calo_id_ = RawTowerDefs::convert_name_to_caloid( detName );

  RawTowerContainer::ConstRange begin_end  = towers->getTowers();
  RawTowerContainer::ConstIterator itr = begin_end.first;
  for (; itr != begin_end.second; ++itr)
    {
      RawTowerDefs::keytype towerid = itr->first;
      RawTowerGeom *tgeo = towergeom->get_tower_geometry(towerid);

      float x = tgeo->get_center_x();
      float y = tgeo->get_center_y();

      float temp_rdist = sqrt(pow(tkx-x,2) + pow(tky-y,2)) ;
      if(temp_rdist< r_dist){
        r_dist = temp_rdist;
        twr_j = RawTowerDefs::decode_index1(towerid);
        twr_k = RawTowerDefs::decode_index2(towerid);
      }

      if( (fabs(tkx-x)<(tgeo->get_size_x()/2.0)) &&
          (fabs(tky-y)<(tgeo->get_size_y()/2.0)) ) break;

    }

  // Use the central tower to sum up the 3x3 energy
  if(twr_j>=0 && twr_k>=0){
    for(int ij = -1; ij <=1; ij++){
      for(int ik = -1; ik <=1; ik++){
        RawTowerDefs::keytype temp_towerid = RawTowerDefs::encode_towerid( calo_id_ , twr_j + ij , twr_k + ik );
        RawTower *rawtower = towers->getTower(temp_towerid);
        if(rawtower) twr_sum += rawtower->get_energy();
      }
    }
  }

  return twr_sum;
}
int
QAG4SimulationCalorimeter::process_event_Tower(PHCompositeNode *topNode)
{
  const string detector(_calo_name);

  if (verbosity > 2)
    cout << "QAG4SimulationCalorimeter::process_event_Tower() entered" << endl;

  Fun4AllHistoManager *hm = QAHistManagerDef::getHistoManager();
  assert(hm);
  TH1D* h_norm = dynamic_cast<TH1D*>(hm->getHisto(
      get_histo_prefix() + "_Normalization"));
  assert(h_norm);

  string towernodename = "TOWER_CALIB_" + detector;
  // Grab the towers
  RawTowerContainer* towers = findNode::getClass<RawTowerContainer>(topNode,
      towernodename.c_str());
  if (!towers)
    {
      std::cout << PHWHERE << ": Could not find node " << towernodename.c_str()
          << std::endl;
      return Fun4AllReturnCodes::ABORTRUN;
    }
  string towergeomnodename = "TOWERGEOM_" + detector;
  RawTowerGeomContainer *towergeom = findNode::getClass<RawTowerGeomContainer>(
      topNode, towergeomnodename.c_str());
  if (!towergeom)
    {
      cout << PHWHERE << ": Could not find node " << towergeomnodename.c_str()
          << endl;
      return Fun4AllReturnCodes::ABORTRUN;
    }

  static const int max_size = 5;
  map<int, string> size_label;
  size_label[1] = "1x1";
  size_label[2] = "2x2";
  size_label[3] = "3x3";
  size_label[4] = "4x4";
  size_label[5] = "5x5";
  map<int, double> max_energy;
  map<int, TH1F*> energy_hist_list;
  map<int, TH1F*> max_energy_hist_list;

  for (int size = 1; size <= max_size; ++size)
    {
      max_energy[size] = 0;


      TH1F* h = dynamic_cast<TH1F*>(hm->getHisto(
          get_histo_prefix() + "_Tower_" + size_label[size]));
      assert(h);
      energy_hist_list[size] = h;
      h = dynamic_cast<TH1F*>(hm->getHisto(
          get_histo_prefix() + "_Tower_" + size_label[size] + "_max"));
      assert(h);
      max_energy_hist_list[size] = h;

    }

  h_norm->Fill("Tower", towergeom->size()); // total tower count
  h_norm->Fill("Tower Hit", towers->size());

  for (int binphi = 0; binphi < towergeom->get_phibins(); ++binphi)
    {
      for (int bineta = 0; bineta < towergeom->get_etabins(); ++bineta)
        {
          for (int size = 1; size <= max_size; ++size)
            {

              // for 2x2 and 4x4 use slide-2 window as implemented in DAQ
              if ((size == 2 or size == 4)
                  and ((binphi % 2 != 0) and (bineta % 2 != 0)))
                continue;

              double energy = 0;

              // sliding window made from 2x2 sums
              for (int iphi = binphi; iphi < binphi + size; ++iphi)
                {
                  for (int ieta = bineta; ieta < bineta + size; ++ieta)
                    {
                      if (ieta > towergeom->get_etabins())
                        continue;

                      // wrap around
                      int wrapphi = iphi;
                      assert(wrapphi >= 0);
                      if (wrapphi >= towergeom->get_phibins())
                        {
                          wrapphi = wrapphi - towergeom->get_phibins();
                        }

                      RawTower* tower = towers->getTower(ieta, wrapphi);

                      if (tower)
                        {
                          const double e_intput = tower->get_energy();

                          energy += e_intput;
                        }
                    }
                }

              energy_hist_list[size]->Fill(energy == 0 ? 9.1e-4 : energy); // trick to fill 0 energy tower to the first bin

              if (energy > max_energy[size])
                max_energy[size] = energy;

            } //          for (int size = 1; size <= 4; ++size)
        }
    }

  for (int size = 1; size <= max_size; ++size)
    {
      max_energy_hist_list[size]->Fill(max_energy[size]);
    }
  return Fun4AllReturnCodes::EVENT_OK;
}