Пример #1
0
bool OctreeScene::Intersect(const Ray& ray, Intersection& intersection, void* additional_data) const
{
	float min_t = ray.EffectRange().Max;
	const OctreeNode* current = m_GeometryTree.Root();
	std::priority_queue<Octree::QueueElement> queue;
	Intersection hit;

	if (current->Extents().Intersect(ray, hit, additional_data))
		queue.push(Octree::QueueElement(hit.Distance(), current));

	while (!queue.empty() && queue.top().t < min_t)
	{
		current = queue.top().node;
		queue.pop();

		if (current->IsLeaf())
		{
			for (auto iter = current->Triangles().begin(); iter != current->Triangles().end(); ++iter)
			{
				if ((*iter)->Intersect(ray, hit, additional_data) && hit.Distance() < min_t)
				{
					min_t = hit.Distance();
					intersection = hit;
				}
			}
		}
		else
		{
			for (unsigned i = 0; i < 8; ++i)
				if (current->ChildAt(i) != nullptr)
					if (current->ChildAt(i)->Extents().Intersect(ray, hit, additional_data))
						queue.push(Octree::QueueElement(hit.Distance(), current->ChildAt(i)));
		}
	}

	if (min_t != ray.EffectRange().Max)
		return true;
	else
		return false;
}
Пример #2
0
bool Plane::Intersect(const Ray& ray, Intersection& intersection, void* additional_data) const
{
	float dir_norm = ray.Direction().DotProduct(m_Orientation);

	if (abs(dir_norm) < std::numeric_limits<float>::epsilon())
		return false;

	float t = (m_Center - ray.Origin()).DotProduct(m_Orientation) / dir_norm;

	Range<float> range = ray.EffectRange();

	if (Math::Contain(t, range))
	{
		intersection.SetDistance(t);
		intersection.SetIntersectObject((IIntersectTarget*)this);
		intersection.SetTestObject(&ray);

		return true;
	}

	return false;
}
Пример #3
0
bool AABB::Intersect(const Ray& ray, Intersection& intersection, void* additional_data) const
{
	++Profiler::numRayVolumeTestsPerFrame;

	Vector3 origin = ray.Origin();
	Vector3 inversed_dir = ray.InvDirection();

	Range<float> t, t_y, t_z;

	if (inversed_dir.X() >= 0)
	{
		t.Max = (m_MaxExtent.X() - origin.X()) * inversed_dir.X();
		t.Min = (m_MinExtent.X() - origin.X()) * inversed_dir.X();
	}
	else
	{
		t.Min = (m_MaxExtent.X() - origin.X()) * inversed_dir.X();
		t.Max = (m_MinExtent.X() - origin.X()) * inversed_dir.X();
	}

	if (inversed_dir.Y() >= 0)
	{
		t_y.Max = (m_MaxExtent.Y() - origin.Y()) * inversed_dir.Y();
		t_y.Min = (m_MinExtent.Y() - origin.Y()) * inversed_dir.Y();
	}
	else
	{
		t_y.Min = (m_MaxExtent.Y() - origin.Y()) * inversed_dir.Y();
		t_y.Max = (m_MinExtent.Y() - origin.Y()) * inversed_dir.Y();
	}

	if (t.Min > t_y.Max || t_y.Min > t.Max)
		return false;

	if (t.Min < t_y.Min)
		t.Min = t_y.Min;
	if (t.Max > t_y.Max)
		t.Max = t_y.Max;

	if (inversed_dir.Z() >= 0)
	{
		t_z.Max = (m_MaxExtent.Z() - origin.Z()) * inversed_dir.Z();
		t_z.Min = (m_MinExtent.Z() - origin.Z()) * inversed_dir.Z();
	}
	else
	{
		t_z.Min = (m_MaxExtent.Z() - origin.Z()) * inversed_dir.Z();
		t_z.Max = (m_MinExtent.Z() - origin.Z()) * inversed_dir.Z();
	}

	if (t.Min > t_z.Max || t_z.Min > t.Max)
		return false;

	if (t.Min < t_z.Min)
		t.Min = t_z.Min;
	if (t.Max > t_z.Max)
		t.Max = t_z.Max;

	Range<float> range = ray.EffectRange();

	if (Math::Contain(t.Min, range))
		intersection.SetDistance(t.Min);
	else if (Math::Contain(t.Max, range))
		intersection.SetDistance(0.f);
	else if (range.Min > t.Min && range.Max < t.Max)
		intersection.SetDistance(0.f);
	else
		return false;

	intersection.SetIntersectObject((IIntersectTarget*)this);
	intersection.SetTestObject(&ray);

	return true;
}