void ReferenceVariableVerletDynamics::update(const OpenMM::System& system, vector<Vec3>& atomCoordinates,
                                          vector<Vec3>& velocities,
                                          vector<Vec3>& forces, vector<double>& masses, double maxStepSize, double tolerance) {
    // first-time-through initialization

    int numberOfAtoms = system.getNumParticles();
    if (getTimeStep() == 0) {
       // invert masses

       for (int ii = 0; ii < numberOfAtoms; ii++) {
          if (masses[ii] == 0.0)
              inverseMasses[ii] = 0.0;
          else
              inverseMasses[ii] = 1.0/masses[ii];
       }
    }

    double error = 0.0;
    for (int i = 0; i < numberOfAtoms; ++i) {
        for (int j = 0; j < 3; ++j) {
            double xerror = inverseMasses[i]*forces[i][j];
            error += xerror*xerror;
        }
    }
    error = sqrt(error/(numberOfAtoms*3));
    double newStepSize = sqrt(getAccuracy()/error);
    if (getDeltaT() > 0.0f)
        newStepSize = std::min(newStepSize, getDeltaT()*2.0f); // For safety, limit how quickly dt can increase.
    if (newStepSize > getDeltaT() && newStepSize < 1.2f*getDeltaT())
        newStepSize = getDeltaT(); // Keeping dt constant between steps improves the behavior of the integrator.
    if (newStepSize > maxStepSize)
        newStepSize = maxStepSize;
    double vstep = 0.5f*(newStepSize+getDeltaT()); // The time interval by which to advance the velocities
    setDeltaT(newStepSize);
    for (int i = 0; i < numberOfAtoms; ++i) {
        if (masses[i] != 0.0)
            for (int j = 0; j < 3; ++j) {
                double vPrime = velocities[i][j] + inverseMasses[i]*forces[i][j]*vstep;
                xPrime[i][j] = atomCoordinates[i][j] + vPrime*getDeltaT();
            }
    }
    ReferenceConstraintAlgorithm* referenceConstraintAlgorithm = getReferenceConstraintAlgorithm();
    if (referenceConstraintAlgorithm)
        referenceConstraintAlgorithm->apply(atomCoordinates, xPrime, inverseMasses, tolerance);

   // Update the positions and velocities.

   double velocityScale = 1.0/getDeltaT();
   for (int i = 0; i < numberOfAtoms; ++i) {
       if (masses[i] != 0.0)
           for (int j = 0; j < 3; ++j) {
               velocities[i][j] = velocityScale*(xPrime[i][j] - atomCoordinates[i][j]);
               atomCoordinates[i][j] = xPrime[i][j];
           }
   }
   ReferenceVirtualSites::computePositions(system, atomCoordinates);
   incrementTimeStep();
}
Пример #2
0
void ReferenceVerletDynamics::update(const OpenMM::System& system, vector<RealVec>& atomCoordinates,
                                          vector<RealVec>& velocities,
                                          vector<RealVec>& forces, vector<RealOpenMM>& masses, RealOpenMM tolerance) {

   // ---------------------------------------------------------------------------------------

   static const char* methodName      = "\nReferenceVerletDynamics::update";

   static const RealOpenMM zero       =  0.0;
   static const RealOpenMM one        =  1.0;

   // ---------------------------------------------------------------------------------------

   // first-time-through initialization

   int numberOfAtoms = system.getNumParticles();
   if( getTimeStep() == 0 ){
      // invert masses

      for( int ii = 0; ii < numberOfAtoms; ii++ ){
         if (masses[ii] == zero)
             inverseMasses[ii] = zero;
         else
             inverseMasses[ii] = one/masses[ii];
      }
   }
   
   // Perform the integration.
   
   for (int i = 0; i < numberOfAtoms; ++i) {
       if (masses[i] != zero)
           for (int j = 0; j < 3; ++j) {
               velocities[i][j] += inverseMasses[i]*forces[i][j]*getDeltaT();
               xPrime[i][j] = atomCoordinates[i][j] + velocities[i][j]*getDeltaT();
           }
   }
   ReferenceConstraintAlgorithm* referenceConstraintAlgorithm = getReferenceConstraintAlgorithm();
   if (referenceConstraintAlgorithm)
      referenceConstraintAlgorithm->apply(atomCoordinates, xPrime, inverseMasses, tolerance);
   
   // Update the positions and velocities.
   
   RealOpenMM velocityScale = static_cast<RealOpenMM>( 1.0/getDeltaT() );
   for (int i = 0; i < numberOfAtoms; ++i) {
       if (masses[i] != zero)
           for (int j = 0; j < 3; ++j) {
               velocities[i][j] = velocityScale*(xPrime[i][j] - atomCoordinates[i][j]);
               atomCoordinates[i][j] = xPrime[i][j];
           }
   }

   ReferenceVirtualSites::computePositions(system, atomCoordinates);
   incrementTimeStep();
}
void ReferenceBrownianDynamics::update(const OpenMM::System& system, vector<RealVec>& atomCoordinates,
                                          vector<RealVec>& velocities,
                                          vector<RealVec>& forces, vector<RealOpenMM>& masses, RealOpenMM tolerance) {

   // ---------------------------------------------------------------------------------------

   static const char* methodName      = "\nReferenceBrownianDynamics::update";

   static const RealOpenMM zero       =  0.0;
   static const RealOpenMM one        =  1.0;

   // ---------------------------------------------------------------------------------------

   // first-time-through initialization

   int numberOfAtoms = system.getNumParticles();
   if( getTimeStep() == 0 ){
      // invert masses

      for( int ii = 0; ii < numberOfAtoms; ii++ ){
         if (masses[ii] == zero)
             inverseMasses[ii] = zero;
         else
             inverseMasses[ii] = one/masses[ii];
      }
   }
   
   // Perform the integration.
   
   const RealOpenMM noiseAmplitude = static_cast<RealOpenMM>( sqrt(2.0*BOLTZ*getTemperature()*getDeltaT()/getFriction()) );
   const RealOpenMM forceScale = getDeltaT()/getFriction();
   for (int i = 0; i < numberOfAtoms; ++i) {
       if (masses[i] != zero)
           for (int j = 0; j < 3; ++j) {
               xPrime[i][j] = atomCoordinates[i][j] + forceScale*inverseMasses[i]*forces[i][j] + noiseAmplitude*SQRT(inverseMasses[i])*SimTKOpenMMUtilities::getNormallyDistributedRandomNumber();
           }
   }
   ReferenceConstraintAlgorithm* referenceConstraintAlgorithm = getReferenceConstraintAlgorithm();
   if (referenceConstraintAlgorithm)
      referenceConstraintAlgorithm->apply(atomCoordinates, xPrime, inverseMasses, tolerance);
   
   // Update the positions and velocities.
   
   RealOpenMM velocityScale = static_cast<RealOpenMM>( 1.0/getDeltaT() );
   for (int i = 0; i < numberOfAtoms; ++i) {
       if (masses[i] != zero)
           for (int j = 0; j < 3; ++j) {
               velocities[i][j] = velocityScale*(xPrime[i][j] - atomCoordinates[i][j]);
               atomCoordinates[i][j] = xPrime[i][j];
           }
   }
   ReferenceVirtualSites::computePositions(system, atomCoordinates);
   incrementTimeStep();
}
void ReferenceStochasticDynamics::update(const OpenMM::System& system, vector<RealVec>& atomCoordinates,
                                          vector<RealVec>& velocities, vector<RealVec>& forces, vector<RealOpenMM>& masses, RealOpenMM tolerance) {

   // ---------------------------------------------------------------------------------------

   static const char* methodName      = "\nReferenceStochasticDynamics::update";

   static const RealOpenMM zero       =  0.0;
   static const RealOpenMM one        =  1.0;

   // ---------------------------------------------------------------------------------------

   // first-time-through initialization

   int numberOfAtoms = system.getNumParticles();
   if( getTimeStep() == 0 ){
      // invert masses

      for( int ii = 0; ii < numberOfAtoms; ii++ ){
         if (masses[ii] == zero)
             inverseMasses[ii] = zero;
         else
             inverseMasses[ii] = one/masses[ii];
      }
   }

   // 1st update

   updatePart1( numberOfAtoms, atomCoordinates, velocities, forces, inverseMasses, xPrime );

   // 2nd update

   updatePart2( numberOfAtoms, atomCoordinates, velocities, forces, inverseMasses, xPrime );

   ReferenceConstraintAlgorithm* referenceConstraintAlgorithm = getReferenceConstraintAlgorithm();
   if (referenceConstraintAlgorithm)
      referenceConstraintAlgorithm->apply(atomCoordinates, xPrime, inverseMasses, tolerance);

   // copy xPrime -> atomCoordinates

   RealOpenMM invStepSize = 1.0/getDeltaT();
   for (int i = 0; i < numberOfAtoms; ++i)
       if (masses[i] != zero)
           for (int j = 0; j < 3; ++j) {
               velocities[i][j] = invStepSize*(xPrime[i][j]-atomCoordinates[i][j]);
               atomCoordinates[i][j] = xPrime[i][j];
           }

   ReferenceVirtualSites::computePositions(system, atomCoordinates);
   incrementTimeStep();
}