Пример #1
0
void FitterUtils::plot_fit_result(string plotsfile, RooAbsPdf &totPdf, RooDataSet dataGenTot)
{

   //**************Prepare TFile to save the plots

   TFile f2(plotsfile.c_str(), "UPDATE");
   //**************Plot the results of the fit

   RooArgSet *var_set = totPdf.getObservables(dataGenTot);
   TIterator *iter = var_set->createIterator();
   RooRealVar *var;

   std::vector<RooPlot*> plots;
   RooPlot* frame;

   while((var = (RooRealVar*) iter->Next()))
   {

      frame = var->frame();
      dataGenTot.plotOn(frame);
      totPdf.plotOn(frame, Components("histPdfPartReco"), LineColor(kBlue));
      totPdf.plotOn(frame, Components("histPdfSignalZeroGamma"), LineColor(kGreen));
      totPdf.plotOn(frame, Components("histPdfSignalOneGamma"), LineColor(kMagenta));
      totPdf.plotOn(frame, Components("histPdfSignalTwoGamma"), LineColor(kOrange));
      totPdf.plotOn(frame, Components("histPdfJpsiLeak"), LineColor(14));
      totPdf.plotOn(frame, Components("combPDF"), LineColor(kBlack));
      totPdf.plotOn(frame, LineColor(kRed));

      plots.push_back(frame);

   }  

   if (!(plots.size())) return;

   TCanvas cFit("cFit", "cFit", 600, 800);
   cFit.Divide(1,2);
   cFit.cd(1); plots[0]->Draw();
   if (plots.size()>1){ 
      cFit.cd(2); plots[1]->Draw();
   }

   cFit.Write();
   f2.Close();


}
void FitterUtilsSimultaneousExpOfPolyTimesX::plot_kemu_fit_result(string plotsfile, RooAbsPdf &totKemuPdf, RooDataSet const& dataGenKemu)
{

   //**************Prepare TFile to save the plots

   TFile f2(plotsfile.c_str(), "UPDATE");
   //**************Plot the results of the fit

   RooArgSet *var_set = totKemuPdf.getObservables(dataGenKemu);
   TIterator *iter = var_set->createIterator();
   RooRealVar *var;

   std::vector<RooPlot*> plots;
   RooPlot* frame;

   while((var = (RooRealVar*) iter->Next()))
   {
      frame = var->frame();
      dataGenKemu.plotOn(frame);
      totKemuPdf.plotOn(frame, LineColor(kRed));

      plots.push_back(frame);
   }

   if (!(plots.size())) return;

   TCanvas cFit("cKemuFit", "cKemuFit", 600, 800);
   cFit.Divide(1,2);
   cFit.cd(1); plots[0]->Draw();
   if (plots.size()>1){ 
      cFit.cd(2); plots[1]->Draw();
   }

   cFit.Write();
   f2.Close();
}
Пример #3
0
// internal routine to run the inverter
HypoTestInverterResult *
RooStats::HypoTestInvTool::RunInverter(RooWorkspace * w,
                                       const char * modelSBName, const char * modelBName, 
                                       const char * dataName, int type,  int testStatType, 
                                       bool useCLs, int npoints, double poimin, double poimax, 
                                       int ntoys,
                                       bool useNumberCounting,
                                       const char * nuisPriorName ){

   std::cout << "Running HypoTestInverter on the workspace " << w->GetName() << std::endl;
  
   w->Print();
  
  
   RooAbsData * data = w->data(dataName); 
   if (!data) { 
      Error("StandardHypoTestDemo","Not existing data %s",dataName);
      return 0;
   }
   else 
      std::cout << "Using data set " << dataName << std::endl;
  
   if (mUseVectorStore) { 
      RooAbsData::setDefaultStorageType(RooAbsData::Vector);
      data->convertToVectorStore() ;
   }
  
  
   // get models from WS
   // get the modelConfig out of the file
   ModelConfig* bModel = (ModelConfig*) w->obj(modelBName);
   ModelConfig* sbModel = (ModelConfig*) w->obj(modelSBName);
  
   if (!sbModel) {
      Error("StandardHypoTestDemo","Not existing ModelConfig %s",modelSBName);
      return 0;
   }
   // check the model 
   if (!sbModel->GetPdf()) { 
      Error("StandardHypoTestDemo","Model %s has no pdf ",modelSBName);
      return 0;
   }
   if (!sbModel->GetParametersOfInterest()) {
      Error("StandardHypoTestDemo","Model %s has no poi ",modelSBName);
      return 0;
   }
   if (!sbModel->GetObservables()) {
      Error("StandardHypoTestInvDemo","Model %s has no observables ",modelSBName);
      return 0;
   }
   if (!sbModel->GetSnapshot() ) { 
      Info("StandardHypoTestInvDemo","Model %s has no snapshot  - make one using model poi",modelSBName);
      sbModel->SetSnapshot( *sbModel->GetParametersOfInterest() );
   }
  
   // case of no systematics
   // remove nuisance parameters from model
   if (noSystematics) { 
      const RooArgSet * nuisPar = sbModel->GetNuisanceParameters();
      if (nuisPar && nuisPar->getSize() > 0) { 
         std::cout << "StandardHypoTestInvDemo" << "  -  Switch off all systematics by setting them constant to their initial values" << std::endl;
         RooStats::SetAllConstant(*nuisPar);
      }
      if (bModel) { 
         const RooArgSet * bnuisPar = bModel->GetNuisanceParameters();
         if (bnuisPar) 
            RooStats::SetAllConstant(*bnuisPar);
      }
   }
  
   if (!bModel || bModel == sbModel) {
      Info("StandardHypoTestInvDemo","The background model %s does not exist",modelBName);
      Info("StandardHypoTestInvDemo","Copy it from ModelConfig %s and set POI to zero",modelSBName);
      bModel = (ModelConfig*) sbModel->Clone();
      bModel->SetName(TString(modelSBName)+TString("_with_poi_0"));      
      RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
      if (!var) return 0;
      double oldval = var->getVal();
      var->setVal(0);
      bModel->SetSnapshot( RooArgSet(*var)  );
      var->setVal(oldval);
   }
   else { 
      if (!bModel->GetSnapshot() ) { 
         Info("StandardHypoTestInvDemo","Model %s has no snapshot  - make one using model poi and 0 values ",modelBName);
         RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
         if (var) { 
            double oldval = var->getVal();
            var->setVal(0);
            bModel->SetSnapshot( RooArgSet(*var)  );
            var->setVal(oldval);
         }
         else { 
            Error("StandardHypoTestInvDemo","Model %s has no valid poi",modelBName);
            return 0;
         }         
      }
   }

   // check model  has global observables when there are nuisance pdf
   // for the hybrid case the globobs are not needed
   if (type != 1 ) { 
      bool hasNuisParam = (sbModel->GetNuisanceParameters() && sbModel->GetNuisanceParameters()->getSize() > 0);
      bool hasGlobalObs = (sbModel->GetGlobalObservables() && sbModel->GetGlobalObservables()->getSize() > 0);
      if (hasNuisParam && !hasGlobalObs ) {  
         // try to see if model has nuisance parameters first 
         RooAbsPdf * constrPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisanceConstraintPdf_sbmodel");
         if (constrPdf) { 
            Warning("StandardHypoTestInvDemo","Model %s has nuisance parameters but no global observables associated",sbModel->GetName());
            Warning("StandardHypoTestInvDemo","\tThe effect of the nuisance parameters will not be treated correctly ");
         }
      }
   }


  
   // run first a data fit 
  
   const RooArgSet * poiSet = sbModel->GetParametersOfInterest();
   RooRealVar *poi = (RooRealVar*)poiSet->first();
  
   std::cout << "StandardHypoTestInvDemo : POI initial value:   " << poi->GetName() << " = " << poi->getVal()   << std::endl;  
  
   // fit the data first (need to use constraint )
   TStopwatch tw; 

   bool doFit = initialFit;
   if (testStatType == 0 && initialFit == -1) doFit = false;  // case of LEP test statistic
   if (type == 3  && initialFit == -1) doFit = false;         // case of Asymptoticcalculator with nominal Asimov
   double poihat = 0;

   if (minimizerType.size()==0) minimizerType = ROOT::Math::MinimizerOptions::DefaultMinimizerType();
   else 
      ROOT::Math::MinimizerOptions::SetDefaultMinimizer(minimizerType.c_str());
    
   Info("StandardHypoTestInvDemo","Using %s as minimizer for computing the test statistic",
        ROOT::Math::MinimizerOptions::DefaultMinimizerType().c_str() );
   
   if (doFit)  { 

      // do the fit : By doing a fit the POI snapshot (for S+B)  is set to the fit value
      // and the nuisance parameters nominal values will be set to the fit value. 
      // This is relevant when using LEP test statistics

      Info( "StandardHypoTestInvDemo"," Doing a first fit to the observed data ");
      RooArgSet constrainParams;
      if (sbModel->GetNuisanceParameters() ) constrainParams.add(*sbModel->GetNuisanceParameters());
      RooStats::RemoveConstantParameters(&constrainParams);
      tw.Start(); 
      RooFitResult * fitres = sbModel->GetPdf()->fitTo(*data,InitialHesse(false), Hesse(false),
                                                       Minimizer(minimizerType.c_str(),"Migrad"), Strategy(0), PrintLevel(mPrintLevel), Constrain(constrainParams), Save(true) );
      if (fitres->status() != 0) { 
         Warning("StandardHypoTestInvDemo","Fit to the model failed - try with strategy 1 and perform first an Hesse computation");
         fitres = sbModel->GetPdf()->fitTo(*data,InitialHesse(true), Hesse(false),Minimizer(minimizerType.c_str(),"Migrad"), Strategy(1), PrintLevel(mPrintLevel+1), Constrain(constrainParams), Save(true) );
      }
      if (fitres->status() != 0) 
         Warning("StandardHypoTestInvDemo"," Fit still failed - continue anyway.....");
  
  
      poihat  = poi->getVal();
      std::cout << "StandardHypoTestInvDemo - Best Fit value : " << poi->GetName() << " = "  
                << poihat << " +/- " << poi->getError() << std::endl;
      std::cout << "Time for fitting : "; tw.Print(); 
  
      //save best fit value in the poi snapshot 
      sbModel->SetSnapshot(*sbModel->GetParametersOfInterest());
      std::cout << "StandardHypoTestInvo: snapshot of S+B Model " << sbModel->GetName() 
                << " is set to the best fit value" << std::endl;
  
   }

   // print a message in case of LEP test statistics because it affects result by doing or not doing a fit 
   if (testStatType == 0) {
      if (!doFit) 
         Info("StandardHypoTestInvDemo","Using LEP test statistic - an initial fit is not done and the TS will use the nuisances at the model value");
      else 
         Info("StandardHypoTestInvDemo","Using LEP test statistic - an initial fit has been done and the TS will use the nuisances at the best fit value");
   }


   // build test statistics and hypotest calculators for running the inverter 
  
   SimpleLikelihoodRatioTestStat slrts(*sbModel->GetPdf(),*bModel->GetPdf());

   // null parameters must includes snapshot of poi plus the nuisance values 
   RooArgSet nullParams(*sbModel->GetSnapshot());
   if (sbModel->GetNuisanceParameters()) nullParams.add(*sbModel->GetNuisanceParameters());
   if (sbModel->GetSnapshot()) slrts.SetNullParameters(nullParams);
   RooArgSet altParams(*bModel->GetSnapshot());
   if (bModel->GetNuisanceParameters()) altParams.add(*bModel->GetNuisanceParameters());
   if (bModel->GetSnapshot()) slrts.SetAltParameters(altParams);
  
   // ratio of profile likelihood - need to pass snapshot for the alt
   RatioOfProfiledLikelihoodsTestStat 
      ropl(*sbModel->GetPdf(), *bModel->GetPdf(), bModel->GetSnapshot());
   ropl.SetSubtractMLE(false);
   if (testStatType == 11) ropl.SetSubtractMLE(true);
   ropl.SetPrintLevel(mPrintLevel);
   ropl.SetMinimizer(minimizerType.c_str());
  
   ProfileLikelihoodTestStat profll(*sbModel->GetPdf());
   if (testStatType == 3) profll.SetOneSided(true);
   if (testStatType == 4) profll.SetSigned(true);
   profll.SetMinimizer(minimizerType.c_str());
   profll.SetPrintLevel(mPrintLevel);

   profll.SetReuseNLL(mOptimize);
   slrts.SetReuseNLL(mOptimize);
   ropl.SetReuseNLL(mOptimize);

   if (mOptimize) { 
      profll.SetStrategy(0);
      ropl.SetStrategy(0);
      ROOT::Math::MinimizerOptions::SetDefaultStrategy(0);
   }
  
   if (mMaxPoi > 0) poi->setMax(mMaxPoi);  // increase limit
  
   MaxLikelihoodEstimateTestStat maxll(*sbModel->GetPdf(),*poi); 
   NumEventsTestStat nevtts;

   AsymptoticCalculator::SetPrintLevel(mPrintLevel);
  
   // create the HypoTest calculator class 
   HypoTestCalculatorGeneric *  hc = 0;
   if (type == 0) hc = new FrequentistCalculator(*data, *bModel, *sbModel);
   else if (type == 1) hc = new HybridCalculator(*data, *bModel, *sbModel);
   // else if (type == 2 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, false, mAsimovBins);
   // else if (type == 3 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, true, mAsimovBins);  // for using Asimov data generated with nominal values 
   else if (type == 2 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, false );
   else if (type == 3 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, true );  // for using Asimov data generated with nominal values 
   else {
      Error("StandardHypoTestInvDemo","Invalid - calculator type = %d supported values are only :\n\t\t\t 0 (Frequentist) , 1 (Hybrid) , 2 (Asymptotic) ",type);
      return 0;
   }
  
   // set the test statistic 
   TestStatistic * testStat = 0;
   if (testStatType == 0) testStat = &slrts;
   if (testStatType == 1 || testStatType == 11) testStat = &ropl;
   if (testStatType == 2 || testStatType == 3 || testStatType == 4) testStat = &profll;
   if (testStatType == 5) testStat = &maxll;
   if (testStatType == 6) testStat = &nevtts;

   if (testStat == 0) { 
      Error("StandardHypoTestInvDemo","Invalid - test statistic type = %d supported values are only :\n\t\t\t 0 (SLR) , 1 (Tevatron) , 2 (PLR), 3 (PLR1), 4(MLE)",testStatType);
      return 0;
   }
  
  
   ToyMCSampler *toymcs = (ToyMCSampler*)hc->GetTestStatSampler();
   if (toymcs && (type == 0 || type == 1) ) { 
      // look if pdf is number counting or extended
      if (sbModel->GetPdf()->canBeExtended() ) { 
         if (useNumberCounting)   Warning("StandardHypoTestInvDemo","Pdf is extended: but number counting flag is set: ignore it ");
      }
      else { 
         // for not extended pdf
         if (!useNumberCounting  )  { 
            int nEvents = data->numEntries();
            Info("StandardHypoTestInvDemo","Pdf is not extended: number of events to generate taken  from observed data set is %d",nEvents);
            toymcs->SetNEventsPerToy(nEvents);
         }
         else {
            Info("StandardHypoTestInvDemo","using a number counting pdf");
            toymcs->SetNEventsPerToy(1);
         }
      }

      toymcs->SetTestStatistic(testStat);
    
      if (data->isWeighted() && !mGenerateBinned) { 
         Info("StandardHypoTestInvDemo","Data set is weighted, nentries = %d and sum of weights = %8.1f but toy generation is unbinned - it would be faster to set mGenerateBinned to true\n",data->numEntries(), data->sumEntries());
      }
      toymcs->SetGenerateBinned(mGenerateBinned);
  
      toymcs->SetUseMultiGen(mOptimize);
    
      if (mGenerateBinned &&  sbModel->GetObservables()->getSize() > 2) { 
         Warning("StandardHypoTestInvDemo","generate binned is activated but the number of ovservable is %d. Too much memory could be needed for allocating all the bins",sbModel->GetObservables()->getSize() );
      }

      // set the random seed if needed
      if (mRandomSeed >= 0) RooRandom::randomGenerator()->SetSeed(mRandomSeed); 
    
   }
  
   // specify if need to re-use same toys
   if (reuseAltToys) {
      hc->UseSameAltToys();
   }
  
   if (type == 1) { 
      HybridCalculator *hhc = dynamic_cast<HybridCalculator*> (hc);
      assert(hhc);
    
      hhc->SetToys(ntoys,ntoys/mNToysRatio); // can use less ntoys for b hypothesis 
    
      // remove global observables from ModelConfig (this is probably not needed anymore in 5.32)
      bModel->SetGlobalObservables(RooArgSet() );
      sbModel->SetGlobalObservables(RooArgSet() );
    
    
      // check for nuisance prior pdf in case of nuisance parameters 
      if (bModel->GetNuisanceParameters() || sbModel->GetNuisanceParameters() ) {

         // fix for using multigen (does not work in this case)
         toymcs->SetUseMultiGen(false);
         ToyMCSampler::SetAlwaysUseMultiGen(false);

         RooAbsPdf * nuisPdf = 0; 
         if (nuisPriorName) nuisPdf = w->pdf(nuisPriorName);
         // use prior defined first in bModel (then in SbModel)
         if (!nuisPdf)  { 
            Info("StandardHypoTestInvDemo","No nuisance pdf given for the HybridCalculator - try to deduce  pdf from the model");
            if (bModel->GetPdf() && bModel->GetObservables() ) 
               nuisPdf = RooStats::MakeNuisancePdf(*bModel,"nuisancePdf_bmodel");
            else 
               nuisPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisancePdf_sbmodel");
         }   
         if (!nuisPdf ) {
            if (bModel->GetPriorPdf())  { 
               nuisPdf = bModel->GetPriorPdf();
               Info("StandardHypoTestInvDemo","No nuisance pdf given - try to use %s that is defined as a prior pdf in the B model",nuisPdf->GetName());            
            }
            else { 
               Error("StandardHypoTestInvDemo","Cannnot run Hybrid calculator because no prior on the nuisance parameter is specified or can be derived");
               return 0;
            }
         }
         assert(nuisPdf);
         Info("StandardHypoTestInvDemo","Using as nuisance Pdf ... " );
         nuisPdf->Print();
      
         const RooArgSet * nuisParams = (bModel->GetNuisanceParameters() ) ? bModel->GetNuisanceParameters() : sbModel->GetNuisanceParameters();
         RooArgSet * np = nuisPdf->getObservables(*nuisParams);
         if (np->getSize() == 0) { 
            Warning("StandardHypoTestInvDemo","Prior nuisance does not depend on nuisance parameters. They will be smeared in their full range");
         }
         delete np;
      
         hhc->ForcePriorNuisanceAlt(*nuisPdf);
         hhc->ForcePriorNuisanceNull(*nuisPdf);
      
      
      }
   } 
   else if (type == 2 || type == 3) { 
      if (testStatType == 3) ((AsymptoticCalculator*) hc)->SetOneSided(true);  
      if (testStatType != 2 && testStatType != 3)  
         Warning("StandardHypoTestInvDemo","Only the PL test statistic can be used with AsymptoticCalculator - use by default a two-sided PL");
   }
   else if (type == 0 || type == 1) 
      ((FrequentistCalculator*) hc)->SetToys(ntoys,ntoys/mNToysRatio); 

  
   // Get the result
   RooMsgService::instance().getStream(1).removeTopic(RooFit::NumIntegration);
  
  
  
   HypoTestInverter calc(*hc);
   calc.SetConfidenceLevel(0.95);
  
  
   calc.UseCLs(useCLs);
   calc.SetVerbose(true);
  
   // can speed up using proof-lite
   if (mUseProof && mNWorkers > 1) { 
      ProofConfig pc(*w, mNWorkers, "", kFALSE);
      toymcs->SetProofConfig(&pc);    // enable proof
   }
  
  
   if (npoints > 0) {
      if (poimin > poimax) { 
         // if no min/max given scan between MLE and +4 sigma 
         poimin = int(poihat);
         poimax = int(poihat +  4 * poi->getError());
      }
      std::cout << "Doing a fixed scan  in interval : " << poimin << " , " << poimax << std::endl;
      calc.SetFixedScan(npoints,poimin,poimax);
   }
   else { 
      //poi->setMax(10*int( (poihat+ 10 *poi->getError() )/10 ) );
      std::cout << "Doing an  automatic scan  in interval : " << poi->getMin() << " , " << poi->getMax() << std::endl;
   }
  
   tw.Start();
   HypoTestInverterResult * r = calc.GetInterval();
   std::cout << "Time to perform limit scan \n";
   tw.Print();
  
   if (mRebuild) {
      calc.SetCloseProof(1);
      tw.Start();
      SamplingDistribution * limDist = calc.GetUpperLimitDistribution(true,mNToyToRebuild);
      std::cout << "Time to rebuild distributions " << std::endl;
      tw.Print();
    
      if (limDist) { 
         std::cout << "expected up limit " << limDist->InverseCDF(0.5) << " +/- " 
                   << limDist->InverseCDF(0.16) << "  " 
                   << limDist->InverseCDF(0.84) << "\n"; 
      
         //update r to a new updated result object containing the rebuilt expected p-values distributions
         // (it will not recompute the expected limit)
         if (r) delete r;  // need to delete previous object since GetInterval will return a cloned copy
         r = calc.GetInterval();
      
      }
      else 
         std::cout << "ERROR : failed to re-build distributions " << std::endl; 
   }
  
   return r;
}
Пример #4
0
//put very small data entries in a binned dataset to avoid unphysical pdfs, specifically for H->ZZ->4l
RooDataSet* makeData(RooDataSet* orig, RooSimultaneous* simPdf, const RooArgSet* observables, RooRealVar* firstPOI, double mass, double& mu_min)
{

  double max_soverb = 0;

  mu_min = -10e9;

  map<string, RooDataSet*> data_map;
  firstPOI->setVal(0);
  RooCategory* cat = (RooCategory*)&simPdf->indexCat();
  TList* datalist = orig->split(*(RooAbsCategory*)cat, true);
  TIterator* dataItr = datalist->MakeIterator();
  RooAbsData* ds;
  RooRealVar* weightVar = new RooRealVar("weightVar","weightVar",1);
  while ((ds = (RooAbsData*)dataItr->Next()))
  {
    string typeName(ds->GetName());
    cat->setLabel(typeName.c_str());
    RooAbsPdf* pdf = simPdf->getPdf(typeName.c_str());
    cout << "pdf: " << pdf << endl;
    RooArgSet* obs = pdf->getObservables(observables);
    cout << "obs: " << obs << endl;

    RooArgSet obsAndWeight(*obs, *weightVar);
    obsAndWeight.add(*cat);
    stringstream datasetName;
    datasetName << "newData_" << typeName;
    RooDataSet* thisData = new RooDataSet(datasetName.str().c_str(),datasetName.str().c_str(), obsAndWeight, WeightVar(*weightVar));

    RooRealVar* firstObs = (RooRealVar*)obs->first();
    //int ibin = 0;
    int nrEntries = ds->numEntries();
    for (int ib=0;ib<nrEntries;ib++)
    {
      const RooArgSet* event = ds->get(ib);
      const RooRealVar* thisObs = (RooRealVar*)event->find(firstObs->GetName());
      firstObs->setVal(thisObs->getVal());

      firstPOI->setVal(0);
      double b = pdf->expectedEvents(*firstObs)*pdf->getVal(obs);
      firstPOI->setVal(1);
      double s = pdf->expectedEvents(*firstObs)*pdf->getVal(obs) - b;

      if (s > 0)
      {
	mu_min = max(mu_min, -b/s);
	double soverb = s/b;
	if (soverb > max_soverb)
	{
	  max_soverb = soverb;
	  cout << "Found new max s/b: " << soverb << " in pdf " << pdf->GetName() << " at m = " << thisObs->getVal() << endl;
	}
      }

      if (b == 0 && s != 0)
      {
	cout << "Expecting non-zero signal and zero bg at m=" << firstObs->getVal() << " in pdf " << pdf->GetName() << endl;
      }
      if (s+b <= 0) 
      {
	cout << "expecting zero" << endl;
	continue;
      }


      double weight = ds->weight();
      if ((typeName.find("ATLAS_H_4mu") != string::npos || 
	   typeName.find("ATLAS_H_4e") != string::npos ||
	   typeName.find("ATLAS_H_2mu2e") != string::npos ||
	   typeName.find("ATLAS_H_2e2mu") != string::npos) && fabs(firstObs->getVal() - mass) < 10 && weight == 0)
      {
	cout << "adding event: " << firstObs->getVal() << endl;
	thisData->add(*event, pow(10., -9.));
      }
      else
      {
	//weight = max(pow(10.0, -9), weight);
	thisData->add(*event, weight);
      }
    }



    data_map[string(ds->GetName())] = (RooDataSet*)thisData;
  }

  
  RooDataSet* newData = new RooDataSet("newData","newData",RooArgSet(*observables, *weightVar), 
				       Index(*cat), Import(data_map), WeightVar(*weightVar));

  orig->Print();
  newData->Print();
  //newData->tree()->Scan("*");
  return newData;

}
void OneSidedFrequentistUpperLimitWithBands(const char* infile = "",
                                            const char* workspaceName = "combined",
                                            const char* modelConfigName = "ModelConfig",
                                            const char* dataName = "obsData") {



   double confidenceLevel=0.95;
   int nPointsToScan = 20;
   int nToyMC = 200;

   // -------------------------------------------------------
   // First part is just to access a user-defined file
   // or create the standard example file if it doesn't exist
   const char* filename = "";
   if (!strcmp(infile,"")) {
      filename = "results/example_combined_GaussExample_model.root";
      bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
      // if file does not exists generate with histfactory
      if (!fileExist) {
#ifdef _WIN32
         cout << "HistFactory file cannot be generated on Windows - exit" << endl;
         return;
#endif
         // Normally this would be run on the command line
         cout <<"will run standard hist2workspace example"<<endl;
         gROOT->ProcessLine(".! prepareHistFactory .");
         gROOT->ProcessLine(".! hist2workspace config/example.xml");
         cout <<"\n\n---------------------"<<endl;
         cout <<"Done creating example input"<<endl;
         cout <<"---------------------\n\n"<<endl;
      }

   }
   else
      filename = infile;

   // Try to open the file
   TFile *file = TFile::Open(filename);

   // if input file was specified byt not found, quit
   if(!file ){
      cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
      return;
   }


   // -------------------------------------------------------
   // Now get the data and workspace

   // get the workspace out of the file
   RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
   if(!w){
      cout <<"workspace not found" << endl;
      return;
   }

   // get the modelConfig out of the file
   ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);

   // get the modelConfig out of the file
   RooAbsData* data = w->data(dataName);

   // make sure ingredients are found
   if(!data || !mc){
      w->Print();
      cout << "data or ModelConfig was not found" <<endl;
      return;
   }

   // -------------------------------------------------------
   // Now get the POI for convenience
   // you may want to adjust the range of your POI

   RooRealVar* firstPOI = (RooRealVar*) mc->GetParametersOfInterest()->first();
   /*  firstPOI->setMin(0);*/
   /*  firstPOI->setMax(10);*/

   // --------------------------------------------
   // Create and use the FeldmanCousins tool
   // to find and plot the 95% confidence interval
   // on the parameter of interest as specified
   // in the model config
   // REMEMBER, we will change the test statistic
   // so this is NOT a Feldman-Cousins interval
   FeldmanCousins fc(*data,*mc);
   fc.SetConfidenceLevel(confidenceLevel);
   /*  fc.AdditionalNToysFactor(0.25); // degrade/improve sampling that defines confidence belt*/
   /*  fc.UseAdaptiveSampling(true); // speed it up a bit, don't use for expected limits*/
   fc.SetNBins(nPointsToScan); // set how many points per parameter of interest to scan
   fc.CreateConfBelt(true); // save the information in the belt for plotting

   // -------------------------------------------------------
   // Feldman-Cousins is a unified limit by definition
   // but the tool takes care of a few things for us like which values
   // of the nuisance parameters should be used to generate toys.
   // so let's just change the test statistic and realize this is
   // no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction.
   /*  ProfileLikelihoodTestStatModified onesided(*mc->GetPdf());*/
   /*  fc.GetTestStatSampler()->SetTestStatistic(&onesided);*/
   /* ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true); */
   ToyMCSampler*  toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler();
   ProfileLikelihoodTestStat* testStat = dynamic_cast<ProfileLikelihoodTestStat*>(toymcsampler->GetTestStatistic());
   testStat->SetOneSided(true);

   // Since this tool needs to throw toy MC the PDF needs to be
   // extended or the tool needs to know how many entries in a dataset
   // per pseudo experiment.
   // In the 'number counting form' where the entries in the dataset
   // are counts, and not values of discriminating variables, the
   // datasets typically only have one entry and the PDF is not
   // extended.
   if(!mc->GetPdf()->canBeExtended()){
      if(data->numEntries()==1)
         fc.FluctuateNumDataEntries(false);
      else
         cout <<"Not sure what to do about this model" <<endl;
   }

   // We can use PROOF to speed things along in parallel
   // However, the test statistic has to be installed on the workers
   // so either turn off PROOF or include the modified test statistic
   // in your `$ROOTSYS/roofit/roostats/inc` directory,
   // add the additional line to the LinkDef.h file,
   // and recompile root.
   if (useProof) {
      ProofConfig pc(*w, nworkers, "", false);
      toymcsampler->SetProofConfig(&pc); // enable proof
   }

   if(mc->GetGlobalObservables()){
      cout << "will use global observables for unconditional ensemble"<<endl;
      mc->GetGlobalObservables()->Print();
      toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables());
   }


   // Now get the interval
   PointSetInterval* interval = fc.GetInterval();
   ConfidenceBelt* belt = fc.GetConfidenceBelt();

   // print out the interval on the first Parameter of Interest
   cout << "\n95% interval on " <<firstPOI->GetName()<<" is : ["<<
      interval->LowerLimit(*firstPOI) << ", "<<
      interval->UpperLimit(*firstPOI) <<"] "<<endl;

   // get observed UL and value of test statistic evaluated there
   RooArgSet tmpPOI(*firstPOI);
   double observedUL = interval->UpperLimit(*firstPOI);
   firstPOI->setVal(observedUL);
   double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data,tmpPOI);


   // Ask the calculator which points were scanned
   RooDataSet* parameterScan = (RooDataSet*) fc.GetPointsToScan();
   RooArgSet* tmpPoint;

   // make a histogram of parameter vs. threshold
   TH1F* histOfThresholds = new TH1F("histOfThresholds","",
                                       parameterScan->numEntries(),
                                       firstPOI->getMin(),
                                       firstPOI->getMax());
   histOfThresholds->GetXaxis()->SetTitle(firstPOI->GetName());
   histOfThresholds->GetYaxis()->SetTitle("Threshold");

   // loop through the points that were tested and ask confidence belt
   // what the upper/lower thresholds were.
   // For FeldmanCousins, the lower cut off is always 0
   for(Int_t i=0; i<parameterScan->numEntries(); ++i){
      tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
      //cout <<"get threshold"<<endl;
      double arMax = belt->GetAcceptanceRegionMax(*tmpPoint);
      double poiVal = tmpPoint->getRealValue(firstPOI->GetName()) ;
      histOfThresholds->Fill(poiVal,arMax);
   }
   TCanvas* c1 = new TCanvas();
   c1->Divide(2);
   c1->cd(1);
   histOfThresholds->SetMinimum(0);
   histOfThresholds->Draw();
   c1->cd(2);

   // -------------------------------------------------------
   // Now we generate the expected bands and power-constraint

   // First: find parameter point for mu=0, with conditional MLEs for nuisance parameters
   RooAbsReal* nll = mc->GetPdf()->createNLL(*data);
   RooAbsReal* profile = nll->createProfile(*mc->GetParametersOfInterest());
   firstPOI->setVal(0.);
   profile->getVal(); // this will do fit and set nuisance parameters to profiled values
   RooArgSet* poiAndNuisance = new RooArgSet();
   if(mc->GetNuisanceParameters())
      poiAndNuisance->add(*mc->GetNuisanceParameters());
   poiAndNuisance->add(*mc->GetParametersOfInterest());
   w->saveSnapshot("paramsToGenerateData",*poiAndNuisance);
   RooArgSet* paramsToGenerateData = (RooArgSet*) poiAndNuisance->snapshot();
   cout << "\nWill use these parameter points to generate pseudo data for bkg only" << endl;
   paramsToGenerateData->Print("v");


   RooArgSet unconditionalObs;
   unconditionalObs.add(*mc->GetObservables());
   unconditionalObs.add(*mc->GetGlobalObservables()); // comment this out for the original conditional ensemble

   double CLb=0;
   double CLbinclusive=0;

   // Now we generate background only and find distribution of upper limits
   TH1F* histOfUL = new TH1F("histOfUL","",100,0,firstPOI->getMax());
   histOfUL->GetXaxis()->SetTitle("Upper Limit (background only)");
   histOfUL->GetYaxis()->SetTitle("Entries");
   for(int imc=0; imc<nToyMC; ++imc){

      // set parameters back to values for generating pseudo data
      //    cout << "\n get current nuis, set vals, print again" << endl;
      w->loadSnapshot("paramsToGenerateData");
      //    poiAndNuisance->Print("v");

      RooDataSet* toyData = 0;
      // now generate a toy dataset
      if(!mc->GetPdf()->canBeExtended()){
         if(data->numEntries()==1)
            toyData = mc->GetPdf()->generate(*mc->GetObservables(),1);
         else
            cout <<"Not sure what to do about this model" <<endl;
      } else{
         //      cout << "generating extended dataset"<<endl;
         toyData = mc->GetPdf()->generate(*mc->GetObservables(),Extended());
      }

      // generate global observables
      // need to be careful for simpdf
      //    RooDataSet* globalData = mc->GetPdf()->generate(*mc->GetGlobalObservables(),1);

      RooSimultaneous* simPdf = dynamic_cast<RooSimultaneous*>(mc->GetPdf());
      if(!simPdf){
         RooDataSet *one = mc->GetPdf()->generate(*mc->GetGlobalObservables(), 1);
         const RooArgSet *values = one->get();
         RooArgSet *allVars = mc->GetPdf()->getVariables();
         *allVars = *values;
         delete allVars;
         delete values;
         delete one;
      } else {

         //try fix for sim pdf
         TIterator* iter = simPdf->indexCat().typeIterator() ;
         RooCatType* tt = NULL;
         while((tt=(RooCatType*) iter->Next())) {

            // Get pdf associated with state from simpdf
            RooAbsPdf* pdftmp = simPdf->getPdf(tt->GetName()) ;

            // Generate only global variables defined by the pdf associated with this state
            RooArgSet* globtmp = pdftmp->getObservables(*mc->GetGlobalObservables()) ;
            RooDataSet* tmp = pdftmp->generate(*globtmp,1) ;

            // Transfer values to output placeholder
            *globtmp = *tmp->get(0) ;

            // Cleanup
            delete globtmp ;
            delete tmp ;
         }
      }

      //    globalData->Print("v");
      //    unconditionalObs = *globalData->get();
      //    mc->GetGlobalObservables()->Print("v");
      //    delete globalData;
      //    cout << "toy data = " << endl;
      //    toyData->get()->Print("v");

      // get test stat at observed UL in observed data
      firstPOI->setVal(observedUL);
      double toyTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI);
      //    toyData->get()->Print("v");
      //    cout <<"obsTSatObsUL " <<obsTSatObsUL << "toyTS " << toyTSatObsUL << endl;
      if(obsTSatObsUL < toyTSatObsUL) // not sure about <= part yet
         CLb+= (1.)/nToyMC;
      if(obsTSatObsUL <= toyTSatObsUL) // not sure about <= part yet
         CLbinclusive+= (1.)/nToyMC;


      // loop over points in belt to find upper limit for this toy data
      double thisUL = 0;
      for(Int_t i=0; i<parameterScan->numEntries(); ++i){
         tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
         double arMax = belt->GetAcceptanceRegionMax(*tmpPoint);
         firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) );
         //   double thisTS = profile->getVal();
         double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI);

         //   cout << "poi = " << firstPOI->getVal()
         // << " max is " << arMax << " this profile = " << thisTS << endl;
         //      cout << "thisTS = " << thisTS<<endl;
         if(thisTS<=arMax){
            thisUL = firstPOI->getVal();
         } else{
            break;
         }
      }



      /*
      // loop over points in belt to find upper limit for this toy data
      double thisUL = 0;
      for(Int_t i=0; i<histOfThresholds->GetNbinsX(); ++i){
         tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp");
         cout <<"----------------  "<<i<<endl;
         tmpPoint->Print("v");
         cout << "from hist " << histOfThresholds->GetBinCenter(i+1) <<endl;
         double arMax = histOfThresholds->GetBinContent(i+1);
         // cout << " threhold from Hist = aMax " << arMax<<endl;
         // double arMax2 = belt->GetAcceptanceRegionMax(*tmpPoint);
         // cout << "from scan arMax2 = "<< arMax2 << endl; // not the same due to TH1F not TH1D
         // cout << "scan - hist" << arMax2-arMax << endl;
         firstPOI->setVal( histOfThresholds->GetBinCenter(i+1));
         //   double thisTS = profile->getVal();
         double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI);

         //   cout << "poi = " << firstPOI->getVal()
         // << " max is " << arMax << " this profile = " << thisTS << endl;
         //      cout << "thisTS = " << thisTS<<endl;

         // NOTE: need to add a small epsilon term for single precision vs. double precision
         if(thisTS<=arMax + 1e-7){
            thisUL = firstPOI->getVal();
         } else{
            break;
         }
      }
      */

      histOfUL->Fill(thisUL);

      // for few events, data is often the same, and UL is often the same
      //    cout << "thisUL = " << thisUL<<endl;

      delete toyData;
   }
   histOfUL->Draw();
   c1->SaveAs("one-sided_upper_limit_output.pdf");

   // if you want to see a plot of the sampling distribution for a particular scan point:
   /*
   SamplingDistPlot sampPlot;
   int indexInScan = 0;
   tmpPoint = (RooArgSet*) parameterScan->get(indexInScan)->clone("temp");
   firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) );
   toymcsampler->SetParametersForTestStat(tmpPOI);
   SamplingDistribution* samp = toymcsampler->GetSamplingDistribution(*tmpPoint);
   sampPlot.AddSamplingDistribution(samp);
   sampPlot.Draw();
      */

   // Now find bands and power constraint
   Double_t* bins = histOfUL->GetIntegral();
   TH1F* cumulative = (TH1F*) histOfUL->Clone("cumulative");
   cumulative->SetContent(bins);
   double band2sigDown, band1sigDown, bandMedian, band1sigUp,band2sigUp;
   for(int i=1; i<=cumulative->GetNbinsX(); ++i){
      if(bins[i]<RooStats::SignificanceToPValue(2))
         band2sigDown=cumulative->GetBinCenter(i);
      if(bins[i]<RooStats::SignificanceToPValue(1))
         band1sigDown=cumulative->GetBinCenter(i);
      if(bins[i]<0.5)
         bandMedian=cumulative->GetBinCenter(i);
      if(bins[i]<RooStats::SignificanceToPValue(-1))
         band1sigUp=cumulative->GetBinCenter(i);
      if(bins[i]<RooStats::SignificanceToPValue(-2))
         band2sigUp=cumulative->GetBinCenter(i);
   }
   cout << "-2 sigma  band " << band2sigDown << endl;
   cout << "-1 sigma  band " << band1sigDown << " [Power Constraint)]" << endl;
   cout << "median of band " << bandMedian << endl;
   cout << "+1 sigma  band " << band1sigUp << endl;
   cout << "+2 sigma  band " << band2sigUp << endl;

   // print out the interval on the first Parameter of Interest
   cout << "\nobserved 95% upper-limit "<< interval->UpperLimit(*firstPOI) <<endl;
   cout << "CLb strict [P(toy>obs|0)] for observed 95% upper-limit "<< CLb <<endl;
   cout << "CLb inclusive [P(toy>=obs|0)] for observed 95% upper-limit "<< CLbinclusive <<endl;

   delete profile;
   delete nll;

}
Пример #6
0
void StandardHypoTestDemo(const char* infile = "",
                          const char* workspaceName = "combined",
                          const char* modelSBName = "ModelConfig",
                          const char* modelBName = "",
                          const char* dataName = "obsData", 
                          int calcType = 0, // 0 freq 1 hybrid, 2 asymptotic
                          int testStatType = 3,   // 0 LEP, 1 TeV, 2 LHC, 3 LHC - one sided
                          int ntoys = 5000, 
                          bool useNC = false, 
                          const char * nuisPriorName = 0)
{

/*

  Other Parameter to pass in tutorial
  apart from standard for filename, ws, modelconfig and data

  type = 0 Freq calculator 
  type = 1 Hybrid calculator
  type = 2 Asymptotic calculator  

  testStatType = 0 LEP
  = 1 Tevatron 
  = 2 Profile Likelihood
  = 3 Profile Likelihood one sided (i.e. = 0 if mu < mu_hat)

  ntoys:         number of toys to use 

  useNumberCounting:  set to true when using number counting events 

  nuisPriorName:   name of prior for the nnuisance. This is often expressed as constraint term in the global model
  It is needed only when using the HybridCalculator (type=1)
  If not given by default the prior pdf from ModelConfig is used. 

  extra options are available as global paramwters of the macro. They major ones are: 
 
  generateBinned       generate binned data sets for toys (default is false) - be careful not to activate with 
  a too large (>=3) number of observables 
  nToyRatio            ratio of S+B/B toys (default is 2)
  printLevel
  
*/

   // disable - can cause some problems
   //ToyMCSampler::SetAlwaysUseMultiGen(true);

   SimpleLikelihoodRatioTestStat::SetAlwaysReuseNLL(true);
   ProfileLikelihoodTestStat::SetAlwaysReuseNLL(true);
   RatioOfProfiledLikelihoodsTestStat::SetAlwaysReuseNLL(true);

   //RooRandom::randomGenerator()->SetSeed(0);

   // to change minimizers 
   // ROOT::Math::MinimizerOptions::SetDefaultStrategy(0);
   // ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2");
   // ROOT::Math::MinimizerOptions::SetDefaultTolerance(1);

  /////////////////////////////////////////////////////////////
  // First part is just to access a user-defined file 
  // or create the standard example file if it doesn't exist
  ////////////////////////////////////////////////////////////
  const char* filename = "";
  if (!strcmp(infile,""))
    filename = "results/example_combined_GaussExample_model.root";
  else
    filename = infile;
  // Check if example input file exists
  TFile *file = TFile::Open(filename);

  // if input file was specified byt not found, quit
  if(!file && strcmp(infile,"")){
    cout <<"file not found" << endl;
    return;
  } 

  // if default file not found, try to create it
  if(!file ){
    // Normally this would be run on the command line
    cout <<"will run standard hist2workspace example"<<endl;
    gROOT->ProcessLine(".! prepareHistFactory .");
    gROOT->ProcessLine(".! hist2workspace config/example.xml");
    cout <<"\n\n---------------------"<<endl;
    cout <<"Done creating example input"<<endl;
    cout <<"---------------------\n\n"<<endl;
  }

  // now try to access the file again
  file = TFile::Open(filename);
  if(!file){
    // if it is still not there, then we can't continue
    cout << "Not able to run hist2workspace to create example input" <<endl;
    return;
  }

  
  /////////////////////////////////////////////////////////////
  // Tutorial starts here
  ////////////////////////////////////////////////////////////

  // get the workspace out of the file
  RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
  if(!w){
    cout <<"workspace not found" << endl;
    return;
  }
  w->Print();

  // get the modelConfig out of the file
  ModelConfig* sbModel = (ModelConfig*) w->obj(modelSBName);


  // get the modelConfig out of the file
  RooAbsData* data = w->data(dataName);

  // make sure ingredients are found
  if(!data || !sbModel){
    w->Print();
    cout << "data or ModelConfig was not found" <<endl;
    return;
  }
  // make b model
  ModelConfig* bModel = (ModelConfig*) w->obj(modelBName);


   // case of no systematics
   // remove nuisance parameters from model
   if (noSystematics) { 
      const RooArgSet * nuisPar = sbModel->GetNuisanceParameters();
      if (nuisPar && nuisPar->getSize() > 0) { 
         std::cout << "StandardHypoTestInvDemo" << "  -  Switch off all systematics by setting them constant to their initial values" << std::endl;
         RooStats::SetAllConstant(*nuisPar);
      }
      if (bModel) { 
         const RooArgSet * bnuisPar = bModel->GetNuisanceParameters();
         if (bnuisPar) 
            RooStats::SetAllConstant(*bnuisPar);
      }
   }


  if (!bModel ) {
      Info("StandardHypoTestInvDemo","The background model %s does not exist",modelBName);
      Info("StandardHypoTestInvDemo","Copy it from ModelConfig %s and set POI to zero",modelSBName);
      bModel = (ModelConfig*) sbModel->Clone();
      bModel->SetName(TString(modelSBName)+TString("B_only"));      
      RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first());
      if (!var) return;
      double oldval = var->getVal();
      var->setVal(0);
      //bModel->SetSnapshot( RooArgSet(*var, *w->var("lumi"))  );
      bModel->SetSnapshot( RooArgSet(*var)  );
      var->setVal(oldval);
  }
  
   if (!sbModel->GetSnapshot() || poiValue > 0) { 
      Info("StandardHypoTestDemo","Model %s has no snapshot  - make one using model poi",modelSBName);
      RooRealVar * var = dynamic_cast<RooRealVar*>(sbModel->GetParametersOfInterest()->first());
      if (!var) return;
      double oldval = var->getVal();
      if (poiValue > 0)  var->setVal(poiValue);
      //sbModel->SetSnapshot( RooArgSet(*var, *w->var("lumi") ) );
      sbModel->SetSnapshot( RooArgSet(*var) );
      if (poiValue > 0) var->setVal(oldval);
      //sbModel->SetSnapshot( *sbModel->GetParametersOfInterest() );
   }

   



   // part 1, hypothesis testing 
   SimpleLikelihoodRatioTestStat * slrts = new SimpleLikelihoodRatioTestStat(*bModel->GetPdf(), *sbModel->GetPdf());
   // null parameters must includes snapshot of poi plus the nuisance values 
   RooArgSet nullParams(*bModel->GetSnapshot());
   if (bModel->GetNuisanceParameters()) nullParams.add(*bModel->GetNuisanceParameters());
   
   slrts->SetNullParameters(nullParams);
   RooArgSet altParams(*sbModel->GetSnapshot());
   if (sbModel->GetNuisanceParameters()) altParams.add(*sbModel->GetNuisanceParameters());
   slrts->SetAltParameters(altParams);


   ProfileLikelihoodTestStat * profll = new ProfileLikelihoodTestStat(*bModel->GetPdf());


   RatioOfProfiledLikelihoodsTestStat * 
      ropl = new RatioOfProfiledLikelihoodsTestStat(*bModel->GetPdf(), *sbModel->GetPdf(), sbModel->GetSnapshot());
   ropl->SetSubtractMLE(false);

   if (testStatType == 3) profll->SetOneSidedDiscovery(1);
   profll->SetPrintLevel(printLevel);

   // profll.SetReuseNLL(mOptimize);
   // slrts.SetReuseNLL(mOptimize);
   // ropl.SetReuseNLL(mOptimize);

   AsymptoticCalculator::SetPrintLevel(printLevel);

   HypoTestCalculatorGeneric *  hypoCalc = 0;
   // note here Null is B and Alt is S+B
   if (calcType == 0) hypoCalc = new  FrequentistCalculator(*data, *sbModel, *bModel);
   else if (calcType == 1) hypoCalc= new  HybridCalculator(*data, *sbModel, *bModel);
   else if (calcType == 2) hypoCalc= new  AsymptoticCalculator(*data, *sbModel, *bModel);

   if (calcType == 0) 
       ((FrequentistCalculator*)hypoCalc)->SetToys(ntoys, ntoys/nToysRatio);
   if (calcType == 1) 
       ((HybridCalculator*)hypoCalc)->SetToys(ntoys, ntoys/nToysRatio);
   if (calcType == 2 ) { 
      if (testStatType == 3) ((AsymptoticCalculator*) hypoCalc)->SetOneSidedDiscovery(true);  
      if (testStatType != 2 && testStatType != 3)  
         Warning("StandardHypoTestDemo","Only the PL test statistic can be used with AsymptoticCalculator - use by default a two-sided PL");
      

   }


   // check for nuisance prior pdf in case of nuisance parameters 
   if (calcType == 1 && (bModel->GetNuisanceParameters() || sbModel->GetNuisanceParameters() )) {
         RooAbsPdf * nuisPdf = 0; 
         if (nuisPriorName) nuisPdf = w->pdf(nuisPriorName);
         // use prior defined first in bModel (then in SbModel)
         if (!nuisPdf)  { 
            Info("StandardHypoTestDemo","No nuisance pdf given for the HybridCalculator - try to deduce  pdf from the   model");
            if (bModel->GetPdf() && bModel->GetObservables() ) 
               nuisPdf = RooStats::MakeNuisancePdf(*bModel,"nuisancePdf_bmodel");
            else 
               nuisPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisancePdf_sbmodel");
         }   
         if (!nuisPdf ) {
            if (bModel->GetPriorPdf())  { 
               nuisPdf = bModel->GetPriorPdf();
               Info("StandardHypoTestDemo","No nuisance pdf given - try to use %s that is defined as a prior pdf in the B model",nuisPdf->GetName());            
            }
            else { 
               Error("StandardHypoTestDemo","Cannnot run Hybrid calculator because no prior on the nuisance parameter is specified or can be derived");
               return;
            }
         }
         assert(nuisPdf);
         Info("StandardHypoTestDemo","Using as nuisance Pdf ... " );
         nuisPdf->Print();
      
         const RooArgSet * nuisParams = (bModel->GetNuisanceParameters() ) ? bModel->GetNuisanceParameters() : sbModel->GetNuisanceParameters();
         RooArgSet * np = nuisPdf->getObservables(*nuisParams);
         if (np->getSize() == 0) { 
            Warning("StandardHypoTestDemo","Prior nuisance does not depend on nuisance parameters. They will be smeared in their full range");
         }
         delete np;
      
         ((HybridCalculator*)hypoCalc)->ForcePriorNuisanceAlt(*nuisPdf);
         ((HybridCalculator*)hypoCalc)->ForcePriorNuisanceNull(*nuisPdf);
   }

   // hypoCalc->ForcePriorNuisanceAlt(*sbModel->GetPriorPdf());
   // hypoCalc->ForcePriorNuisanceNull(*bModel->GetPriorPdf());

   ToyMCSampler * sampler = (ToyMCSampler *)hypoCalc->GetTestStatSampler();

   if (sampler && (calcType == 0 || calcType == 1) ) { 

      // look if pdf is number counting or extended
      if (sbModel->GetPdf()->canBeExtended() ) { 
         if (useNC)   Warning("StandardHypoTestDemo","Pdf is extended: but number counting flag is set: ignore it ");
      }
      else {
         // for not extended pdf
         if (!useNC)  { 
            int nEvents = data->numEntries();
            Info("StandardHypoTestDemo","Pdf is not extended: number of events to generate taken  from observed data set is %d",nEvents);
            sampler->SetNEventsPerToy(nEvents);
         }
         else {
            Info("StandardHypoTestDemo","using a number counting pdf");
            sampler->SetNEventsPerToy(1);
         }
      }
      
      if (data->isWeighted() && !generateBinned) { 
         Info("StandardHypoTestDemo","Data set is weighted, nentries = %d and sum of weights = %8.1f but toy generation is unbinned - it would be faster to set generateBinned to true\n",data->numEntries(), data->sumEntries());
      }
      if (generateBinned)  sampler->SetGenerateBinned(generateBinned);


      // set the test statistic
      if (testStatType == 0) sampler->SetTestStatistic(slrts); 
      if (testStatType == 1) sampler->SetTestStatistic(ropl); 
      if (testStatType == 2 || testStatType == 3) sampler->SetTestStatistic(profll); 

   }
   
   HypoTestResult *  htr = hypoCalc->GetHypoTest();
   htr->SetPValueIsRightTail(true);
   htr->SetBackgroundAsAlt(false);
   htr->Print(); // how to get meaningfull CLs at this point?

   delete sampler;
   delete slrts; 
   delete ropl; 
   delete profll;

   if (calcType != 2) {
      HypoTestPlot * plot = new HypoTestPlot(*htr,100);
      plot->SetLogYaxis(true);
      plot->Draw();
   }
   else { 
      std::cout << "Asymptotic results " << std::endl;
      
   }

   // look at expected significances 
   // found median of S+B distribution
   if (calcType != 2) { 

      SamplingDistribution * altDist = htr->GetAltDistribution();   
      HypoTestResult htExp("Expected Result");
      htExp.Append(htr);
      // find quantiles in alt (S+B) distribution 
      double p[5];
      double q[5];
      for (int i = 0; i < 5; ++i) { 
         double sig = -2  + i;
         p[i] = ROOT::Math::normal_cdf(sig,1);
      }
      std::vector<double> values = altDist->GetSamplingDistribution();
      TMath::Quantiles( values.size(), 5, &values[0], q, p, false);  

      for (int i = 0; i < 5; ++i) { 
         htExp.SetTestStatisticData( q[i] );
         double sig = -2  + i;      
         std::cout << " Expected p -value and significance at " << sig << " sigma = " 
                   << htExp.NullPValue() << " significance " << htExp.Significance() << " sigma " << std::endl; 
         
      }
   }
   else { 
      // case of asymptotic calculator 
      for (int i = 0; i < 5; ++i) { 
         double sig = -2  + i;      
         // sigma is inverted here 
         double pval = AsymptoticCalculator::GetExpectedPValues( htr->NullPValue(), htr->AlternatePValue(), -sig, false);
         std::cout << " Expected p -value and significance at " << sig << " sigma = " 
                   << pval << " significance " << ROOT::Math::normal_quantile_c(pval,1) << " sigma " << std::endl; 
         
      }
   }

}
void StandardHistFactoryPlotsWithCategories(const char* infile = "",
                                            const char* workspaceName = "combined",
                                            const char* modelConfigName = "ModelConfig",
                                            const char* dataName = "obsData"){


   double nSigmaToVary=5.;
   double muVal=0;
   bool doFit=false;

   // -------------------------------------------------------
   // First part is just to access a user-defined file
   // or create the standard example file if it doesn't exist
   const char* filename = "";
   if (!strcmp(infile,"")) {
      filename = "results/example_combined_GaussExample_model.root";
      bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code
                                                           // if file does not exists generate with histfactory
      if (!fileExist) {
#ifdef _WIN32
         cout << "HistFactory file cannot be generated on Windows - exit" << endl;
         return;
#endif
         // Normally this would be run on the command line
         cout <<"will run standard hist2workspace example"<<endl;
         gROOT->ProcessLine(".! prepareHistFactory .");
         gROOT->ProcessLine(".! hist2workspace config/example.xml");
         cout <<"\n\n---------------------"<<endl;
         cout <<"Done creating example input"<<endl;
         cout <<"---------------------\n\n"<<endl;
      }

   }
   else
      filename = infile;

   // Try to open the file
   TFile *file = TFile::Open(filename);

   // if input file was specified byt not found, quit
   if(!file ){
      cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl;
      return;
   }

   // -------------------------------------------------------
   // Tutorial starts here
   // -------------------------------------------------------

   // get the workspace out of the file
   RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName);
   if(!w){
      cout <<"workspace not found" << endl;
      return;
   }

   // get the modelConfig out of the file
   ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName);

   // get the modelConfig out of the file
   RooAbsData* data = w->data(dataName);

   // make sure ingredients are found
   if(!data || !mc){
      w->Print();
      cout << "data or ModelConfig was not found" <<endl;
      return;
   }

   // -------------------------------------------------------
   // now use the profile inspector

   RooRealVar* obs = (RooRealVar*)mc->GetObservables()->first();
   TList* list = new TList();


   RooRealVar * firstPOI = dynamic_cast<RooRealVar*>(mc->GetParametersOfInterest()->first());

   firstPOI->setVal(muVal);
   //  firstPOI->setConstant();
   if(doFit){
      mc->GetPdf()->fitTo(*data);
   }

   // -------------------------------------------------------


   mc->GetNuisanceParameters()->Print("v");
   int  nPlotsMax = 1000;
   cout <<" check expectedData by category"<<endl;
   RooDataSet* simData=NULL;
   RooSimultaneous* simPdf = NULL;
   if(strcmp(mc->GetPdf()->ClassName(),"RooSimultaneous")==0){
      cout <<"Is a simultaneous PDF"<<endl;
      simPdf = (RooSimultaneous *)(mc->GetPdf());
   } else {
      cout <<"Is not a simultaneous PDF"<<endl;
   }



   if(doFit) {
      RooCategory* channelCat = (RooCategory*) (&simPdf->indexCat());
      TIterator* iter = channelCat->typeIterator() ;
      RooCatType* tt = NULL;
      tt=(RooCatType*) iter->Next();
      RooAbsPdf* pdftmp = ((RooSimultaneous*)mc->GetPdf())->getPdf(tt->GetName()) ;
      RooArgSet* obstmp = pdftmp->getObservables(*mc->GetObservables()) ;
      obs = ((RooRealVar*)obstmp->first());
      RooPlot* frame = obs->frame();
      cout <<Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())<<endl;
      cout << tt->GetName() << " " << channelCat->getLabel() <<endl;
      data->plotOn(frame,MarkerSize(1),Cut(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())),DataError(RooAbsData::None));

      Double_t normCount = data->sumEntries(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())) ;

      pdftmp->plotOn(frame,LineWidth(2.),Normalization(normCount,RooAbsReal::NumEvent)) ;
      frame->Draw();
      cout <<"expected events = " << mc->GetPdf()->expectedEvents(*data->get()) <<endl;
      return;
   }



   int nPlots=0;
   if(!simPdf){

      TIterator* it = mc->GetNuisanceParameters()->createIterator();
      RooRealVar* var = NULL;
      while( (var = (RooRealVar*) it->Next()) != NULL){
         RooPlot* frame = obs->frame();
         frame->SetYTitle(var->GetName());
         data->plotOn(frame,MarkerSize(1));
         var->setVal(0);
         mc->GetPdf()->plotOn(frame,LineWidth(1.));
         var->setVal(1);
         mc->GetPdf()->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(1));
         var->setVal(-1);
         mc->GetPdf()->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(1));
         list->Add(frame);
         var->setVal(0);
      }


   } else {
      RooCategory* channelCat = (RooCategory*) (&simPdf->indexCat());
      //    TIterator* iter = simPdf->indexCat().typeIterator() ;
      TIterator* iter = channelCat->typeIterator() ;
      RooCatType* tt = NULL;
      while(nPlots<nPlotsMax && (tt=(RooCatType*) iter->Next())) {

         cout << "on type " << tt->GetName() << " " << endl;
         // Get pdf associated with state from simpdf
         RooAbsPdf* pdftmp = simPdf->getPdf(tt->GetName()) ;

         // Generate observables defined by the pdf associated with this state
         RooArgSet* obstmp = pdftmp->getObservables(*mc->GetObservables()) ;
         //      obstmp->Print();


         obs = ((RooRealVar*)obstmp->first());

         TIterator* it = mc->GetNuisanceParameters()->createIterator();
         RooRealVar* var = NULL;
         while(nPlots<nPlotsMax && (var = (RooRealVar*) it->Next())){
            TCanvas* c2 = new TCanvas("c2");
            RooPlot* frame = obs->frame();
            frame->SetName(Form("frame%d",nPlots));
            frame->SetYTitle(var->GetName());

            cout <<Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())<<endl;
            cout << tt->GetName() << " " << channelCat->getLabel() <<endl;
            data->plotOn(frame,MarkerSize(1),Cut(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())),DataError(RooAbsData::None));

            Double_t normCount = data->sumEntries(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())) ;

            if(strcmp(var->GetName(),"Lumi")==0){
               cout <<"working on lumi"<<endl;
               var->setVal(w->var("nominalLumi")->getVal());
               var->Print();
            } else{
               var->setVal(0);
            }
            // w->allVars().Print("v");
            // mc->GetNuisanceParameters()->Print("v");
            // pdftmp->plotOn(frame,LineWidth(2.));
            // mc->GetPdf()->plotOn(frame,LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
            //pdftmp->plotOn(frame,LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
            normCount = pdftmp->expectedEvents(*obs);
            pdftmp->plotOn(frame,LineWidth(2.),Normalization(normCount,RooAbsReal::NumEvent)) ;

            if(strcmp(var->GetName(),"Lumi")==0){
               cout <<"working on lumi"<<endl;
               var->setVal(w->var("nominalLumi")->getVal()+0.05);
               var->Print();
            } else{
               var->setVal(nSigmaToVary);
            }
            // pdftmp->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2));
            // mc->GetPdf()->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
            //pdftmp->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data));
            normCount = pdftmp->expectedEvents(*obs);
            pdftmp->plotOn(frame,LineWidth(2.),LineColor(kRed),LineStyle(kDashed),Normalization(normCount,RooAbsReal::NumEvent)) ;

            if(strcmp(var->GetName(),"Lumi")==0){
               cout <<"working on lumi"<<endl;
               var->setVal(w->var("nominalLumi")->getVal()-0.05);
               var->Print();
            } else{
               var->setVal(-nSigmaToVary);
            }
            // pdftmp->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2));
            // mc->GetPdf()->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2),Slice(*channelCat,tt->GetName()),ProjWData(*data));
            //pdftmp->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2),Slice(*channelCat,tt->GetName()),ProjWData(*data));
            normCount = pdftmp->expectedEvents(*obs);
            pdftmp->plotOn(frame,LineWidth(2.),LineColor(kGreen),LineStyle(kDashed),Normalization(normCount,RooAbsReal::NumEvent)) ;



            // set them back to normal
            if(strcmp(var->GetName(),"Lumi")==0){
               cout <<"working on lumi"<<endl;
               var->setVal(w->var("nominalLumi")->getVal());
               var->Print();
            } else{
               var->setVal(0);
            }

            list->Add(frame);

            // quit making plots
            ++nPlots;

            frame->Draw();
            c2->SaveAs(Form("%s_%s_%s.pdf",tt->GetName(),obs->GetName(),var->GetName()));
            delete c2;
         }
      }
   }



   // -------------------------------------------------------


   // now make plots
   TCanvas* c1 = new TCanvas("c1","ProfileInspectorDemo",800,200);
   if(list->GetSize()>4){
      double n = list->GetSize();
      int nx = (int)sqrt(n) ;
      int ny = TMath::CeilNint(n/nx);
      nx = TMath::CeilNint( sqrt(n) );
      c1->Divide(ny,nx);
   } else
      c1->Divide(list->GetSize());
   for(int i=0; i<list->GetSize(); ++i){
      c1->cd(i+1);
      list->At(i)->Draw();
   }





}
Пример #8
0
void ptBestFit(float BIN_SIZE=5.0,bool BLIND=false,TString MASS,TString NAME)
{
  gROOT->ProcessLine(".x ../../common/styleCMSTDR.C");
  gSystem->Load("libHiggsAnalysisCombinedLimit.so");
  gROOT->ForceStyle();
  gStyle->SetOptStat(0);
  gStyle->SetOptTitle(0);
  gROOT->SetBatch(1);
  gStyle->SetPadRightMargin(0.04);
  gStyle->SetPadLeftMargin(0.16);
  gStyle->SetPadTopMargin(0.06);
  gStyle->SetPadBottomMargin(0.10);
  gStyle->SetTitleFont(42,"XY");
  gStyle->SetTitleSize(0.0475,"XY");
  gStyle->SetTitleOffset(0.9,"X");
  gStyle->SetTitleOffset(1.5,"Y");
  gStyle->SetLabelSize(0.0375,"XY");

  RooMsgService::instance().setSilentMode(kTRUE);
  for(int i=0;i<2;i++) {
    RooMsgService::instance().setStreamStatus(i,kFALSE);
  }
  float XMIN = 80;
  float XMAX = 200; 

  TFile *f1 = TFile::Open("datacards/datacard_m"+MASS+"_"+NAME+".root");
  TFile *f2 = TFile::Open("combine/mlfit.vbfHbb_"+NAME+"_mH"+MASS+".root");
  TFile *f3 = TFile::Open("root/sig_shapes_workspace_B80-200.root");
  TFile *f4 = TFile::Open("root/data_shapes_workspace_"+NAME+".root");

  RooWorkspace *w = (RooWorkspace*)f1->Get("w");
  //w->Print();
  RooAbsPdf *bkg_model = (RooAbsPdf*)w->pdf("model_s");
  RooFitResult *res_s  = (RooFitResult*)f2->Get("fit_s"); 
  RooFitResult *res_b  = (RooFitResult*)f2->Get("fit_b");
  RooRealVar *rFit     = dynamic_cast<RooRealVar *>(res_s->floatParsFinal()).find("r");
  RooDataSet *data     = (RooDataSet*)w->data("data_obs");
  
  int nparS=0,nparB=0;
  cout << res_s->floatParsFinal().getSize() << endl;
  cout << res_b->floatParsFinal().getSize() << endl;
  nparS = res_s->floatParsFinal().getSize();
  nparB = res_b->floatParsFinal().getSize();  
  float chi2sumS = 0.;
  float chi2sumB = 0.;
  int nparsum = 0;
//  if (BLIND) {
//    res_b->Print();
//  }
//  else {
//    res_s->Print();
//  }
  
  w->allVars().assignValueOnly(res_s->floatParsFinal());
//  w->Print();
//  w->allVars()->Print();

  RooWorkspace *wSig = (RooWorkspace*)f3->Get("w"); 
  RooWorkspace *wDat = (RooWorkspace*)f4->Get("w"); 

  const RooSimultaneous *sim = dynamic_cast<const RooSimultaneous *> (bkg_model);
  const RooAbsCategoryLValue &cat = (RooAbsCategoryLValue &) sim->indexCat();
  TList *datasets = data->split(cat,true);
  TIter next(datasets);
  //int count = 0; 
  for(RooAbsData *ds = (RooAbsData*)next();ds != 0; ds = (RooAbsData*)next()) {
	 //if (count > 0) return 0;
	 //count++;
    RooAbsPdf *pdfi = sim->getPdf(ds->GetName());
    RooArgSet *obs = (RooArgSet*)pdfi->getObservables(ds);
    RooRealVar *x = dynamic_cast<RooRealVar *>(obs->first());

    RooRealVar *yield_vbf = (RooRealVar*)wSig->var("yield_signalVBF_mass"+MASS+"_"+TString(ds->GetName()));
    RooRealVar *yield_gf  = (RooRealVar*)wSig->var("yield_signalGF_mass"+MASS+"_"+TString(ds->GetName()));
    TString ds_name(ds->GetName());
    //----- get the QCD normalization -----------
    RooRealVar *qcd_norm_final = dynamic_cast<RooRealVar *>(res_s->floatParsFinal()).find("CMS_vbfbb_qcd_norm_"+ds_name);
    RooRealVar *qcd_yield      = (RooRealVar*)wDat->var("yield_data_"+ds_name);

    float Nqcd  = exp(log(1.5)*qcd_norm_final->getVal())*qcd_yield->getVal();
    float eNqcd = log(1.5)*qcd_norm_final->getError()*Nqcd;
    cout<<"QCD normalization = "<<Nqcd<<" +/- "<<eNqcd<<endl;
    
    TH1 *hCoarse = (TH1*)ds->createHistogram("coarseHisto_"+ds_name,*x);
    float norm = hCoarse->Integral();
  
	 int rebin = BIN_SIZE/hCoarse->GetBinWidth(1);
    hCoarse->Rebin(rebin);

    float MIN_VAL = TMath::Max(0.9*hCoarse->GetBinContent(hCoarse->GetMinimumBin()),1.0);
    float MAX_VAL = 1.3*hCoarse->GetBinContent(hCoarse->GetMaximumBin());
    RooDataHist ds_coarse("ds_coarse_"+ds_name,"ds_coarse_"+ds_name,*x,hCoarse);

    TH1F *hBlind = (TH1F*)hCoarse->Clone("blindHisto_"+ds_name);
    for(int i=0;i<hBlind->GetNbinsX();i++) {
      double x0 = hBlind->GetBinCenter(i+1);
      if (x0 > 100 && x0 < 150) {
        hBlind->SetBinContent(i+1,0);
        hBlind->SetBinError(i+1,0);
      }
    }
    
    RooDataHist ds_blind("ds_blind_"+ds_name,"ds_blind_"+ds_name,*x,hBlind); 
    
    RooHist *hresid,*hresid0;
    RooPlot *frame1 = x->frame();
    RooPlot *frame2 = x->frame();
    
    if (BLIND) {
		//cout << "Blind case: " << ds_coarse.GetName() << endl;
      ds_coarse.plotOn(frame1,LineColor(0),MarkerColor(0));
      pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name),VisualizeError(*res_s,1,kTRUE),FillColor(0),MoveToBack());
      pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name),LineWidth(2),LineStyle(3));
      ds_blind.plotOn(frame1);
      hresid = frame1->residHist();
      frame2->addPlotable(hresid,"pE1");
    }
    else {    
		//cout << "Non-blind case: " << ds_coarse.GetName() << endl;
		ds_coarse.plotOn(frame1);
      pdfi->plotOn(frame1);
		//cout << pdfi->getParameters(ds_coarse)->selectByAttrib("Constant",kFALSE)->getSize() << endl;
      cout<<"chi2/ndof (bkg+sig) = "<<frame1->chiSquare()<<endl;
		cout << ds_coarse.numEntries() << endl;
		chi2sumS += frame1->chiSquare()*ds_coarse.numEntries();
		nparsum += ds_coarse.numEntries();
		//hresid0 = frame1->residHist();
      //pdfi->plotOn(frame1,VisualizeError(*res_s,1,kTRUE),FillColor(0),MoveToBack());
      pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name),LineWidth(2),LineStyle(5),LineColor(kGreen+2));
      pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name),LineWidth(2),LineStyle(2),LineColor(kBlack)); 
      cout<<"chi2/ndof (bkg) = "<<frame1->chiSquare()<<endl;
		chi2sumB += frame1->chiSquare()*ds_coarse.numEntries();
		pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name),LineWidth(2),LineStyle(2),LineColor(kBlack),VisualizeError(*res_s,1,kTRUE),FillColor(0),MoveToBack()); 
      hresid = frame1->residHist();
      frame2->addPlotable(hresid,"pE1");
    
      float yield_sig = rFit->getValV()*(yield_vbf->getValV()+yield_gf->getValV());
      RooAbsPdf *signal_pdf = (RooAbsPdf*)w->pdf("shapeSig_qqH_"+ds_name);
      signal_pdf->plotOn(frame2,LineWidth(2),LineColor(kRed),Normalization(yield_sig,RooAbsReal::NumEvent),MoveToBack());
    }
//	 hresid0->Print();
//	 hresid->Print();
//	 double x2,y2;
//	 for (int i=0; i<3; ++i) {
//		 hresid0->GetPoint(i,x2,y2);
//		 cout << "BKG+SIG\t" << x2 << "\t" << y2 << endl;
//		 hresid->GetPoint(i,x2,y2);
//		 cout << "BKG\t" << x2 << "\t" << y2 << endl;
//		 ds_coarse.get(i);
//		 cout << ds_coarse.weightError(RooAbsData::SumW2) << endl;
//		 cout << endl;
//	 }

    TCanvas* canFit = new TCanvas("Higgs_fit_"+ds_name,"Higgs_fit_"+ds_name,900,750);
    canFit->cd(1)->SetBottomMargin(0.4);
    frame1->SetMinimum(MIN_VAL);
    frame1->SetMaximum(MAX_VAL);
    frame1->GetYaxis()->SetNdivisions(510);
    frame1->GetXaxis()->SetTitleSize(0);
    frame1->GetXaxis()->SetLabelSize(0);
    frame1->GetYaxis()->SetTitle(TString::Format("Events / %1.1f GeV",BIN_SIZE));
    frame1->Draw();
    gPad->Update();
    
    TList *list = (TList*)gPad->GetListOfPrimitives();
    //list->Print();
    TH1F *hUncH  = new TH1F("hUncH"+ds_name,"hUncH"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX);
    TH1F *hUncL  = new TH1F("hUncL"+ds_name,"hUncL"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX);
    TH1F *hUnc2H = new TH1F("hUnc2H"+ds_name,"hUnc2H"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX);
    TH1F *hUnc2L = new TH1F("hUnc2L"+ds_name,"hUnc2L"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX); 
    TH1F *hUncC  = new TH1F("hUncC"+ds_name,"hUncC"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX); 
    
    RooCurve *errorBand,*gFit,*gQCDFit,*gBkgFit;
    
	//list->Print();
    if (BLIND) {
      errorBand = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]_errorband_Comp[shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name+"]");
      gFit = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]"+"_Comp[shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name+"]");
    }
    else {
      //errorBand = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]_errorband");
      errorBand = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]_errorband_Comp[shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name+"]");
      gFit = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]");
    } 
    gQCDFit = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]"+"_Comp[shapeBkg_qcd_"+ds_name+"]");  
    gBkgFit = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]"+"_Comp[shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name+"]");
    for(int i=0;i<hUncH->GetNbinsX();i++) {
      double x0 = hUncH->GetBinCenter(i+1);
      double e1 = fabs(errorBand->Eval(x0)-gBkgFit->Eval(x0));
      //double e1 = fabs(errorBand->Eval(x0)-gFit->Eval(x0));
      double e2 = eNqcd/hUncH->GetNbinsX();
      hUncH->SetBinContent(i+1,sqrt(pow(e2,2)+pow(e1,2)));
      hUnc2H->SetBinContent(i+1,2*sqrt(pow(e2,2)+pow(e1,2)));
      hUncL->SetBinContent(i+1,-sqrt(pow(e2,2)+pow(e1,2)));
      hUnc2L->SetBinContent(i+1,-2*sqrt(pow(e2,2)+pow(e1,2)));
		hUncC->SetBinContent(i+1,0.);
    }
   
    TPad* pad = new TPad("pad", "pad", 0., 0., 1., 1.);
    pad->SetTopMargin(0.63);
    pad->SetFillColor(0);
    pad->SetFillStyle(0);
    pad->Draw();
    pad->cd(0);
    hUnc2H->GetXaxis()->SetTitle("m_{bb} (GeV)");
    hUnc2H->GetYaxis()->SetTitle("Data - Bkg");
    //hUnc2H->GetYaxis()->SetTitle("Data - Fit");
    double YMAX = 1.1*frame2->GetMaximum();
    double YMIN = -1.1*frame2->GetMaximum();
    hUnc2H->GetYaxis()->SetRangeUser(YMIN,YMAX);
    hUnc2H->GetYaxis()->SetNdivisions(507);
//    hUnc2H->GetXaxis()->SetTitleOffset(0.9);
//    hUnc2H->GetYaxis()->SetTitleOffset(1.0);
    hUnc2H->GetYaxis()->SetTickLength(0.0);
//    hUnc2H->GetYaxis()->SetTitleSize(0.05);
//    hUnc2H->GetYaxis()->SetLabelSize(0.04);
    hUnc2H->GetYaxis()->CenterTitle(kTRUE);
    hUnc2H->SetFillColor(kGreen);
    hUnc2L->SetFillColor(kGreen);
    hUncH->SetFillColor(kYellow);
    hUncL->SetFillColor(kYellow);
	 hUncC->SetLineColor(kBlack);
	 hUncC->SetLineStyle(7);
    hUnc2H->Draw("HIST");
    hUnc2L->Draw("same HIST");
    hUncH->Draw("same HIST");
    hUncL->Draw("same HIST");
	 hUncC->Draw("same HIST");
	 frame2->GetYaxis()->SetTickLength(0.03/0.4);
    frame2->Draw("same");

    TList *list1 = (TList*)gPad->GetListOfPrimitives();
    //list1->Print();
    RooCurve *gSigFit = (RooCurve*)list1->FindObject("shapeSig_qqH_"+ds_name+"_Norm[mbbReg_"+ds_name+"]");

    TLegend *leg = new TLegend(0.70,0.61,0.94,1.-gStyle->GetPadTopMargin()-0.01);
	 leg->SetTextFont(42);
	 leg->SetFillStyle(-1);
	 //leg->SetHeader(ds_name+" (m_{H}="+MASS+")");
    leg->SetHeader(TString::Format("Category %d",atoi(ds_name(3,1).Data())+1));
    leg->AddEntry(hBlind,"Data","P");
    if (!BLIND) {
      leg->AddEntry(gSigFit,"Fitted signal","L");
    }
	 TLine *gEmpty = new TLine(0.0,0.0,0.0,0.0);
	 gEmpty->SetLineWidth(0);
	 TLegendEntry *l1 = leg->AddEntry(gEmpty,"(m_{H} = "+MASS+" GeV)","");
	 l1->SetTextSize(0.038*0.97*0.85);
    leg->AddEntry(gFit,"Bkg. + signal","L");
    leg->AddEntry(gBkgFit,"Bkg.","L");
    leg->AddEntry(gQCDFit,"QCD","L");
    leg->AddEntry(hUnc2H,"2#sigma bkg. unc.","F");
    leg->AddEntry(hUncH,"1#sigma bkg. unc.","F");
    leg->SetFillColor(0);
    leg->SetBorderSize(0);
    leg->SetTextFont(42);
    leg->SetTextSize(0.038*0.98);
    leg->Draw(); 
	 leg->SetY1(leg->GetY2()-leg->GetNRows()*0.045*0.96);
     
    TPaveText *paveCMS = new TPaveText(gStyle->GetPadLeftMargin()+0.02,0.7,gStyle->GetPadLeftMargin()+0.15,1.-gStyle->GetPadTopMargin()-0.01,"NDC");
	 paveCMS->SetTextFont(62);
	 paveCMS->SetTextSize(gStyle->GetPadTopMargin()*3./4.);
	 paveCMS->SetBorderSize(0);
	 paveCMS->SetFillStyle(-1);
	 paveCMS->SetTextAlign(12);
	 paveCMS->AddText("CMS");
	 paveCMS->Draw();
	 gPad->Update();
	 paveCMS->SetY1NDC(paveCMS->GetY2NDC()-paveCMS->GetListOfLines()->GetSize()*gStyle->GetPadTopMargin());

	 TPaveText *paveLumi = new TPaveText(0.5,1.-gStyle->GetPadTopMargin(),0.98,1.00,"NDC");
	 paveLumi->SetTextFont(42);
	 paveLumi->SetTextSize(gStyle->GetPadTopMargin()*3./4.);
	 paveLumi->SetBorderSize(0);
	 paveLumi->SetFillStyle(-1);
	 paveLumi->SetTextAlign(32);
	 paveLumi->AddText(TString::Format("%.1f fb^{-1} (8TeV)",(atoi(ds_name(3,1).Data())<4 ? 19.8 : 18.3)).Data());//+ 18.2 ;
	 paveLumi->Draw();

	 TString path=".";
	 //TString path="BiasV10_limit_BRN5p4_dX0p1_B80-200_CAT0-6/output/";
	 system(TString::Format("[ ! -d %s/plot ] && mkdir %s/plot",path.Data(),path.Data()).Data());
	 system(TString::Format("[ ! -d %s/plot/fits ] && mkdir %s/plot/fits",path.Data(),path.Data()).Data());
	 canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s.pdf",path.Data(),MASS.Data(),ds_name.Data()).Data());
	 canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s.png",path.Data(),MASS.Data(),ds_name.Data()).Data());
	 canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s.eps",path.Data(),MASS.Data(),ds_name.Data()).Data());
	 TText *l = (TText*)paveCMS->AddText("Preliminary");
	 l->SetTextFont(52);
	 paveCMS->Draw();
	 gPad->Update();
	 paveCMS->SetY1NDC(paveCMS->GetY2NDC()-paveCMS->GetListOfLines()->GetSize()*gStyle->GetPadTopMargin());
	 canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s_prelim.pdf",path.Data(),MASS.Data(),ds_name.Data()).Data());
	 canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s_prelim.png",path.Data(),MASS.Data(),ds_name.Data()).Data());
	 canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s_prelim.eps",path.Data(),MASS.Data(),ds_name.Data()).Data());

    delete ds;
  }

  cout << "chi2sumS: " << chi2sumS << endl;
  cout << "chi2sumB: " << chi2sumB << endl;
  cout << "nparS: " << nparS << endl;
  cout << "nparB: " << nparB << endl;
  cout << "nbinsum: " << nparsum << endl;
  cout << "chi2sumS/(nbinsum - nparS): " << chi2sumS / (float)(nparsum - nparS) << endl;
  cout << "chi2sumB/(nbinsum - nparB): " << chi2sumB / (float)(nparsum - nparB) << endl;
  delete datasets; 
}