void FitterUtils::plot_fit_result(string plotsfile, RooAbsPdf &totPdf, RooDataSet dataGenTot) { //**************Prepare TFile to save the plots TFile f2(plotsfile.c_str(), "UPDATE"); //**************Plot the results of the fit RooArgSet *var_set = totPdf.getObservables(dataGenTot); TIterator *iter = var_set->createIterator(); RooRealVar *var; std::vector<RooPlot*> plots; RooPlot* frame; while((var = (RooRealVar*) iter->Next())) { frame = var->frame(); dataGenTot.plotOn(frame); totPdf.plotOn(frame, Components("histPdfPartReco"), LineColor(kBlue)); totPdf.plotOn(frame, Components("histPdfSignalZeroGamma"), LineColor(kGreen)); totPdf.plotOn(frame, Components("histPdfSignalOneGamma"), LineColor(kMagenta)); totPdf.plotOn(frame, Components("histPdfSignalTwoGamma"), LineColor(kOrange)); totPdf.plotOn(frame, Components("histPdfJpsiLeak"), LineColor(14)); totPdf.plotOn(frame, Components("combPDF"), LineColor(kBlack)); totPdf.plotOn(frame, LineColor(kRed)); plots.push_back(frame); } if (!(plots.size())) return; TCanvas cFit("cFit", "cFit", 600, 800); cFit.Divide(1,2); cFit.cd(1); plots[0]->Draw(); if (plots.size()>1){ cFit.cd(2); plots[1]->Draw(); } cFit.Write(); f2.Close(); }
void FitterUtilsSimultaneousExpOfPolyTimesX::plot_kemu_fit_result(string plotsfile, RooAbsPdf &totKemuPdf, RooDataSet const& dataGenKemu) { //**************Prepare TFile to save the plots TFile f2(plotsfile.c_str(), "UPDATE"); //**************Plot the results of the fit RooArgSet *var_set = totKemuPdf.getObservables(dataGenKemu); TIterator *iter = var_set->createIterator(); RooRealVar *var; std::vector<RooPlot*> plots; RooPlot* frame; while((var = (RooRealVar*) iter->Next())) { frame = var->frame(); dataGenKemu.plotOn(frame); totKemuPdf.plotOn(frame, LineColor(kRed)); plots.push_back(frame); } if (!(plots.size())) return; TCanvas cFit("cKemuFit", "cKemuFit", 600, 800); cFit.Divide(1,2); cFit.cd(1); plots[0]->Draw(); if (plots.size()>1){ cFit.cd(2); plots[1]->Draw(); } cFit.Write(); f2.Close(); }
// internal routine to run the inverter HypoTestInverterResult * RooStats::HypoTestInvTool::RunInverter(RooWorkspace * w, const char * modelSBName, const char * modelBName, const char * dataName, int type, int testStatType, bool useCLs, int npoints, double poimin, double poimax, int ntoys, bool useNumberCounting, const char * nuisPriorName ){ std::cout << "Running HypoTestInverter on the workspace " << w->GetName() << std::endl; w->Print(); RooAbsData * data = w->data(dataName); if (!data) { Error("StandardHypoTestDemo","Not existing data %s",dataName); return 0; } else std::cout << "Using data set " << dataName << std::endl; if (mUseVectorStore) { RooAbsData::setDefaultStorageType(RooAbsData::Vector); data->convertToVectorStore() ; } // get models from WS // get the modelConfig out of the file ModelConfig* bModel = (ModelConfig*) w->obj(modelBName); ModelConfig* sbModel = (ModelConfig*) w->obj(modelSBName); if (!sbModel) { Error("StandardHypoTestDemo","Not existing ModelConfig %s",modelSBName); return 0; } // check the model if (!sbModel->GetPdf()) { Error("StandardHypoTestDemo","Model %s has no pdf ",modelSBName); return 0; } if (!sbModel->GetParametersOfInterest()) { Error("StandardHypoTestDemo","Model %s has no poi ",modelSBName); return 0; } if (!sbModel->GetObservables()) { Error("StandardHypoTestInvDemo","Model %s has no observables ",modelSBName); return 0; } if (!sbModel->GetSnapshot() ) { Info("StandardHypoTestInvDemo","Model %s has no snapshot - make one using model poi",modelSBName); sbModel->SetSnapshot( *sbModel->GetParametersOfInterest() ); } // case of no systematics // remove nuisance parameters from model if (noSystematics) { const RooArgSet * nuisPar = sbModel->GetNuisanceParameters(); if (nuisPar && nuisPar->getSize() > 0) { std::cout << "StandardHypoTestInvDemo" << " - Switch off all systematics by setting them constant to their initial values" << std::endl; RooStats::SetAllConstant(*nuisPar); } if (bModel) { const RooArgSet * bnuisPar = bModel->GetNuisanceParameters(); if (bnuisPar) RooStats::SetAllConstant(*bnuisPar); } } if (!bModel || bModel == sbModel) { Info("StandardHypoTestInvDemo","The background model %s does not exist",modelBName); Info("StandardHypoTestInvDemo","Copy it from ModelConfig %s and set POI to zero",modelSBName); bModel = (ModelConfig*) sbModel->Clone(); bModel->SetName(TString(modelSBName)+TString("_with_poi_0")); RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first()); if (!var) return 0; double oldval = var->getVal(); var->setVal(0); bModel->SetSnapshot( RooArgSet(*var) ); var->setVal(oldval); } else { if (!bModel->GetSnapshot() ) { Info("StandardHypoTestInvDemo","Model %s has no snapshot - make one using model poi and 0 values ",modelBName); RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first()); if (var) { double oldval = var->getVal(); var->setVal(0); bModel->SetSnapshot( RooArgSet(*var) ); var->setVal(oldval); } else { Error("StandardHypoTestInvDemo","Model %s has no valid poi",modelBName); return 0; } } } // check model has global observables when there are nuisance pdf // for the hybrid case the globobs are not needed if (type != 1 ) { bool hasNuisParam = (sbModel->GetNuisanceParameters() && sbModel->GetNuisanceParameters()->getSize() > 0); bool hasGlobalObs = (sbModel->GetGlobalObservables() && sbModel->GetGlobalObservables()->getSize() > 0); if (hasNuisParam && !hasGlobalObs ) { // try to see if model has nuisance parameters first RooAbsPdf * constrPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisanceConstraintPdf_sbmodel"); if (constrPdf) { Warning("StandardHypoTestInvDemo","Model %s has nuisance parameters but no global observables associated",sbModel->GetName()); Warning("StandardHypoTestInvDemo","\tThe effect of the nuisance parameters will not be treated correctly "); } } } // run first a data fit const RooArgSet * poiSet = sbModel->GetParametersOfInterest(); RooRealVar *poi = (RooRealVar*)poiSet->first(); std::cout << "StandardHypoTestInvDemo : POI initial value: " << poi->GetName() << " = " << poi->getVal() << std::endl; // fit the data first (need to use constraint ) TStopwatch tw; bool doFit = initialFit; if (testStatType == 0 && initialFit == -1) doFit = false; // case of LEP test statistic if (type == 3 && initialFit == -1) doFit = false; // case of Asymptoticcalculator with nominal Asimov double poihat = 0; if (minimizerType.size()==0) minimizerType = ROOT::Math::MinimizerOptions::DefaultMinimizerType(); else ROOT::Math::MinimizerOptions::SetDefaultMinimizer(minimizerType.c_str()); Info("StandardHypoTestInvDemo","Using %s as minimizer for computing the test statistic", ROOT::Math::MinimizerOptions::DefaultMinimizerType().c_str() ); if (doFit) { // do the fit : By doing a fit the POI snapshot (for S+B) is set to the fit value // and the nuisance parameters nominal values will be set to the fit value. // This is relevant when using LEP test statistics Info( "StandardHypoTestInvDemo"," Doing a first fit to the observed data "); RooArgSet constrainParams; if (sbModel->GetNuisanceParameters() ) constrainParams.add(*sbModel->GetNuisanceParameters()); RooStats::RemoveConstantParameters(&constrainParams); tw.Start(); RooFitResult * fitres = sbModel->GetPdf()->fitTo(*data,InitialHesse(false), Hesse(false), Minimizer(minimizerType.c_str(),"Migrad"), Strategy(0), PrintLevel(mPrintLevel), Constrain(constrainParams), Save(true) ); if (fitres->status() != 0) { Warning("StandardHypoTestInvDemo","Fit to the model failed - try with strategy 1 and perform first an Hesse computation"); fitres = sbModel->GetPdf()->fitTo(*data,InitialHesse(true), Hesse(false),Minimizer(minimizerType.c_str(),"Migrad"), Strategy(1), PrintLevel(mPrintLevel+1), Constrain(constrainParams), Save(true) ); } if (fitres->status() != 0) Warning("StandardHypoTestInvDemo"," Fit still failed - continue anyway....."); poihat = poi->getVal(); std::cout << "StandardHypoTestInvDemo - Best Fit value : " << poi->GetName() << " = " << poihat << " +/- " << poi->getError() << std::endl; std::cout << "Time for fitting : "; tw.Print(); //save best fit value in the poi snapshot sbModel->SetSnapshot(*sbModel->GetParametersOfInterest()); std::cout << "StandardHypoTestInvo: snapshot of S+B Model " << sbModel->GetName() << " is set to the best fit value" << std::endl; } // print a message in case of LEP test statistics because it affects result by doing or not doing a fit if (testStatType == 0) { if (!doFit) Info("StandardHypoTestInvDemo","Using LEP test statistic - an initial fit is not done and the TS will use the nuisances at the model value"); else Info("StandardHypoTestInvDemo","Using LEP test statistic - an initial fit has been done and the TS will use the nuisances at the best fit value"); } // build test statistics and hypotest calculators for running the inverter SimpleLikelihoodRatioTestStat slrts(*sbModel->GetPdf(),*bModel->GetPdf()); // null parameters must includes snapshot of poi plus the nuisance values RooArgSet nullParams(*sbModel->GetSnapshot()); if (sbModel->GetNuisanceParameters()) nullParams.add(*sbModel->GetNuisanceParameters()); if (sbModel->GetSnapshot()) slrts.SetNullParameters(nullParams); RooArgSet altParams(*bModel->GetSnapshot()); if (bModel->GetNuisanceParameters()) altParams.add(*bModel->GetNuisanceParameters()); if (bModel->GetSnapshot()) slrts.SetAltParameters(altParams); // ratio of profile likelihood - need to pass snapshot for the alt RatioOfProfiledLikelihoodsTestStat ropl(*sbModel->GetPdf(), *bModel->GetPdf(), bModel->GetSnapshot()); ropl.SetSubtractMLE(false); if (testStatType == 11) ropl.SetSubtractMLE(true); ropl.SetPrintLevel(mPrintLevel); ropl.SetMinimizer(minimizerType.c_str()); ProfileLikelihoodTestStat profll(*sbModel->GetPdf()); if (testStatType == 3) profll.SetOneSided(true); if (testStatType == 4) profll.SetSigned(true); profll.SetMinimizer(minimizerType.c_str()); profll.SetPrintLevel(mPrintLevel); profll.SetReuseNLL(mOptimize); slrts.SetReuseNLL(mOptimize); ropl.SetReuseNLL(mOptimize); if (mOptimize) { profll.SetStrategy(0); ropl.SetStrategy(0); ROOT::Math::MinimizerOptions::SetDefaultStrategy(0); } if (mMaxPoi > 0) poi->setMax(mMaxPoi); // increase limit MaxLikelihoodEstimateTestStat maxll(*sbModel->GetPdf(),*poi); NumEventsTestStat nevtts; AsymptoticCalculator::SetPrintLevel(mPrintLevel); // create the HypoTest calculator class HypoTestCalculatorGeneric * hc = 0; if (type == 0) hc = new FrequentistCalculator(*data, *bModel, *sbModel); else if (type == 1) hc = new HybridCalculator(*data, *bModel, *sbModel); // else if (type == 2 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, false, mAsimovBins); // else if (type == 3 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, true, mAsimovBins); // for using Asimov data generated with nominal values else if (type == 2 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, false ); else if (type == 3 ) hc = new AsymptoticCalculator(*data, *bModel, *sbModel, true ); // for using Asimov data generated with nominal values else { Error("StandardHypoTestInvDemo","Invalid - calculator type = %d supported values are only :\n\t\t\t 0 (Frequentist) , 1 (Hybrid) , 2 (Asymptotic) ",type); return 0; } // set the test statistic TestStatistic * testStat = 0; if (testStatType == 0) testStat = &slrts; if (testStatType == 1 || testStatType == 11) testStat = &ropl; if (testStatType == 2 || testStatType == 3 || testStatType == 4) testStat = &profll; if (testStatType == 5) testStat = &maxll; if (testStatType == 6) testStat = &nevtts; if (testStat == 0) { Error("StandardHypoTestInvDemo","Invalid - test statistic type = %d supported values are only :\n\t\t\t 0 (SLR) , 1 (Tevatron) , 2 (PLR), 3 (PLR1), 4(MLE)",testStatType); return 0; } ToyMCSampler *toymcs = (ToyMCSampler*)hc->GetTestStatSampler(); if (toymcs && (type == 0 || type == 1) ) { // look if pdf is number counting or extended if (sbModel->GetPdf()->canBeExtended() ) { if (useNumberCounting) Warning("StandardHypoTestInvDemo","Pdf is extended: but number counting flag is set: ignore it "); } else { // for not extended pdf if (!useNumberCounting ) { int nEvents = data->numEntries(); Info("StandardHypoTestInvDemo","Pdf is not extended: number of events to generate taken from observed data set is %d",nEvents); toymcs->SetNEventsPerToy(nEvents); } else { Info("StandardHypoTestInvDemo","using a number counting pdf"); toymcs->SetNEventsPerToy(1); } } toymcs->SetTestStatistic(testStat); if (data->isWeighted() && !mGenerateBinned) { Info("StandardHypoTestInvDemo","Data set is weighted, nentries = %d and sum of weights = %8.1f but toy generation is unbinned - it would be faster to set mGenerateBinned to true\n",data->numEntries(), data->sumEntries()); } toymcs->SetGenerateBinned(mGenerateBinned); toymcs->SetUseMultiGen(mOptimize); if (mGenerateBinned && sbModel->GetObservables()->getSize() > 2) { Warning("StandardHypoTestInvDemo","generate binned is activated but the number of ovservable is %d. Too much memory could be needed for allocating all the bins",sbModel->GetObservables()->getSize() ); } // set the random seed if needed if (mRandomSeed >= 0) RooRandom::randomGenerator()->SetSeed(mRandomSeed); } // specify if need to re-use same toys if (reuseAltToys) { hc->UseSameAltToys(); } if (type == 1) { HybridCalculator *hhc = dynamic_cast<HybridCalculator*> (hc); assert(hhc); hhc->SetToys(ntoys,ntoys/mNToysRatio); // can use less ntoys for b hypothesis // remove global observables from ModelConfig (this is probably not needed anymore in 5.32) bModel->SetGlobalObservables(RooArgSet() ); sbModel->SetGlobalObservables(RooArgSet() ); // check for nuisance prior pdf in case of nuisance parameters if (bModel->GetNuisanceParameters() || sbModel->GetNuisanceParameters() ) { // fix for using multigen (does not work in this case) toymcs->SetUseMultiGen(false); ToyMCSampler::SetAlwaysUseMultiGen(false); RooAbsPdf * nuisPdf = 0; if (nuisPriorName) nuisPdf = w->pdf(nuisPriorName); // use prior defined first in bModel (then in SbModel) if (!nuisPdf) { Info("StandardHypoTestInvDemo","No nuisance pdf given for the HybridCalculator - try to deduce pdf from the model"); if (bModel->GetPdf() && bModel->GetObservables() ) nuisPdf = RooStats::MakeNuisancePdf(*bModel,"nuisancePdf_bmodel"); else nuisPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisancePdf_sbmodel"); } if (!nuisPdf ) { if (bModel->GetPriorPdf()) { nuisPdf = bModel->GetPriorPdf(); Info("StandardHypoTestInvDemo","No nuisance pdf given - try to use %s that is defined as a prior pdf in the B model",nuisPdf->GetName()); } else { Error("StandardHypoTestInvDemo","Cannnot run Hybrid calculator because no prior on the nuisance parameter is specified or can be derived"); return 0; } } assert(nuisPdf); Info("StandardHypoTestInvDemo","Using as nuisance Pdf ... " ); nuisPdf->Print(); const RooArgSet * nuisParams = (bModel->GetNuisanceParameters() ) ? bModel->GetNuisanceParameters() : sbModel->GetNuisanceParameters(); RooArgSet * np = nuisPdf->getObservables(*nuisParams); if (np->getSize() == 0) { Warning("StandardHypoTestInvDemo","Prior nuisance does not depend on nuisance parameters. They will be smeared in their full range"); } delete np; hhc->ForcePriorNuisanceAlt(*nuisPdf); hhc->ForcePriorNuisanceNull(*nuisPdf); } } else if (type == 2 || type == 3) { if (testStatType == 3) ((AsymptoticCalculator*) hc)->SetOneSided(true); if (testStatType != 2 && testStatType != 3) Warning("StandardHypoTestInvDemo","Only the PL test statistic can be used with AsymptoticCalculator - use by default a two-sided PL"); } else if (type == 0 || type == 1) ((FrequentistCalculator*) hc)->SetToys(ntoys,ntoys/mNToysRatio); // Get the result RooMsgService::instance().getStream(1).removeTopic(RooFit::NumIntegration); HypoTestInverter calc(*hc); calc.SetConfidenceLevel(0.95); calc.UseCLs(useCLs); calc.SetVerbose(true); // can speed up using proof-lite if (mUseProof && mNWorkers > 1) { ProofConfig pc(*w, mNWorkers, "", kFALSE); toymcs->SetProofConfig(&pc); // enable proof } if (npoints > 0) { if (poimin > poimax) { // if no min/max given scan between MLE and +4 sigma poimin = int(poihat); poimax = int(poihat + 4 * poi->getError()); } std::cout << "Doing a fixed scan in interval : " << poimin << " , " << poimax << std::endl; calc.SetFixedScan(npoints,poimin,poimax); } else { //poi->setMax(10*int( (poihat+ 10 *poi->getError() )/10 ) ); std::cout << "Doing an automatic scan in interval : " << poi->getMin() << " , " << poi->getMax() << std::endl; } tw.Start(); HypoTestInverterResult * r = calc.GetInterval(); std::cout << "Time to perform limit scan \n"; tw.Print(); if (mRebuild) { calc.SetCloseProof(1); tw.Start(); SamplingDistribution * limDist = calc.GetUpperLimitDistribution(true,mNToyToRebuild); std::cout << "Time to rebuild distributions " << std::endl; tw.Print(); if (limDist) { std::cout << "expected up limit " << limDist->InverseCDF(0.5) << " +/- " << limDist->InverseCDF(0.16) << " " << limDist->InverseCDF(0.84) << "\n"; //update r to a new updated result object containing the rebuilt expected p-values distributions // (it will not recompute the expected limit) if (r) delete r; // need to delete previous object since GetInterval will return a cloned copy r = calc.GetInterval(); } else std::cout << "ERROR : failed to re-build distributions " << std::endl; } return r; }
//put very small data entries in a binned dataset to avoid unphysical pdfs, specifically for H->ZZ->4l RooDataSet* makeData(RooDataSet* orig, RooSimultaneous* simPdf, const RooArgSet* observables, RooRealVar* firstPOI, double mass, double& mu_min) { double max_soverb = 0; mu_min = -10e9; map<string, RooDataSet*> data_map; firstPOI->setVal(0); RooCategory* cat = (RooCategory*)&simPdf->indexCat(); TList* datalist = orig->split(*(RooAbsCategory*)cat, true); TIterator* dataItr = datalist->MakeIterator(); RooAbsData* ds; RooRealVar* weightVar = new RooRealVar("weightVar","weightVar",1); while ((ds = (RooAbsData*)dataItr->Next())) { string typeName(ds->GetName()); cat->setLabel(typeName.c_str()); RooAbsPdf* pdf = simPdf->getPdf(typeName.c_str()); cout << "pdf: " << pdf << endl; RooArgSet* obs = pdf->getObservables(observables); cout << "obs: " << obs << endl; RooArgSet obsAndWeight(*obs, *weightVar); obsAndWeight.add(*cat); stringstream datasetName; datasetName << "newData_" << typeName; RooDataSet* thisData = new RooDataSet(datasetName.str().c_str(),datasetName.str().c_str(), obsAndWeight, WeightVar(*weightVar)); RooRealVar* firstObs = (RooRealVar*)obs->first(); //int ibin = 0; int nrEntries = ds->numEntries(); for (int ib=0;ib<nrEntries;ib++) { const RooArgSet* event = ds->get(ib); const RooRealVar* thisObs = (RooRealVar*)event->find(firstObs->GetName()); firstObs->setVal(thisObs->getVal()); firstPOI->setVal(0); double b = pdf->expectedEvents(*firstObs)*pdf->getVal(obs); firstPOI->setVal(1); double s = pdf->expectedEvents(*firstObs)*pdf->getVal(obs) - b; if (s > 0) { mu_min = max(mu_min, -b/s); double soverb = s/b; if (soverb > max_soverb) { max_soverb = soverb; cout << "Found new max s/b: " << soverb << " in pdf " << pdf->GetName() << " at m = " << thisObs->getVal() << endl; } } if (b == 0 && s != 0) { cout << "Expecting non-zero signal and zero bg at m=" << firstObs->getVal() << " in pdf " << pdf->GetName() << endl; } if (s+b <= 0) { cout << "expecting zero" << endl; continue; } double weight = ds->weight(); if ((typeName.find("ATLAS_H_4mu") != string::npos || typeName.find("ATLAS_H_4e") != string::npos || typeName.find("ATLAS_H_2mu2e") != string::npos || typeName.find("ATLAS_H_2e2mu") != string::npos) && fabs(firstObs->getVal() - mass) < 10 && weight == 0) { cout << "adding event: " << firstObs->getVal() << endl; thisData->add(*event, pow(10., -9.)); } else { //weight = max(pow(10.0, -9), weight); thisData->add(*event, weight); } } data_map[string(ds->GetName())] = (RooDataSet*)thisData; } RooDataSet* newData = new RooDataSet("newData","newData",RooArgSet(*observables, *weightVar), Index(*cat), Import(data_map), WeightVar(*weightVar)); orig->Print(); newData->Print(); //newData->tree()->Scan("*"); return newData; }
void OneSidedFrequentistUpperLimitWithBands(const char* infile = "", const char* workspaceName = "combined", const char* modelConfigName = "ModelConfig", const char* dataName = "obsData") { double confidenceLevel=0.95; int nPointsToScan = 20; int nToyMC = 200; // ------------------------------------------------------- // First part is just to access a user-defined file // or create the standard example file if it doesn't exist const char* filename = ""; if (!strcmp(infile,"")) { filename = "results/example_combined_GaussExample_model.root"; bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code // if file does not exists generate with histfactory if (!fileExist) { #ifdef _WIN32 cout << "HistFactory file cannot be generated on Windows - exit" << endl; return; #endif // Normally this would be run on the command line cout <<"will run standard hist2workspace example"<<endl; gROOT->ProcessLine(".! prepareHistFactory ."); gROOT->ProcessLine(".! hist2workspace config/example.xml"); cout <<"\n\n---------------------"<<endl; cout <<"Done creating example input"<<endl; cout <<"---------------------\n\n"<<endl; } } else filename = infile; // Try to open the file TFile *file = TFile::Open(filename); // if input file was specified byt not found, quit if(!file ){ cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl; return; } // ------------------------------------------------------- // Now get the data and workspace // get the workspace out of the file RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName); if(!w){ cout <<"workspace not found" << endl; return; } // get the modelConfig out of the file ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName); // get the modelConfig out of the file RooAbsData* data = w->data(dataName); // make sure ingredients are found if(!data || !mc){ w->Print(); cout << "data or ModelConfig was not found" <<endl; return; } // ------------------------------------------------------- // Now get the POI for convenience // you may want to adjust the range of your POI RooRealVar* firstPOI = (RooRealVar*) mc->GetParametersOfInterest()->first(); /* firstPOI->setMin(0);*/ /* firstPOI->setMax(10);*/ // -------------------------------------------- // Create and use the FeldmanCousins tool // to find and plot the 95% confidence interval // on the parameter of interest as specified // in the model config // REMEMBER, we will change the test statistic // so this is NOT a Feldman-Cousins interval FeldmanCousins fc(*data,*mc); fc.SetConfidenceLevel(confidenceLevel); /* fc.AdditionalNToysFactor(0.25); // degrade/improve sampling that defines confidence belt*/ /* fc.UseAdaptiveSampling(true); // speed it up a bit, don't use for expected limits*/ fc.SetNBins(nPointsToScan); // set how many points per parameter of interest to scan fc.CreateConfBelt(true); // save the information in the belt for plotting // ------------------------------------------------------- // Feldman-Cousins is a unified limit by definition // but the tool takes care of a few things for us like which values // of the nuisance parameters should be used to generate toys. // so let's just change the test statistic and realize this is // no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction. /* ProfileLikelihoodTestStatModified onesided(*mc->GetPdf());*/ /* fc.GetTestStatSampler()->SetTestStatistic(&onesided);*/ /* ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true); */ ToyMCSampler* toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler(); ProfileLikelihoodTestStat* testStat = dynamic_cast<ProfileLikelihoodTestStat*>(toymcsampler->GetTestStatistic()); testStat->SetOneSided(true); // Since this tool needs to throw toy MC the PDF needs to be // extended or the tool needs to know how many entries in a dataset // per pseudo experiment. // In the 'number counting form' where the entries in the dataset // are counts, and not values of discriminating variables, the // datasets typically only have one entry and the PDF is not // extended. if(!mc->GetPdf()->canBeExtended()){ if(data->numEntries()==1) fc.FluctuateNumDataEntries(false); else cout <<"Not sure what to do about this model" <<endl; } // We can use PROOF to speed things along in parallel // However, the test statistic has to be installed on the workers // so either turn off PROOF or include the modified test statistic // in your `$ROOTSYS/roofit/roostats/inc` directory, // add the additional line to the LinkDef.h file, // and recompile root. if (useProof) { ProofConfig pc(*w, nworkers, "", false); toymcsampler->SetProofConfig(&pc); // enable proof } if(mc->GetGlobalObservables()){ cout << "will use global observables for unconditional ensemble"<<endl; mc->GetGlobalObservables()->Print(); toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables()); } // Now get the interval PointSetInterval* interval = fc.GetInterval(); ConfidenceBelt* belt = fc.GetConfidenceBelt(); // print out the interval on the first Parameter of Interest cout << "\n95% interval on " <<firstPOI->GetName()<<" is : ["<< interval->LowerLimit(*firstPOI) << ", "<< interval->UpperLimit(*firstPOI) <<"] "<<endl; // get observed UL and value of test statistic evaluated there RooArgSet tmpPOI(*firstPOI); double observedUL = interval->UpperLimit(*firstPOI); firstPOI->setVal(observedUL); double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data,tmpPOI); // Ask the calculator which points were scanned RooDataSet* parameterScan = (RooDataSet*) fc.GetPointsToScan(); RooArgSet* tmpPoint; // make a histogram of parameter vs. threshold TH1F* histOfThresholds = new TH1F("histOfThresholds","", parameterScan->numEntries(), firstPOI->getMin(), firstPOI->getMax()); histOfThresholds->GetXaxis()->SetTitle(firstPOI->GetName()); histOfThresholds->GetYaxis()->SetTitle("Threshold"); // loop through the points that were tested and ask confidence belt // what the upper/lower thresholds were. // For FeldmanCousins, the lower cut off is always 0 for(Int_t i=0; i<parameterScan->numEntries(); ++i){ tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp"); //cout <<"get threshold"<<endl; double arMax = belt->GetAcceptanceRegionMax(*tmpPoint); double poiVal = tmpPoint->getRealValue(firstPOI->GetName()) ; histOfThresholds->Fill(poiVal,arMax); } TCanvas* c1 = new TCanvas(); c1->Divide(2); c1->cd(1); histOfThresholds->SetMinimum(0); histOfThresholds->Draw(); c1->cd(2); // ------------------------------------------------------- // Now we generate the expected bands and power-constraint // First: find parameter point for mu=0, with conditional MLEs for nuisance parameters RooAbsReal* nll = mc->GetPdf()->createNLL(*data); RooAbsReal* profile = nll->createProfile(*mc->GetParametersOfInterest()); firstPOI->setVal(0.); profile->getVal(); // this will do fit and set nuisance parameters to profiled values RooArgSet* poiAndNuisance = new RooArgSet(); if(mc->GetNuisanceParameters()) poiAndNuisance->add(*mc->GetNuisanceParameters()); poiAndNuisance->add(*mc->GetParametersOfInterest()); w->saveSnapshot("paramsToGenerateData",*poiAndNuisance); RooArgSet* paramsToGenerateData = (RooArgSet*) poiAndNuisance->snapshot(); cout << "\nWill use these parameter points to generate pseudo data for bkg only" << endl; paramsToGenerateData->Print("v"); RooArgSet unconditionalObs; unconditionalObs.add(*mc->GetObservables()); unconditionalObs.add(*mc->GetGlobalObservables()); // comment this out for the original conditional ensemble double CLb=0; double CLbinclusive=0; // Now we generate background only and find distribution of upper limits TH1F* histOfUL = new TH1F("histOfUL","",100,0,firstPOI->getMax()); histOfUL->GetXaxis()->SetTitle("Upper Limit (background only)"); histOfUL->GetYaxis()->SetTitle("Entries"); for(int imc=0; imc<nToyMC; ++imc){ // set parameters back to values for generating pseudo data // cout << "\n get current nuis, set vals, print again" << endl; w->loadSnapshot("paramsToGenerateData"); // poiAndNuisance->Print("v"); RooDataSet* toyData = 0; // now generate a toy dataset if(!mc->GetPdf()->canBeExtended()){ if(data->numEntries()==1) toyData = mc->GetPdf()->generate(*mc->GetObservables(),1); else cout <<"Not sure what to do about this model" <<endl; } else{ // cout << "generating extended dataset"<<endl; toyData = mc->GetPdf()->generate(*mc->GetObservables(),Extended()); } // generate global observables // need to be careful for simpdf // RooDataSet* globalData = mc->GetPdf()->generate(*mc->GetGlobalObservables(),1); RooSimultaneous* simPdf = dynamic_cast<RooSimultaneous*>(mc->GetPdf()); if(!simPdf){ RooDataSet *one = mc->GetPdf()->generate(*mc->GetGlobalObservables(), 1); const RooArgSet *values = one->get(); RooArgSet *allVars = mc->GetPdf()->getVariables(); *allVars = *values; delete allVars; delete values; delete one; } else { //try fix for sim pdf TIterator* iter = simPdf->indexCat().typeIterator() ; RooCatType* tt = NULL; while((tt=(RooCatType*) iter->Next())) { // Get pdf associated with state from simpdf RooAbsPdf* pdftmp = simPdf->getPdf(tt->GetName()) ; // Generate only global variables defined by the pdf associated with this state RooArgSet* globtmp = pdftmp->getObservables(*mc->GetGlobalObservables()) ; RooDataSet* tmp = pdftmp->generate(*globtmp,1) ; // Transfer values to output placeholder *globtmp = *tmp->get(0) ; // Cleanup delete globtmp ; delete tmp ; } } // globalData->Print("v"); // unconditionalObs = *globalData->get(); // mc->GetGlobalObservables()->Print("v"); // delete globalData; // cout << "toy data = " << endl; // toyData->get()->Print("v"); // get test stat at observed UL in observed data firstPOI->setVal(observedUL); double toyTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI); // toyData->get()->Print("v"); // cout <<"obsTSatObsUL " <<obsTSatObsUL << "toyTS " << toyTSatObsUL << endl; if(obsTSatObsUL < toyTSatObsUL) // not sure about <= part yet CLb+= (1.)/nToyMC; if(obsTSatObsUL <= toyTSatObsUL) // not sure about <= part yet CLbinclusive+= (1.)/nToyMC; // loop over points in belt to find upper limit for this toy data double thisUL = 0; for(Int_t i=0; i<parameterScan->numEntries(); ++i){ tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp"); double arMax = belt->GetAcceptanceRegionMax(*tmpPoint); firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) ); // double thisTS = profile->getVal(); double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI); // cout << "poi = " << firstPOI->getVal() // << " max is " << arMax << " this profile = " << thisTS << endl; // cout << "thisTS = " << thisTS<<endl; if(thisTS<=arMax){ thisUL = firstPOI->getVal(); } else{ break; } } /* // loop over points in belt to find upper limit for this toy data double thisUL = 0; for(Int_t i=0; i<histOfThresholds->GetNbinsX(); ++i){ tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp"); cout <<"---------------- "<<i<<endl; tmpPoint->Print("v"); cout << "from hist " << histOfThresholds->GetBinCenter(i+1) <<endl; double arMax = histOfThresholds->GetBinContent(i+1); // cout << " threhold from Hist = aMax " << arMax<<endl; // double arMax2 = belt->GetAcceptanceRegionMax(*tmpPoint); // cout << "from scan arMax2 = "<< arMax2 << endl; // not the same due to TH1F not TH1D // cout << "scan - hist" << arMax2-arMax << endl; firstPOI->setVal( histOfThresholds->GetBinCenter(i+1)); // double thisTS = profile->getVal(); double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI); // cout << "poi = " << firstPOI->getVal() // << " max is " << arMax << " this profile = " << thisTS << endl; // cout << "thisTS = " << thisTS<<endl; // NOTE: need to add a small epsilon term for single precision vs. double precision if(thisTS<=arMax + 1e-7){ thisUL = firstPOI->getVal(); } else{ break; } } */ histOfUL->Fill(thisUL); // for few events, data is often the same, and UL is often the same // cout << "thisUL = " << thisUL<<endl; delete toyData; } histOfUL->Draw(); c1->SaveAs("one-sided_upper_limit_output.pdf"); // if you want to see a plot of the sampling distribution for a particular scan point: /* SamplingDistPlot sampPlot; int indexInScan = 0; tmpPoint = (RooArgSet*) parameterScan->get(indexInScan)->clone("temp"); firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) ); toymcsampler->SetParametersForTestStat(tmpPOI); SamplingDistribution* samp = toymcsampler->GetSamplingDistribution(*tmpPoint); sampPlot.AddSamplingDistribution(samp); sampPlot.Draw(); */ // Now find bands and power constraint Double_t* bins = histOfUL->GetIntegral(); TH1F* cumulative = (TH1F*) histOfUL->Clone("cumulative"); cumulative->SetContent(bins); double band2sigDown, band1sigDown, bandMedian, band1sigUp,band2sigUp; for(int i=1; i<=cumulative->GetNbinsX(); ++i){ if(bins[i]<RooStats::SignificanceToPValue(2)) band2sigDown=cumulative->GetBinCenter(i); if(bins[i]<RooStats::SignificanceToPValue(1)) band1sigDown=cumulative->GetBinCenter(i); if(bins[i]<0.5) bandMedian=cumulative->GetBinCenter(i); if(bins[i]<RooStats::SignificanceToPValue(-1)) band1sigUp=cumulative->GetBinCenter(i); if(bins[i]<RooStats::SignificanceToPValue(-2)) band2sigUp=cumulative->GetBinCenter(i); } cout << "-2 sigma band " << band2sigDown << endl; cout << "-1 sigma band " << band1sigDown << " [Power Constraint)]" << endl; cout << "median of band " << bandMedian << endl; cout << "+1 sigma band " << band1sigUp << endl; cout << "+2 sigma band " << band2sigUp << endl; // print out the interval on the first Parameter of Interest cout << "\nobserved 95% upper-limit "<< interval->UpperLimit(*firstPOI) <<endl; cout << "CLb strict [P(toy>obs|0)] for observed 95% upper-limit "<< CLb <<endl; cout << "CLb inclusive [P(toy>=obs|0)] for observed 95% upper-limit "<< CLbinclusive <<endl; delete profile; delete nll; }
void StandardHypoTestDemo(const char* infile = "", const char* workspaceName = "combined", const char* modelSBName = "ModelConfig", const char* modelBName = "", const char* dataName = "obsData", int calcType = 0, // 0 freq 1 hybrid, 2 asymptotic int testStatType = 3, // 0 LEP, 1 TeV, 2 LHC, 3 LHC - one sided int ntoys = 5000, bool useNC = false, const char * nuisPriorName = 0) { /* Other Parameter to pass in tutorial apart from standard for filename, ws, modelconfig and data type = 0 Freq calculator type = 1 Hybrid calculator type = 2 Asymptotic calculator testStatType = 0 LEP = 1 Tevatron = 2 Profile Likelihood = 3 Profile Likelihood one sided (i.e. = 0 if mu < mu_hat) ntoys: number of toys to use useNumberCounting: set to true when using number counting events nuisPriorName: name of prior for the nnuisance. This is often expressed as constraint term in the global model It is needed only when using the HybridCalculator (type=1) If not given by default the prior pdf from ModelConfig is used. extra options are available as global paramwters of the macro. They major ones are: generateBinned generate binned data sets for toys (default is false) - be careful not to activate with a too large (>=3) number of observables nToyRatio ratio of S+B/B toys (default is 2) printLevel */ // disable - can cause some problems //ToyMCSampler::SetAlwaysUseMultiGen(true); SimpleLikelihoodRatioTestStat::SetAlwaysReuseNLL(true); ProfileLikelihoodTestStat::SetAlwaysReuseNLL(true); RatioOfProfiledLikelihoodsTestStat::SetAlwaysReuseNLL(true); //RooRandom::randomGenerator()->SetSeed(0); // to change minimizers // ROOT::Math::MinimizerOptions::SetDefaultStrategy(0); // ROOT::Math::MinimizerOptions::SetDefaultMinimizer("Minuit2"); // ROOT::Math::MinimizerOptions::SetDefaultTolerance(1); ///////////////////////////////////////////////////////////// // First part is just to access a user-defined file // or create the standard example file if it doesn't exist //////////////////////////////////////////////////////////// const char* filename = ""; if (!strcmp(infile,"")) filename = "results/example_combined_GaussExample_model.root"; else filename = infile; // Check if example input file exists TFile *file = TFile::Open(filename); // if input file was specified byt not found, quit if(!file && strcmp(infile,"")){ cout <<"file not found" << endl; return; } // if default file not found, try to create it if(!file ){ // Normally this would be run on the command line cout <<"will run standard hist2workspace example"<<endl; gROOT->ProcessLine(".! prepareHistFactory ."); gROOT->ProcessLine(".! hist2workspace config/example.xml"); cout <<"\n\n---------------------"<<endl; cout <<"Done creating example input"<<endl; cout <<"---------------------\n\n"<<endl; } // now try to access the file again file = TFile::Open(filename); if(!file){ // if it is still not there, then we can't continue cout << "Not able to run hist2workspace to create example input" <<endl; return; } ///////////////////////////////////////////////////////////// // Tutorial starts here //////////////////////////////////////////////////////////// // get the workspace out of the file RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName); if(!w){ cout <<"workspace not found" << endl; return; } w->Print(); // get the modelConfig out of the file ModelConfig* sbModel = (ModelConfig*) w->obj(modelSBName); // get the modelConfig out of the file RooAbsData* data = w->data(dataName); // make sure ingredients are found if(!data || !sbModel){ w->Print(); cout << "data or ModelConfig was not found" <<endl; return; } // make b model ModelConfig* bModel = (ModelConfig*) w->obj(modelBName); // case of no systematics // remove nuisance parameters from model if (noSystematics) { const RooArgSet * nuisPar = sbModel->GetNuisanceParameters(); if (nuisPar && nuisPar->getSize() > 0) { std::cout << "StandardHypoTestInvDemo" << " - Switch off all systematics by setting them constant to their initial values" << std::endl; RooStats::SetAllConstant(*nuisPar); } if (bModel) { const RooArgSet * bnuisPar = bModel->GetNuisanceParameters(); if (bnuisPar) RooStats::SetAllConstant(*bnuisPar); } } if (!bModel ) { Info("StandardHypoTestInvDemo","The background model %s does not exist",modelBName); Info("StandardHypoTestInvDemo","Copy it from ModelConfig %s and set POI to zero",modelSBName); bModel = (ModelConfig*) sbModel->Clone(); bModel->SetName(TString(modelSBName)+TString("B_only")); RooRealVar * var = dynamic_cast<RooRealVar*>(bModel->GetParametersOfInterest()->first()); if (!var) return; double oldval = var->getVal(); var->setVal(0); //bModel->SetSnapshot( RooArgSet(*var, *w->var("lumi")) ); bModel->SetSnapshot( RooArgSet(*var) ); var->setVal(oldval); } if (!sbModel->GetSnapshot() || poiValue > 0) { Info("StandardHypoTestDemo","Model %s has no snapshot - make one using model poi",modelSBName); RooRealVar * var = dynamic_cast<RooRealVar*>(sbModel->GetParametersOfInterest()->first()); if (!var) return; double oldval = var->getVal(); if (poiValue > 0) var->setVal(poiValue); //sbModel->SetSnapshot( RooArgSet(*var, *w->var("lumi") ) ); sbModel->SetSnapshot( RooArgSet(*var) ); if (poiValue > 0) var->setVal(oldval); //sbModel->SetSnapshot( *sbModel->GetParametersOfInterest() ); } // part 1, hypothesis testing SimpleLikelihoodRatioTestStat * slrts = new SimpleLikelihoodRatioTestStat(*bModel->GetPdf(), *sbModel->GetPdf()); // null parameters must includes snapshot of poi plus the nuisance values RooArgSet nullParams(*bModel->GetSnapshot()); if (bModel->GetNuisanceParameters()) nullParams.add(*bModel->GetNuisanceParameters()); slrts->SetNullParameters(nullParams); RooArgSet altParams(*sbModel->GetSnapshot()); if (sbModel->GetNuisanceParameters()) altParams.add(*sbModel->GetNuisanceParameters()); slrts->SetAltParameters(altParams); ProfileLikelihoodTestStat * profll = new ProfileLikelihoodTestStat(*bModel->GetPdf()); RatioOfProfiledLikelihoodsTestStat * ropl = new RatioOfProfiledLikelihoodsTestStat(*bModel->GetPdf(), *sbModel->GetPdf(), sbModel->GetSnapshot()); ropl->SetSubtractMLE(false); if (testStatType == 3) profll->SetOneSidedDiscovery(1); profll->SetPrintLevel(printLevel); // profll.SetReuseNLL(mOptimize); // slrts.SetReuseNLL(mOptimize); // ropl.SetReuseNLL(mOptimize); AsymptoticCalculator::SetPrintLevel(printLevel); HypoTestCalculatorGeneric * hypoCalc = 0; // note here Null is B and Alt is S+B if (calcType == 0) hypoCalc = new FrequentistCalculator(*data, *sbModel, *bModel); else if (calcType == 1) hypoCalc= new HybridCalculator(*data, *sbModel, *bModel); else if (calcType == 2) hypoCalc= new AsymptoticCalculator(*data, *sbModel, *bModel); if (calcType == 0) ((FrequentistCalculator*)hypoCalc)->SetToys(ntoys, ntoys/nToysRatio); if (calcType == 1) ((HybridCalculator*)hypoCalc)->SetToys(ntoys, ntoys/nToysRatio); if (calcType == 2 ) { if (testStatType == 3) ((AsymptoticCalculator*) hypoCalc)->SetOneSidedDiscovery(true); if (testStatType != 2 && testStatType != 3) Warning("StandardHypoTestDemo","Only the PL test statistic can be used with AsymptoticCalculator - use by default a two-sided PL"); } // check for nuisance prior pdf in case of nuisance parameters if (calcType == 1 && (bModel->GetNuisanceParameters() || sbModel->GetNuisanceParameters() )) { RooAbsPdf * nuisPdf = 0; if (nuisPriorName) nuisPdf = w->pdf(nuisPriorName); // use prior defined first in bModel (then in SbModel) if (!nuisPdf) { Info("StandardHypoTestDemo","No nuisance pdf given for the HybridCalculator - try to deduce pdf from the model"); if (bModel->GetPdf() && bModel->GetObservables() ) nuisPdf = RooStats::MakeNuisancePdf(*bModel,"nuisancePdf_bmodel"); else nuisPdf = RooStats::MakeNuisancePdf(*sbModel,"nuisancePdf_sbmodel"); } if (!nuisPdf ) { if (bModel->GetPriorPdf()) { nuisPdf = bModel->GetPriorPdf(); Info("StandardHypoTestDemo","No nuisance pdf given - try to use %s that is defined as a prior pdf in the B model",nuisPdf->GetName()); } else { Error("StandardHypoTestDemo","Cannnot run Hybrid calculator because no prior on the nuisance parameter is specified or can be derived"); return; } } assert(nuisPdf); Info("StandardHypoTestDemo","Using as nuisance Pdf ... " ); nuisPdf->Print(); const RooArgSet * nuisParams = (bModel->GetNuisanceParameters() ) ? bModel->GetNuisanceParameters() : sbModel->GetNuisanceParameters(); RooArgSet * np = nuisPdf->getObservables(*nuisParams); if (np->getSize() == 0) { Warning("StandardHypoTestDemo","Prior nuisance does not depend on nuisance parameters. They will be smeared in their full range"); } delete np; ((HybridCalculator*)hypoCalc)->ForcePriorNuisanceAlt(*nuisPdf); ((HybridCalculator*)hypoCalc)->ForcePriorNuisanceNull(*nuisPdf); } // hypoCalc->ForcePriorNuisanceAlt(*sbModel->GetPriorPdf()); // hypoCalc->ForcePriorNuisanceNull(*bModel->GetPriorPdf()); ToyMCSampler * sampler = (ToyMCSampler *)hypoCalc->GetTestStatSampler(); if (sampler && (calcType == 0 || calcType == 1) ) { // look if pdf is number counting or extended if (sbModel->GetPdf()->canBeExtended() ) { if (useNC) Warning("StandardHypoTestDemo","Pdf is extended: but number counting flag is set: ignore it "); } else { // for not extended pdf if (!useNC) { int nEvents = data->numEntries(); Info("StandardHypoTestDemo","Pdf is not extended: number of events to generate taken from observed data set is %d",nEvents); sampler->SetNEventsPerToy(nEvents); } else { Info("StandardHypoTestDemo","using a number counting pdf"); sampler->SetNEventsPerToy(1); } } if (data->isWeighted() && !generateBinned) { Info("StandardHypoTestDemo","Data set is weighted, nentries = %d and sum of weights = %8.1f but toy generation is unbinned - it would be faster to set generateBinned to true\n",data->numEntries(), data->sumEntries()); } if (generateBinned) sampler->SetGenerateBinned(generateBinned); // set the test statistic if (testStatType == 0) sampler->SetTestStatistic(slrts); if (testStatType == 1) sampler->SetTestStatistic(ropl); if (testStatType == 2 || testStatType == 3) sampler->SetTestStatistic(profll); } HypoTestResult * htr = hypoCalc->GetHypoTest(); htr->SetPValueIsRightTail(true); htr->SetBackgroundAsAlt(false); htr->Print(); // how to get meaningfull CLs at this point? delete sampler; delete slrts; delete ropl; delete profll; if (calcType != 2) { HypoTestPlot * plot = new HypoTestPlot(*htr,100); plot->SetLogYaxis(true); plot->Draw(); } else { std::cout << "Asymptotic results " << std::endl; } // look at expected significances // found median of S+B distribution if (calcType != 2) { SamplingDistribution * altDist = htr->GetAltDistribution(); HypoTestResult htExp("Expected Result"); htExp.Append(htr); // find quantiles in alt (S+B) distribution double p[5]; double q[5]; for (int i = 0; i < 5; ++i) { double sig = -2 + i; p[i] = ROOT::Math::normal_cdf(sig,1); } std::vector<double> values = altDist->GetSamplingDistribution(); TMath::Quantiles( values.size(), 5, &values[0], q, p, false); for (int i = 0; i < 5; ++i) { htExp.SetTestStatisticData( q[i] ); double sig = -2 + i; std::cout << " Expected p -value and significance at " << sig << " sigma = " << htExp.NullPValue() << " significance " << htExp.Significance() << " sigma " << std::endl; } } else { // case of asymptotic calculator for (int i = 0; i < 5; ++i) { double sig = -2 + i; // sigma is inverted here double pval = AsymptoticCalculator::GetExpectedPValues( htr->NullPValue(), htr->AlternatePValue(), -sig, false); std::cout << " Expected p -value and significance at " << sig << " sigma = " << pval << " significance " << ROOT::Math::normal_quantile_c(pval,1) << " sigma " << std::endl; } } }
void StandardHistFactoryPlotsWithCategories(const char* infile = "", const char* workspaceName = "combined", const char* modelConfigName = "ModelConfig", const char* dataName = "obsData"){ double nSigmaToVary=5.; double muVal=0; bool doFit=false; // ------------------------------------------------------- // First part is just to access a user-defined file // or create the standard example file if it doesn't exist const char* filename = ""; if (!strcmp(infile,"")) { filename = "results/example_combined_GaussExample_model.root"; bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code // if file does not exists generate with histfactory if (!fileExist) { #ifdef _WIN32 cout << "HistFactory file cannot be generated on Windows - exit" << endl; return; #endif // Normally this would be run on the command line cout <<"will run standard hist2workspace example"<<endl; gROOT->ProcessLine(".! prepareHistFactory ."); gROOT->ProcessLine(".! hist2workspace config/example.xml"); cout <<"\n\n---------------------"<<endl; cout <<"Done creating example input"<<endl; cout <<"---------------------\n\n"<<endl; } } else filename = infile; // Try to open the file TFile *file = TFile::Open(filename); // if input file was specified byt not found, quit if(!file ){ cout <<"StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl; return; } // ------------------------------------------------------- // Tutorial starts here // ------------------------------------------------------- // get the workspace out of the file RooWorkspace* w = (RooWorkspace*) file->Get(workspaceName); if(!w){ cout <<"workspace not found" << endl; return; } // get the modelConfig out of the file ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName); // get the modelConfig out of the file RooAbsData* data = w->data(dataName); // make sure ingredients are found if(!data || !mc){ w->Print(); cout << "data or ModelConfig was not found" <<endl; return; } // ------------------------------------------------------- // now use the profile inspector RooRealVar* obs = (RooRealVar*)mc->GetObservables()->first(); TList* list = new TList(); RooRealVar * firstPOI = dynamic_cast<RooRealVar*>(mc->GetParametersOfInterest()->first()); firstPOI->setVal(muVal); // firstPOI->setConstant(); if(doFit){ mc->GetPdf()->fitTo(*data); } // ------------------------------------------------------- mc->GetNuisanceParameters()->Print("v"); int nPlotsMax = 1000; cout <<" check expectedData by category"<<endl; RooDataSet* simData=NULL; RooSimultaneous* simPdf = NULL; if(strcmp(mc->GetPdf()->ClassName(),"RooSimultaneous")==0){ cout <<"Is a simultaneous PDF"<<endl; simPdf = (RooSimultaneous *)(mc->GetPdf()); } else { cout <<"Is not a simultaneous PDF"<<endl; } if(doFit) { RooCategory* channelCat = (RooCategory*) (&simPdf->indexCat()); TIterator* iter = channelCat->typeIterator() ; RooCatType* tt = NULL; tt=(RooCatType*) iter->Next(); RooAbsPdf* pdftmp = ((RooSimultaneous*)mc->GetPdf())->getPdf(tt->GetName()) ; RooArgSet* obstmp = pdftmp->getObservables(*mc->GetObservables()) ; obs = ((RooRealVar*)obstmp->first()); RooPlot* frame = obs->frame(); cout <<Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())<<endl; cout << tt->GetName() << " " << channelCat->getLabel() <<endl; data->plotOn(frame,MarkerSize(1),Cut(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())),DataError(RooAbsData::None)); Double_t normCount = data->sumEntries(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())) ; pdftmp->plotOn(frame,LineWidth(2.),Normalization(normCount,RooAbsReal::NumEvent)) ; frame->Draw(); cout <<"expected events = " << mc->GetPdf()->expectedEvents(*data->get()) <<endl; return; } int nPlots=0; if(!simPdf){ TIterator* it = mc->GetNuisanceParameters()->createIterator(); RooRealVar* var = NULL; while( (var = (RooRealVar*) it->Next()) != NULL){ RooPlot* frame = obs->frame(); frame->SetYTitle(var->GetName()); data->plotOn(frame,MarkerSize(1)); var->setVal(0); mc->GetPdf()->plotOn(frame,LineWidth(1.)); var->setVal(1); mc->GetPdf()->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(1)); var->setVal(-1); mc->GetPdf()->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(1)); list->Add(frame); var->setVal(0); } } else { RooCategory* channelCat = (RooCategory*) (&simPdf->indexCat()); // TIterator* iter = simPdf->indexCat().typeIterator() ; TIterator* iter = channelCat->typeIterator() ; RooCatType* tt = NULL; while(nPlots<nPlotsMax && (tt=(RooCatType*) iter->Next())) { cout << "on type " << tt->GetName() << " " << endl; // Get pdf associated with state from simpdf RooAbsPdf* pdftmp = simPdf->getPdf(tt->GetName()) ; // Generate observables defined by the pdf associated with this state RooArgSet* obstmp = pdftmp->getObservables(*mc->GetObservables()) ; // obstmp->Print(); obs = ((RooRealVar*)obstmp->first()); TIterator* it = mc->GetNuisanceParameters()->createIterator(); RooRealVar* var = NULL; while(nPlots<nPlotsMax && (var = (RooRealVar*) it->Next())){ TCanvas* c2 = new TCanvas("c2"); RooPlot* frame = obs->frame(); frame->SetName(Form("frame%d",nPlots)); frame->SetYTitle(var->GetName()); cout <<Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())<<endl; cout << tt->GetName() << " " << channelCat->getLabel() <<endl; data->plotOn(frame,MarkerSize(1),Cut(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())),DataError(RooAbsData::None)); Double_t normCount = data->sumEntries(Form("%s==%s::%s",channelCat->GetName(),channelCat->GetName(),tt->GetName())) ; if(strcmp(var->GetName(),"Lumi")==0){ cout <<"working on lumi"<<endl; var->setVal(w->var("nominalLumi")->getVal()); var->Print(); } else{ var->setVal(0); } // w->allVars().Print("v"); // mc->GetNuisanceParameters()->Print("v"); // pdftmp->plotOn(frame,LineWidth(2.)); // mc->GetPdf()->plotOn(frame,LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data)); //pdftmp->plotOn(frame,LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data)); normCount = pdftmp->expectedEvents(*obs); pdftmp->plotOn(frame,LineWidth(2.),Normalization(normCount,RooAbsReal::NumEvent)) ; if(strcmp(var->GetName(),"Lumi")==0){ cout <<"working on lumi"<<endl; var->setVal(w->var("nominalLumi")->getVal()+0.05); var->Print(); } else{ var->setVal(nSigmaToVary); } // pdftmp->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2)); // mc->GetPdf()->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data)); //pdftmp->plotOn(frame,LineColor(kRed),LineStyle(kDashed),LineWidth(2.),Slice(*channelCat,tt->GetName()),ProjWData(*data)); normCount = pdftmp->expectedEvents(*obs); pdftmp->plotOn(frame,LineWidth(2.),LineColor(kRed),LineStyle(kDashed),Normalization(normCount,RooAbsReal::NumEvent)) ; if(strcmp(var->GetName(),"Lumi")==0){ cout <<"working on lumi"<<endl; var->setVal(w->var("nominalLumi")->getVal()-0.05); var->Print(); } else{ var->setVal(-nSigmaToVary); } // pdftmp->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2)); // mc->GetPdf()->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2),Slice(*channelCat,tt->GetName()),ProjWData(*data)); //pdftmp->plotOn(frame,LineColor(kGreen),LineStyle(kDashed),LineWidth(2),Slice(*channelCat,tt->GetName()),ProjWData(*data)); normCount = pdftmp->expectedEvents(*obs); pdftmp->plotOn(frame,LineWidth(2.),LineColor(kGreen),LineStyle(kDashed),Normalization(normCount,RooAbsReal::NumEvent)) ; // set them back to normal if(strcmp(var->GetName(),"Lumi")==0){ cout <<"working on lumi"<<endl; var->setVal(w->var("nominalLumi")->getVal()); var->Print(); } else{ var->setVal(0); } list->Add(frame); // quit making plots ++nPlots; frame->Draw(); c2->SaveAs(Form("%s_%s_%s.pdf",tt->GetName(),obs->GetName(),var->GetName())); delete c2; } } } // ------------------------------------------------------- // now make plots TCanvas* c1 = new TCanvas("c1","ProfileInspectorDemo",800,200); if(list->GetSize()>4){ double n = list->GetSize(); int nx = (int)sqrt(n) ; int ny = TMath::CeilNint(n/nx); nx = TMath::CeilNint( sqrt(n) ); c1->Divide(ny,nx); } else c1->Divide(list->GetSize()); for(int i=0; i<list->GetSize(); ++i){ c1->cd(i+1); list->At(i)->Draw(); } }
void ptBestFit(float BIN_SIZE=5.0,bool BLIND=false,TString MASS,TString NAME) { gROOT->ProcessLine(".x ../../common/styleCMSTDR.C"); gSystem->Load("libHiggsAnalysisCombinedLimit.so"); gROOT->ForceStyle(); gStyle->SetOptStat(0); gStyle->SetOptTitle(0); gROOT->SetBatch(1); gStyle->SetPadRightMargin(0.04); gStyle->SetPadLeftMargin(0.16); gStyle->SetPadTopMargin(0.06); gStyle->SetPadBottomMargin(0.10); gStyle->SetTitleFont(42,"XY"); gStyle->SetTitleSize(0.0475,"XY"); gStyle->SetTitleOffset(0.9,"X"); gStyle->SetTitleOffset(1.5,"Y"); gStyle->SetLabelSize(0.0375,"XY"); RooMsgService::instance().setSilentMode(kTRUE); for(int i=0;i<2;i++) { RooMsgService::instance().setStreamStatus(i,kFALSE); } float XMIN = 80; float XMAX = 200; TFile *f1 = TFile::Open("datacards/datacard_m"+MASS+"_"+NAME+".root"); TFile *f2 = TFile::Open("combine/mlfit.vbfHbb_"+NAME+"_mH"+MASS+".root"); TFile *f3 = TFile::Open("root/sig_shapes_workspace_B80-200.root"); TFile *f4 = TFile::Open("root/data_shapes_workspace_"+NAME+".root"); RooWorkspace *w = (RooWorkspace*)f1->Get("w"); //w->Print(); RooAbsPdf *bkg_model = (RooAbsPdf*)w->pdf("model_s"); RooFitResult *res_s = (RooFitResult*)f2->Get("fit_s"); RooFitResult *res_b = (RooFitResult*)f2->Get("fit_b"); RooRealVar *rFit = dynamic_cast<RooRealVar *>(res_s->floatParsFinal()).find("r"); RooDataSet *data = (RooDataSet*)w->data("data_obs"); int nparS=0,nparB=0; cout << res_s->floatParsFinal().getSize() << endl; cout << res_b->floatParsFinal().getSize() << endl; nparS = res_s->floatParsFinal().getSize(); nparB = res_b->floatParsFinal().getSize(); float chi2sumS = 0.; float chi2sumB = 0.; int nparsum = 0; // if (BLIND) { // res_b->Print(); // } // else { // res_s->Print(); // } w->allVars().assignValueOnly(res_s->floatParsFinal()); // w->Print(); // w->allVars()->Print(); RooWorkspace *wSig = (RooWorkspace*)f3->Get("w"); RooWorkspace *wDat = (RooWorkspace*)f4->Get("w"); const RooSimultaneous *sim = dynamic_cast<const RooSimultaneous *> (bkg_model); const RooAbsCategoryLValue &cat = (RooAbsCategoryLValue &) sim->indexCat(); TList *datasets = data->split(cat,true); TIter next(datasets); //int count = 0; for(RooAbsData *ds = (RooAbsData*)next();ds != 0; ds = (RooAbsData*)next()) { //if (count > 0) return 0; //count++; RooAbsPdf *pdfi = sim->getPdf(ds->GetName()); RooArgSet *obs = (RooArgSet*)pdfi->getObservables(ds); RooRealVar *x = dynamic_cast<RooRealVar *>(obs->first()); RooRealVar *yield_vbf = (RooRealVar*)wSig->var("yield_signalVBF_mass"+MASS+"_"+TString(ds->GetName())); RooRealVar *yield_gf = (RooRealVar*)wSig->var("yield_signalGF_mass"+MASS+"_"+TString(ds->GetName())); TString ds_name(ds->GetName()); //----- get the QCD normalization ----------- RooRealVar *qcd_norm_final = dynamic_cast<RooRealVar *>(res_s->floatParsFinal()).find("CMS_vbfbb_qcd_norm_"+ds_name); RooRealVar *qcd_yield = (RooRealVar*)wDat->var("yield_data_"+ds_name); float Nqcd = exp(log(1.5)*qcd_norm_final->getVal())*qcd_yield->getVal(); float eNqcd = log(1.5)*qcd_norm_final->getError()*Nqcd; cout<<"QCD normalization = "<<Nqcd<<" +/- "<<eNqcd<<endl; TH1 *hCoarse = (TH1*)ds->createHistogram("coarseHisto_"+ds_name,*x); float norm = hCoarse->Integral(); int rebin = BIN_SIZE/hCoarse->GetBinWidth(1); hCoarse->Rebin(rebin); float MIN_VAL = TMath::Max(0.9*hCoarse->GetBinContent(hCoarse->GetMinimumBin()),1.0); float MAX_VAL = 1.3*hCoarse->GetBinContent(hCoarse->GetMaximumBin()); RooDataHist ds_coarse("ds_coarse_"+ds_name,"ds_coarse_"+ds_name,*x,hCoarse); TH1F *hBlind = (TH1F*)hCoarse->Clone("blindHisto_"+ds_name); for(int i=0;i<hBlind->GetNbinsX();i++) { double x0 = hBlind->GetBinCenter(i+1); if (x0 > 100 && x0 < 150) { hBlind->SetBinContent(i+1,0); hBlind->SetBinError(i+1,0); } } RooDataHist ds_blind("ds_blind_"+ds_name,"ds_blind_"+ds_name,*x,hBlind); RooHist *hresid,*hresid0; RooPlot *frame1 = x->frame(); RooPlot *frame2 = x->frame(); if (BLIND) { //cout << "Blind case: " << ds_coarse.GetName() << endl; ds_coarse.plotOn(frame1,LineColor(0),MarkerColor(0)); pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name),VisualizeError(*res_s,1,kTRUE),FillColor(0),MoveToBack()); pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name),LineWidth(2),LineStyle(3)); ds_blind.plotOn(frame1); hresid = frame1->residHist(); frame2->addPlotable(hresid,"pE1"); } else { //cout << "Non-blind case: " << ds_coarse.GetName() << endl; ds_coarse.plotOn(frame1); pdfi->plotOn(frame1); //cout << pdfi->getParameters(ds_coarse)->selectByAttrib("Constant",kFALSE)->getSize() << endl; cout<<"chi2/ndof (bkg+sig) = "<<frame1->chiSquare()<<endl; cout << ds_coarse.numEntries() << endl; chi2sumS += frame1->chiSquare()*ds_coarse.numEntries(); nparsum += ds_coarse.numEntries(); //hresid0 = frame1->residHist(); //pdfi->plotOn(frame1,VisualizeError(*res_s,1,kTRUE),FillColor(0),MoveToBack()); pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name),LineWidth(2),LineStyle(5),LineColor(kGreen+2)); pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name),LineWidth(2),LineStyle(2),LineColor(kBlack)); cout<<"chi2/ndof (bkg) = "<<frame1->chiSquare()<<endl; chi2sumB += frame1->chiSquare()*ds_coarse.numEntries(); pdfi->plotOn(frame1,Components("shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name),LineWidth(2),LineStyle(2),LineColor(kBlack),VisualizeError(*res_s,1,kTRUE),FillColor(0),MoveToBack()); hresid = frame1->residHist(); frame2->addPlotable(hresid,"pE1"); float yield_sig = rFit->getValV()*(yield_vbf->getValV()+yield_gf->getValV()); RooAbsPdf *signal_pdf = (RooAbsPdf*)w->pdf("shapeSig_qqH_"+ds_name); signal_pdf->plotOn(frame2,LineWidth(2),LineColor(kRed),Normalization(yield_sig,RooAbsReal::NumEvent),MoveToBack()); } // hresid0->Print(); // hresid->Print(); // double x2,y2; // for (int i=0; i<3; ++i) { // hresid0->GetPoint(i,x2,y2); // cout << "BKG+SIG\t" << x2 << "\t" << y2 << endl; // hresid->GetPoint(i,x2,y2); // cout << "BKG\t" << x2 << "\t" << y2 << endl; // ds_coarse.get(i); // cout << ds_coarse.weightError(RooAbsData::SumW2) << endl; // cout << endl; // } TCanvas* canFit = new TCanvas("Higgs_fit_"+ds_name,"Higgs_fit_"+ds_name,900,750); canFit->cd(1)->SetBottomMargin(0.4); frame1->SetMinimum(MIN_VAL); frame1->SetMaximum(MAX_VAL); frame1->GetYaxis()->SetNdivisions(510); frame1->GetXaxis()->SetTitleSize(0); frame1->GetXaxis()->SetLabelSize(0); frame1->GetYaxis()->SetTitle(TString::Format("Events / %1.1f GeV",BIN_SIZE)); frame1->Draw(); gPad->Update(); TList *list = (TList*)gPad->GetListOfPrimitives(); //list->Print(); TH1F *hUncH = new TH1F("hUncH"+ds_name,"hUncH"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX); TH1F *hUncL = new TH1F("hUncL"+ds_name,"hUncL"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX); TH1F *hUnc2H = new TH1F("hUnc2H"+ds_name,"hUnc2H"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX); TH1F *hUnc2L = new TH1F("hUnc2L"+ds_name,"hUnc2L"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX); TH1F *hUncC = new TH1F("hUncC"+ds_name,"hUncC"+ds_name,(XMAX-XMIN)/BIN_SIZE,XMIN,XMAX); RooCurve *errorBand,*gFit,*gQCDFit,*gBkgFit; //list->Print(); if (BLIND) { errorBand = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]_errorband_Comp[shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name+"]"); gFit = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]"+"_Comp[shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name+"]"); } else { //errorBand = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]_errorband"); errorBand = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]_errorband_Comp[shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name+"]"); gFit = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]"); } gQCDFit = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]"+"_Comp[shapeBkg_qcd_"+ds_name+"]"); gBkgFit = (RooCurve*)list->FindObject("pdf_bin"+ds_name+"_Norm[mbbReg_"+ds_name+"]"+"_Comp[shapeBkg_qcd_"+ds_name+",shapeBkg_top_"+ds_name+",shapeBkg_zjets_"+ds_name+"]"); for(int i=0;i<hUncH->GetNbinsX();i++) { double x0 = hUncH->GetBinCenter(i+1); double e1 = fabs(errorBand->Eval(x0)-gBkgFit->Eval(x0)); //double e1 = fabs(errorBand->Eval(x0)-gFit->Eval(x0)); double e2 = eNqcd/hUncH->GetNbinsX(); hUncH->SetBinContent(i+1,sqrt(pow(e2,2)+pow(e1,2))); hUnc2H->SetBinContent(i+1,2*sqrt(pow(e2,2)+pow(e1,2))); hUncL->SetBinContent(i+1,-sqrt(pow(e2,2)+pow(e1,2))); hUnc2L->SetBinContent(i+1,-2*sqrt(pow(e2,2)+pow(e1,2))); hUncC->SetBinContent(i+1,0.); } TPad* pad = new TPad("pad", "pad", 0., 0., 1., 1.); pad->SetTopMargin(0.63); pad->SetFillColor(0); pad->SetFillStyle(0); pad->Draw(); pad->cd(0); hUnc2H->GetXaxis()->SetTitle("m_{bb} (GeV)"); hUnc2H->GetYaxis()->SetTitle("Data - Bkg"); //hUnc2H->GetYaxis()->SetTitle("Data - Fit"); double YMAX = 1.1*frame2->GetMaximum(); double YMIN = -1.1*frame2->GetMaximum(); hUnc2H->GetYaxis()->SetRangeUser(YMIN,YMAX); hUnc2H->GetYaxis()->SetNdivisions(507); // hUnc2H->GetXaxis()->SetTitleOffset(0.9); // hUnc2H->GetYaxis()->SetTitleOffset(1.0); hUnc2H->GetYaxis()->SetTickLength(0.0); // hUnc2H->GetYaxis()->SetTitleSize(0.05); // hUnc2H->GetYaxis()->SetLabelSize(0.04); hUnc2H->GetYaxis()->CenterTitle(kTRUE); hUnc2H->SetFillColor(kGreen); hUnc2L->SetFillColor(kGreen); hUncH->SetFillColor(kYellow); hUncL->SetFillColor(kYellow); hUncC->SetLineColor(kBlack); hUncC->SetLineStyle(7); hUnc2H->Draw("HIST"); hUnc2L->Draw("same HIST"); hUncH->Draw("same HIST"); hUncL->Draw("same HIST"); hUncC->Draw("same HIST"); frame2->GetYaxis()->SetTickLength(0.03/0.4); frame2->Draw("same"); TList *list1 = (TList*)gPad->GetListOfPrimitives(); //list1->Print(); RooCurve *gSigFit = (RooCurve*)list1->FindObject("shapeSig_qqH_"+ds_name+"_Norm[mbbReg_"+ds_name+"]"); TLegend *leg = new TLegend(0.70,0.61,0.94,1.-gStyle->GetPadTopMargin()-0.01); leg->SetTextFont(42); leg->SetFillStyle(-1); //leg->SetHeader(ds_name+" (m_{H}="+MASS+")"); leg->SetHeader(TString::Format("Category %d",atoi(ds_name(3,1).Data())+1)); leg->AddEntry(hBlind,"Data","P"); if (!BLIND) { leg->AddEntry(gSigFit,"Fitted signal","L"); } TLine *gEmpty = new TLine(0.0,0.0,0.0,0.0); gEmpty->SetLineWidth(0); TLegendEntry *l1 = leg->AddEntry(gEmpty,"(m_{H} = "+MASS+" GeV)",""); l1->SetTextSize(0.038*0.97*0.85); leg->AddEntry(gFit,"Bkg. + signal","L"); leg->AddEntry(gBkgFit,"Bkg.","L"); leg->AddEntry(gQCDFit,"QCD","L"); leg->AddEntry(hUnc2H,"2#sigma bkg. unc.","F"); leg->AddEntry(hUncH,"1#sigma bkg. unc.","F"); leg->SetFillColor(0); leg->SetBorderSize(0); leg->SetTextFont(42); leg->SetTextSize(0.038*0.98); leg->Draw(); leg->SetY1(leg->GetY2()-leg->GetNRows()*0.045*0.96); TPaveText *paveCMS = new TPaveText(gStyle->GetPadLeftMargin()+0.02,0.7,gStyle->GetPadLeftMargin()+0.15,1.-gStyle->GetPadTopMargin()-0.01,"NDC"); paveCMS->SetTextFont(62); paveCMS->SetTextSize(gStyle->GetPadTopMargin()*3./4.); paveCMS->SetBorderSize(0); paveCMS->SetFillStyle(-1); paveCMS->SetTextAlign(12); paveCMS->AddText("CMS"); paveCMS->Draw(); gPad->Update(); paveCMS->SetY1NDC(paveCMS->GetY2NDC()-paveCMS->GetListOfLines()->GetSize()*gStyle->GetPadTopMargin()); TPaveText *paveLumi = new TPaveText(0.5,1.-gStyle->GetPadTopMargin(),0.98,1.00,"NDC"); paveLumi->SetTextFont(42); paveLumi->SetTextSize(gStyle->GetPadTopMargin()*3./4.); paveLumi->SetBorderSize(0); paveLumi->SetFillStyle(-1); paveLumi->SetTextAlign(32); paveLumi->AddText(TString::Format("%.1f fb^{-1} (8TeV)",(atoi(ds_name(3,1).Data())<4 ? 19.8 : 18.3)).Data());//+ 18.2 ; paveLumi->Draw(); TString path="."; //TString path="BiasV10_limit_BRN5p4_dX0p1_B80-200_CAT0-6/output/"; system(TString::Format("[ ! -d %s/plot ] && mkdir %s/plot",path.Data(),path.Data()).Data()); system(TString::Format("[ ! -d %s/plot/fits ] && mkdir %s/plot/fits",path.Data(),path.Data()).Data()); canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s.pdf",path.Data(),MASS.Data(),ds_name.Data()).Data()); canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s.png",path.Data(),MASS.Data(),ds_name.Data()).Data()); canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s.eps",path.Data(),MASS.Data(),ds_name.Data()).Data()); TText *l = (TText*)paveCMS->AddText("Preliminary"); l->SetTextFont(52); paveCMS->Draw(); gPad->Update(); paveCMS->SetY1NDC(paveCMS->GetY2NDC()-paveCMS->GetListOfLines()->GetSize()*gStyle->GetPadTopMargin()); canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s_prelim.pdf",path.Data(),MASS.Data(),ds_name.Data()).Data()); canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s_prelim.png",path.Data(),MASS.Data(),ds_name.Data()).Data()); canFit->SaveAs(TString::Format("%s/plot/fits/Fit_mH%s_%s_prelim.eps",path.Data(),MASS.Data(),ds_name.Data()).Data()); delete ds; } cout << "chi2sumS: " << chi2sumS << endl; cout << "chi2sumB: " << chi2sumB << endl; cout << "nparS: " << nparS << endl; cout << "nparB: " << nparB << endl; cout << "nbinsum: " << nparsum << endl; cout << "chi2sumS/(nbinsum - nparS): " << chi2sumS / (float)(nparsum - nparS) << endl; cout << "chi2sumB/(nbinsum - nparB): " << chi2sumB / (float)(nparsum - nparB) << endl; delete datasets; }