// Check if a call and subsequent A2_tfrpi instructions should maintain // scheduling affinity. We are looking for the TFRI to be consumed in // the next instruction. This should help reduce the instances of // double register pairs being allocated and scheduled before a call // when not used until after the call. This situation is exacerbated // by the fact that we allocate the pair from the callee saves list, // leading to excess spills and restores. bool HexagonCallMutation::shouldTFRICallBind(const HexagonInstrInfo &HII, const SUnit &Inst1, const SUnit &Inst2) const { if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi) return false; // TypeXTYPE are 64 bit operations. if (HII.getType(Inst2.getInstr()) == HexagonII::TypeXTYPE) return true; return false; }
/// MO is an operand of SU's instruction that defines a physical register. Add /// data dependencies from SU to any uses of the physical register. void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); assert(MO.isDef() && "expect physreg def"); // Ask the target if address-backscheduling is desirable, and if so how much. const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); Alias.isValid(); ++Alias) { if (!Uses.contains(*Alias)) continue; std::vector<PhysRegSUOper> &UseList = Uses[*Alias]; for (unsigned i = 0, e = UseList.size(); i != e; ++i) { SUnit *UseSU = UseList[i].SU; if (UseSU == SU) continue; SDep dep(SU, SDep::Data, 1, *Alias); // Adjust the dependence latency using operand def/use information, // then allow the target to perform its own adjustments. int UseOp = UseList[i].OpIdx; MachineInstr *RegUse = UseOp < 0 ? 0 : UseSU->getInstr(); dep.setLatency( SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, UseOp, /*FindMin=*/false)); dep.setMinLatency( SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse, UseOp, /*FindMin=*/true)); ST.adjustSchedDependency(SU, UseSU, dep); UseSU->addPred(dep); } } }
/// addVRegDefDeps - Add register output and data dependencies from this SUnit /// to instructions that occur later in the same scheduling region if they read /// from or write to the virtual register defined at OperIdx. /// /// TODO: Hoist loop induction variable increments. This has to be /// reevaluated. Generally, IV scheduling should be done before coalescing. void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { const MachineInstr *MI = SU->getInstr(); unsigned Reg = MI->getOperand(OperIdx).getReg(); // Singly defined vregs do not have output/anti dependencies. // The current operand is a def, so we have at least one. // Check here if there are any others... if (MRI.hasOneDef(Reg)) return; // Add output dependence to the next nearest def of this vreg. // // Unless this definition is dead, the output dependence should be // transitively redundant with antidependencies from this definition's // uses. We're conservative for now until we have a way to guarantee the uses // are not eliminated sometime during scheduling. The output dependence edge // is also useful if output latency exceeds def-use latency. VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg); if (DefI == VRegDefs.end()) VRegDefs.insert(VReg2SUnit(Reg, SU)); else { SUnit *DefSU = DefI->SU; if (DefSU != SU && DefSU != &ExitSU) { unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx, DefSU->getInstr()); DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg)); } DefI->SU = SU; } }
/// Select a bundle for the current cycle. The selected instructions are /// put into bundle in the correct issue order. If no instruction can be /// issued, false is returned. bool PatmosLatencyQueue::selectBundle(std::vector<SUnit*> &Bundle) { if (AvailableQueue.empty()) return false; // Find best bundle: // - Ensure that instructions that MUST be scheduled go into the bundle. // - find best pair of available programs, e.g. two stores with exclusive // predicates and highest ILP/.., but only if at least one of those instr. // has high priority. // - find best instructions that fit into the bundle with highest ILP/.. // // Instructions are built up into a bundle in Bundle. Instructions are removed // from AvailableQueue in scheduled() once the instruction is actually picked. unsigned CurrWidth = 0; // If the bundle is not empty, we should calculate the initial width assert(Bundle.empty()); std::vector<bool> Selected; Selected.resize(AvailableQueue.size()); // Make sure that all instructions with ScheduleLow flag go into the bundle. for (unsigned i = 0; i < AvailableQueue.size() && CurrWidth < IssueWidth; i++) { SUnit *SU = AvailableQueue[i]; if (!SU->isScheduleLow) break; if (addToBundle(Bundle, SU, CurrWidth)) { Selected[i] = true; } } // Check if any of the highest <IssueWidth> instructions can be // scheduled only with a single other instruction in this queue, or if there // is any instruction in the queue that can only be scheduled with the highest // ones. Pick them in any case // TODO magic goes here.. // Try to fill up the bundle with instructions from the queue by best effort for (unsigned i = 0; i < AvailableQueue.size() && CurrWidth < IssueWidth; i++) { if (Selected[i]) continue; SUnit *SU = AvailableQueue[i]; // check the width. ignore the width for the first instruction to allow // ALUl even when bundling is disabled. unsigned width = PII.getIssueWidth(SU->getInstr()); if (!Bundle.empty() && CurrWidth + width > IssueWidth) continue; addToBundle(Bundle, SU, CurrWidth); } return true; }
/// MO is an operand of SU's instruction that defines a physical register. Add /// data dependencies from SU to any uses of the physical register. void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); assert(MO.isDef() && "expect physreg def"); // Ask the target if address-backscheduling is desirable, and if so how much. const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); unsigned DataLatency = SU->Latency; for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); Alias.isValid(); ++Alias) { if (!Uses.contains(*Alias)) continue; std::vector<PhysRegSUOper> &UseList = Uses[*Alias]; for (unsigned i = 0, e = UseList.size(); i != e; ++i) { SUnit *UseSU = UseList[i].SU; if (UseSU == SU) continue; MachineInstr *UseMI = UseSU->getInstr(); int UseOp = UseList[i].OpIdx; unsigned LDataLatency = DataLatency; // Optionally add in a special extra latency for nodes that // feed addresses. // TODO: Perhaps we should get rid of // SpecialAddressLatency and just move this into // adjustSchedDependency for the targets that care about it. if (SpecialAddressLatency != 0 && !UnitLatencies && UseSU != &ExitSU) { const MCInstrDesc &UseMCID = UseMI->getDesc(); int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias); assert(RegUseIndex >= 0 && "UseMI doesn't use register!"); if (RegUseIndex >= 0 && (UseMI->mayLoad() || UseMI->mayStore()) && (unsigned)RegUseIndex < UseMCID.getNumOperands() && UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass()) LDataLatency += SpecialAddressLatency; } // Adjust the dependence latency using operand def/use // information (if any), and then allow the target to // perform its own adjustments. SDep dep(SU, SDep::Data, LDataLatency, *Alias); if (!UnitLatencies) { unsigned Latency = TII->computeOperandLatency(InstrItins, SU->getInstr(), OperIdx, (UseOp < 0 ? 0 : UseMI), UseOp); dep.setLatency(Latency); unsigned MinLatency = TII->computeOperandLatency(InstrItins, SU->getInstr(), OperIdx, (UseOp < 0 ? 0 : UseMI), UseOp, /*FindMin=*/true); dep.setMinLatency(MinLatency); ST.adjustSchedDependency(SU, UseSU, dep); } UseSU->addPred(dep); } } }
/// Change the latency between the two SUnits. void HexagonSubtarget::changeLatency(SUnit *Src, SmallVector<SDep, 4> &Deps, SUnit *Dst, unsigned Lat) const { MachineInstr &SrcI = *Src->getInstr(); for (auto &I : Deps) { if (I.getSUnit() != Dst) continue; I.setLatency(Lat); SUnit *UpdateDst = I.getSUnit(); updateLatency(SrcI, *UpdateDst->getInstr(), I); // Update the latency of opposite edge too. for (auto &PI : UpdateDst->Preds) { if (PI.getSUnit() != Src || !PI.isAssignedRegDep()) continue; PI.setLatency(Lat); updateLatency(SrcI, *UpdateDst->getInstr(), PI); } } }
/// MO is an operand of SU's instruction that defines a physical register. Add /// data dependencies from SU to any uses of the physical register. void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, const MachineOperand &MO) { assert(MO.isDef() && "expect physreg def"); // Ask the target if address-backscheduling is desirable, and if so how much. const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); unsigned DataLatency = SU->Latency; for (const unsigned *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) { if (!Uses.contains(*Alias)) continue; std::vector<SUnit*> &UseList = Uses[*Alias]; for (unsigned i = 0, e = UseList.size(); i != e; ++i) { SUnit *UseSU = UseList[i]; if (UseSU == SU) continue; unsigned LDataLatency = DataLatency; // Optionally add in a special extra latency for nodes that // feed addresses. // TODO: Perhaps we should get rid of // SpecialAddressLatency and just move this into // adjustSchedDependency for the targets that care about it. if (SpecialAddressLatency != 0 && !UnitLatencies && UseSU != &ExitSU) { MachineInstr *UseMI = UseSU->getInstr(); const MCInstrDesc &UseMCID = UseMI->getDesc(); int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias); assert(RegUseIndex >= 0 && "UseMI doesn't use register!"); if (RegUseIndex >= 0 && (UseMI->mayLoad() || UseMI->mayStore()) && (unsigned)RegUseIndex < UseMCID.getNumOperands() && UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass()) LDataLatency += SpecialAddressLatency; } // Adjust the dependence latency using operand def/use // information (if any), and then allow the target to // perform its own adjustments. const SDep& dep = SDep(SU, SDep::Data, LDataLatency, *Alias); if (!UnitLatencies) { ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep)); ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep)); } UseSU->addPred(dep); } } }
// EmitSchedule - Emit the machine code in scheduled order. MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() { // For MachineInstr-based scheduling, we're rescheduling the instructions in // the block, so start by removing them from the block. while (Begin != InsertPos) { MachineBasicBlock::iterator I = Begin; ++Begin; BB->remove(I); } // First reinsert any remaining debug_values; these are either constants, // or refer to live-in registers. The beginning of the block is the right // place for the latter. The former might reasonably be placed elsewhere // using some kind of ordering algorithm, but right now it doesn't matter. for (int i = DbgValueVec.size()-1; i>=0; --i) if (DbgValueVec[i]) BB->insert(InsertPos, DbgValueVec[i]); // Then re-insert them according to the given schedule. for (unsigned i = 0, e = Sequence.size(); i != e; i++) { SUnit *SU = Sequence[i]; if (!SU) { // Null SUnit* is a noop. EmitNoop(); continue; } BB->insert(InsertPos, SU->getInstr()); for (unsigned i = 0, e = SU->DbgInstrList.size() ; i < e ; ++i) BB->insert(InsertPos, SU->DbgInstrList[i]); } // Update the Begin iterator, as the first instruction in the block // may have been scheduled later. if (!DbgValueVec.empty()) { for (int i = DbgValueVec.size()-1; i>=0; --i) if (DbgValueVec[i]!=0) { Begin = DbgValueVec[DbgValueVec.size()-1]; break; } } else if (!Sequence.empty()) Begin = Sequence[0]->getInstr(); DbgValueVec.clear(); return BB; }
void apply(ScheduleDAGInstrs *DAGInstrs) override { ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); SUnit *SUa = nullptr; // Search for two consequent memory operations and link them // to prevent scheduler from moving them apart. // In DAG pre-process SUnits are in the original order of // the instructions before scheduling. for (SUnit &SU : DAG->SUnits) { MachineInstr &MI2 = *SU.getInstr(); if (!MI2.mayLoad() && !MI2.mayStore()) { SUa = nullptr; continue; } if (!SUa) { SUa = &SU; continue; } MachineInstr &MI1 = *SUa->getInstr(); if ((TII->isVMEM(MI1) && TII->isVMEM(MI2)) || (TII->isFLAT(MI1) && TII->isFLAT(MI2)) || (TII->isSMRD(MI1) && TII->isSMRD(MI2)) || (TII->isDS(MI1) && TII->isDS(MI2))) { SU.addPredBarrier(SUa); for (const SDep &SI : SU.Preds) { if (SI.getSUnit() != SUa) SUa->addPred(SDep(SI.getSUnit(), SDep::Artificial)); } if (&SU != &DAG->ExitSU) { for (const SDep &SI : SUa->Succs) { if (SI.getSUnit() != &SU) SI.getSUnit()->addPred(SDep(&SU, SDep::Artificial)); } } } SUa = &SU; } }
/// Create an SUnit for each real instruction, numbered in top-down toplological /// order. The instruction order A < B, implies that no edge exists from B to A. /// /// Map each real instruction to its SUnit. /// /// After initSUnits, the SUnits vector cannot be resized and the scheduler may /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs /// instead of pointers. /// /// MachineScheduler relies on initSUnits numbering the nodes by their order in /// the original instruction list. void ScheduleDAGInstrs::initSUnits() { // We'll be allocating one SUnit for each real instruction in the region, // which is contained within a basic block. SUnits.reserve(BB->size()); for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) { MachineInstr *MI = I; if (MI->isDebugValue()) continue; SUnit *SU = newSUnit(MI); MISUnitMap[MI] = SU; SU->isCall = MI->isCall(); SU->isCommutable = MI->isCommutable(); // Assign the Latency field of SU using target-provided information. SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); } }
unsigned CriticalAntiDepBreaker:: BreakAntiDependencies(std::vector<SUnit>& SUnits, MachineBasicBlock::iterator& Begin, MachineBasicBlock::iterator& End, unsigned InsertPosIndex) { // The code below assumes that there is at least one instruction, // so just duck out immediately if the block is empty. if (SUnits.empty()) return 0; // Find the node at the bottom of the critical path. SUnit *Max = 0; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { SUnit *SU = &SUnits[i]; if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) Max = SU; } #ifndef NDEBUG { DEBUG(errs() << "Critical path has total latency " << (Max->getDepth() + Max->Latency) << "\n"); DEBUG(errs() << "Available regs:"); for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { if (KillIndices[Reg] == ~0u) DEBUG(errs() << " " << TRI->getName(Reg)); } DEBUG(errs() << '\n'); } #endif // Track progress along the critical path through the SUnit graph as we walk // the instructions. SUnit *CriticalPathSU = Max; MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); // Consider this pattern: // A = ... // ... = A // A = ... // ... = A // A = ... // ... = A // A = ... // ... = A // There are three anti-dependencies here, and without special care, // we'd break all of them using the same register: // A = ... // ... = A // B = ... // ... = B // B = ... // ... = B // B = ... // ... = B // because at each anti-dependence, B is the first register that // isn't A which is free. This re-introduces anti-dependencies // at all but one of the original anti-dependencies that we were // trying to break. To avoid this, keep track of the most recent // register that each register was replaced with, avoid // using it to repair an anti-dependence on the same register. // This lets us produce this: // A = ... // ... = A // B = ... // ... = B // C = ... // ... = C // B = ... // ... = B // This still has an anti-dependence on B, but at least it isn't on the // original critical path. // // TODO: If we tracked more than one register here, we could potentially // fix that remaining critical edge too. This is a little more involved, // because unlike the most recent register, less recent registers should // still be considered, though only if no other registers are available. unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {}; // Attempt to break anti-dependence edges on the critical path. Walk the // instructions from the bottom up, tracking information about liveness // as we go to help determine which registers are available. unsigned Broken = 0; unsigned Count = InsertPosIndex - 1; for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { MachineInstr *MI = --I; // Check if this instruction has a dependence on the critical path that // is an anti-dependence that we may be able to break. If it is, set // AntiDepReg to the non-zero register associated with the anti-dependence. // // We limit our attention to the critical path as a heuristic to avoid // breaking anti-dependence edges that aren't going to significantly // impact the overall schedule. There are a limited number of registers // and we want to save them for the important edges. // // TODO: Instructions with multiple defs could have multiple // anti-dependencies. The current code here only knows how to break one // edge per instruction. Note that we'd have to be able to break all of // the anti-dependencies in an instruction in order to be effective. unsigned AntiDepReg = 0; if (MI == CriticalPathMI) { if (SDep *Edge = CriticalPathStep(CriticalPathSU)) { SUnit *NextSU = Edge->getSUnit(); // Only consider anti-dependence edges. if (Edge->getKind() == SDep::Anti) { AntiDepReg = Edge->getReg(); assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); if (!AllocatableSet.test(AntiDepReg)) // Don't break anti-dependencies on non-allocatable registers. AntiDepReg = 0; else if (KeepRegs.count(AntiDepReg)) // Don't break anti-dependencies if an use down below requires // this exact register. AntiDepReg = 0; else { // If the SUnit has other dependencies on the SUnit that it // anti-depends on, don't bother breaking the anti-dependency // since those edges would prevent such units from being // scheduled past each other regardless. // // Also, if there are dependencies on other SUnits with the // same register as the anti-dependency, don't attempt to // break it. for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(), PE = CriticalPathSU->Preds.end(); P != PE; ++P) if (P->getSUnit() == NextSU ? (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { AntiDepReg = 0; break; } } } CriticalPathSU = NextSU; CriticalPathMI = CriticalPathSU->getInstr(); } else { // We've reached the end of the critical path. CriticalPathSU = 0; CriticalPathMI = 0; } } PrescanInstruction(MI); if (MI->getDesc().hasExtraDefRegAllocReq()) // If this instruction's defs have special allocation requirement, don't // break this anti-dependency. AntiDepReg = 0; else if (AntiDepReg) { // If this instruction has a use of AntiDepReg, breaking it // is invalid. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (MO.isUse() && AntiDepReg == Reg) { AntiDepReg = 0; break; } } } // Determine AntiDepReg's register class, if it is live and is // consistently used within a single class. const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0; assert((AntiDepReg == 0 || RC != NULL) && "Register should be live if it's causing an anti-dependence!"); if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) AntiDepReg = 0; // Look for a suitable register to use to break the anti-depenence. // // TODO: Instead of picking the first free register, consider which might // be the best. if (AntiDepReg != 0) { if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg, LastNewReg[AntiDepReg], RC)) { DEBUG(errs() << "Breaking anti-dependence edge on " << TRI->getName(AntiDepReg) << " with " << RegRefs.count(AntiDepReg) << " references" << " using " << TRI->getName(NewReg) << "!\n"); // Update the references to the old register to refer to the new // register. std::pair<std::multimap<unsigned, MachineOperand *>::iterator, std::multimap<unsigned, MachineOperand *>::iterator> Range = RegRefs.equal_range(AntiDepReg); for (std::multimap<unsigned, MachineOperand *>::iterator Q = Range.first, QE = Range.second; Q != QE; ++Q) Q->second->setReg(NewReg); // We just went back in time and modified history; the // liveness information for the anti-depenence reg is now // inconsistent. Set the state as if it were dead. Classes[NewReg] = Classes[AntiDepReg]; DefIndices[NewReg] = DefIndices[AntiDepReg]; KillIndices[NewReg] = KillIndices[AntiDepReg]; assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) && "Kill and Def maps aren't consistent for NewReg!"); Classes[AntiDepReg] = 0; DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; KillIndices[AntiDepReg] = ~0u; assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) && "Kill and Def maps aren't consistent for AntiDepReg!"); RegRefs.erase(AntiDepReg); LastNewReg[AntiDepReg] = NewReg; ++Broken; } } ScanInstruction(MI, Count); } return Broken; }
void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) { // We'll be allocating one SUnit for each instruction, plus one for // the region exit node. SUnits.reserve(BB->size()); // We build scheduling units by walking a block's instruction list from bottom // to top. // Remember where a generic side-effecting instruction is as we procede. SUnit *BarrierChain = 0, *AliasChain = 0; // Memory references to specific known memory locations are tracked // so that they can be given more precise dependencies. We track // separately the known memory locations that may alias and those // that are known not to alias std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs; std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses; // Keep track of dangling debug references to registers. std::vector<std::pair<MachineInstr*, unsigned> > DanglingDebugValue(TRI->getNumRegs(), std::make_pair(static_cast<MachineInstr*>(0), 0)); // Check to see if the scheduler cares about latencies. bool UnitLatencies = ForceUnitLatencies(); // Ask the target if address-backscheduling is desirable, and if so how much. const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>(); unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); // Remove any stale debug info; sometimes BuildSchedGraph is called again // without emitting the info from the previous call. DbgValueVec.clear(); // Model data dependencies between instructions being scheduled and the // ExitSU. AddSchedBarrierDeps(); // Walk the list of instructions, from bottom moving up. for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin; MII != MIE; --MII) { MachineInstr *MI = prior(MII); // DBG_VALUE does not have SUnit's built, so just remember these for later // reinsertion. if (MI->isDebugValue()) { if (MI->getNumOperands()==3 && MI->getOperand(0).isReg() && MI->getOperand(0).getReg()) DanglingDebugValue[MI->getOperand(0).getReg()] = std::make_pair(MI, DbgValueVec.size()); DbgValueVec.push_back(MI); continue; } const TargetInstrDesc &TID = MI->getDesc(); assert(!TID.isTerminator() && !MI->isLabel() && "Cannot schedule terminators or labels!"); // Create the SUnit for this MI. SUnit *SU = NewSUnit(MI); SU->isCall = TID.isCall(); SU->isCommutable = TID.isCommutable(); // Assign the Latency field of SU using target-provided information. if (UnitLatencies) SU->Latency = 1; else ComputeLatency(SU); // Add register-based dependencies (data, anti, and output). for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) { const MachineOperand &MO = MI->getOperand(j); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!"); if (MO.isDef() && DanglingDebugValue[Reg].first!=0) { SU->DbgInstrList.push_back(DanglingDebugValue[Reg].first); DbgValueVec[DanglingDebugValue[Reg].second] = 0; DanglingDebugValue[Reg] = std::make_pair((MachineInstr*)0, 0); } std::vector<SUnit *> &UseList = Uses[Reg]; std::vector<SUnit *> &DefList = Defs[Reg]; // Optionally add output and anti dependencies. For anti // dependencies we use a latency of 0 because for a multi-issue // target we want to allow the defining instruction to issue // in the same cycle as the using instruction. // TODO: Using a latency of 1 here for output dependencies assumes // there's no cost for reusing registers. SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1; for (unsigned i = 0, e = DefList.size(); i != e; ++i) { SUnit *DefSU = DefList[i]; if (DefSU == &ExitSU) continue; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || !DefSU->getInstr()->registerDefIsDead(Reg))) DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg)); } for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { std::vector<SUnit *> &DefList = Defs[*Alias]; for (unsigned i = 0, e = DefList.size(); i != e; ++i) { SUnit *DefSU = DefList[i]; if (DefSU == &ExitSU) continue; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || !DefSU->getInstr()->registerDefIsDead(*Alias))) DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias)); } } if (MO.isDef()) { // Add any data dependencies. unsigned DataLatency = SU->Latency; for (unsigned i = 0, e = UseList.size(); i != e; ++i) { SUnit *UseSU = UseList[i]; if (UseSU == SU) continue; unsigned LDataLatency = DataLatency; // Optionally add in a special extra latency for nodes that // feed addresses. // TODO: Do this for register aliases too. // TODO: Perhaps we should get rid of // SpecialAddressLatency and just move this into // adjustSchedDependency for the targets that care about it. if (SpecialAddressLatency != 0 && !UnitLatencies && UseSU != &ExitSU) { MachineInstr *UseMI = UseSU->getInstr(); const TargetInstrDesc &UseTID = UseMI->getDesc(); int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg); assert(RegUseIndex >= 0 && "UseMI doesn's use register!"); if (RegUseIndex >= 0 && (UseTID.mayLoad() || UseTID.mayStore()) && (unsigned)RegUseIndex < UseTID.getNumOperands() && UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass()) LDataLatency += SpecialAddressLatency; } // Adjust the dependence latency using operand def/use // information (if any), and then allow the target to // perform its own adjustments. const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg); if (!UnitLatencies) { ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep)); ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep)); } UseSU->addPred(dep); } for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { std::vector<SUnit *> &UseList = Uses[*Alias]; for (unsigned i = 0, e = UseList.size(); i != e; ++i) { SUnit *UseSU = UseList[i]; if (UseSU == SU) continue; const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias); if (!UnitLatencies) { ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep)); ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep)); } UseSU->addPred(dep); } } // If a def is going to wrap back around to the top of the loop, // backschedule it. if (!UnitLatencies && DefList.empty()) { LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg); if (I != LoopRegs.Deps.end()) { const MachineOperand *UseMO = I->second.first; unsigned Count = I->second.second; const MachineInstr *UseMI = UseMO->getParent(); unsigned UseMOIdx = UseMO - &UseMI->getOperand(0); const TargetInstrDesc &UseTID = UseMI->getDesc(); // TODO: If we knew the total depth of the region here, we could // handle the case where the whole loop is inside the region but // is large enough that the isScheduleHigh trick isn't needed. if (UseMOIdx < UseTID.getNumOperands()) { // Currently, we only support scheduling regions consisting of // single basic blocks. Check to see if the instruction is in // the same region by checking to see if it has the same parent. if (UseMI->getParent() != MI->getParent()) { unsigned Latency = SU->Latency; if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) Latency += SpecialAddressLatency; // This is a wild guess as to the portion of the latency which // will be overlapped by work done outside the current // scheduling region. Latency -= std::min(Latency, Count); // Add the artificial edge. ExitSU.addPred(SDep(SU, SDep::Order, Latency, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); } else if (SpecialAddressLatency > 0 && UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) { // The entire loop body is within the current scheduling region // and the latency of this operation is assumed to be greater // than the latency of the loop. // TODO: Recursively mark data-edge predecessors as // isScheduleHigh too. SU->isScheduleHigh = true; } } LoopRegs.Deps.erase(I); } } UseList.clear(); if (!MO.isDead()) DefList.clear(); DefList.push_back(SU); } else { UseList.push_back(SU); } } // Add chain dependencies. // Chain dependencies used to enforce memory order should have // latency of 0 (except for true dependency of Store followed by // aliased Load... we estimate that with a single cycle of latency // assuming the hardware will bypass) // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable // after stack slots are lowered to actual addresses. // TODO: Use an AliasAnalysis and do real alias-analysis queries, and // produce more precise dependence information. #define STORE_LOAD_LATENCY 1 unsigned TrueMemOrderLatency = 0; if (TID.isCall() || MI->hasUnmodeledSideEffects() || (MI->hasVolatileMemoryRef() && (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) { // Be conservative with these and add dependencies on all memory // references, even those that are known to not alias. for (std::map<const Value *, SUnit *>::iterator I = NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) { I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } for (std::map<const Value *, std::vector<SUnit *> >::iterator I = NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); } NonAliasMemDefs.clear(); NonAliasMemUses.clear(); // Add SU to the barrier chain. if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); BarrierChain = SU; // fall-through new_alias_chain: // Chain all possibly aliasing memory references though SU. if (AliasChain) AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); AliasChain = SU; for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) { I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } for (std::map<const Value *, std::vector<SUnit *> >::iterator I = AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); } PendingLoads.clear(); AliasMemDefs.clear(); AliasMemUses.clear(); } else if (TID.mayStore()) { bool MayAlias = true; TrueMemOrderLatency = STORE_LOAD_LATENCY; if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { // A store to a specific PseudoSourceValue. Add precise dependencies. // Record the def in MemDefs, first adding a dep if there is // an existing def. std::map<const Value *, SUnit *>::iterator I = ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); std::map<const Value *, SUnit *>::iterator IE = ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); if (I != IE) { I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, /*isNormalMemory=*/true)); I->second = SU; } else { if (MayAlias) AliasMemDefs[V] = SU; else NonAliasMemDefs[V] = SU; } // Handle the uses in MemUses, if there are any. std::map<const Value *, std::vector<SUnit *> >::iterator J = ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V)); std::map<const Value *, std::vector<SUnit *> >::iterator JE = ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end()); if (J != JE) { for (unsigned i = 0, e = J->second.size(); i != e; ++i) J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency, /*Reg=*/0, /*isNormalMemory=*/true)); J->second.clear(); } if (MayAlias) { // Add dependencies from all the PendingLoads, i.e. loads // with no underlying object. for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k) PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency)); // Add dependence on alias chain, if needed. if (AliasChain) AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } // Add dependence on barrier chain, if needed. if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } else { // Treat all other stores conservatively. goto new_alias_chain; } if (!ExitSU.isPred(SU)) // Push store's up a bit to avoid them getting in between cmp // and branches. ExitSU.addPred(SDep(SU, SDep::Order, 0, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); } else if (TID.mayLoad()) { bool MayAlias = true; TrueMemOrderLatency = 0; if (MI->isInvariantLoad(AA)) { // Invariant load, no chain dependencies needed! } else { if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) { // A load from a specific PseudoSourceValue. Add precise dependencies. std::map<const Value *, SUnit *>::iterator I = ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V)); std::map<const Value *, SUnit *>::iterator IE = ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end()); if (I != IE) I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0, /*isNormalMemory=*/true)); if (MayAlias) AliasMemUses[V].push_back(SU); else NonAliasMemUses[V].push_back(SU); } else { // A load with no underlying object. Depend on all // potentially aliasing stores. for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I) I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); PendingLoads.push_back(SU); MayAlias = true; } // Add dependencies on alias and barrier chains, if needed. if (MayAlias && AliasChain) AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); if (BarrierChain) BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0)); } } } for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) { Defs[i].clear(); Uses[i].clear(); } PendingLoads.clear(); }
void ScheduleTDList::buildSchedGraph(AliasAnalysis *AA) { const LembergSubtarget *Subtarget = &TM.getSubtarget<LembergSubtarget>(); // Create normal scheduling graph SchedulePostRATDList::buildSchedGraph(AA); // Refine scheduling graph for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { SUnit &SU = SUnits[i]; // Make sure that stuff that is chained to memory accesses is // scheduled in suitable cycles if (SU.getInstr()->mayStore() || SU.getInstr()->mayLoad()) { // Pick a suitable latency unsigned MemLatency = 1; if (!isStackAccess(SU.getInstr())) { MemLatency = SU.getInstr()->mayStore() ? 1 : 2; } else { MemLatency = SU.getInstr()->mayStore() ? 1 : 2; } // Insert appropriate latencies for (SUnit::succ_iterator I = SU.Succs.begin(), E = SU.Succs.end(); I != E; ++I) { if (I->getKind() == SDep::Order || I->getKind() == SDep::Data) { SUnit *Succ = I->getSUnit(); // TODO: why do we see successors without real instruction? if (!Succ->getInstr()) continue; // Latencies are just interesting for some combinations if ((SU.getInstr()->mayStore() && !(Succ->getInstr()->mayLoad() || Succ->getInstr()->mayStore())) || (SU.getInstr()->mayLoad() && !(Succ->getInstr()->mayLoad() || Succ->getInstr()->mayStore() || Succ->getInstr()->readsRegister(Lemberg::R31)))) continue; // Set forward latency I->setLatency(MemLatency); // Also set latencies in reverse direction for (SUnit::succ_iterator K = Succ->Preds.begin(), F = Succ->Preds.end(); K != F; ++K) { if (K->getSUnit() == &SU) { K->setLatency(MemLatency); } } } } } // Make sure that results used for branching are computed early if (SU.Succs.size() == 0 && SU.getInstr()->getDesc().getNumDefs() > 0) { const unsigned BranchLatency = Subtarget->DelaySlots+1; SU.setHeightToAtLeast(BranchLatency+1); } // Set the isScheduleHigh flag for pinned instructions unsigned idx = SU.getInstr()->getDesc().getSchedClass(); unsigned units = InstrItins->beginStage(idx)->getUnits(); unsigned unitCount = 0; while (units) { if (units & 1) unitCount++; units >>= 1; } if (unitCount < Subtarget->MaxClusters) { SU.isScheduleHigh = true; } } }
/// addPhysRegDeps - Add register dependencies (data, anti, and output) from /// this SUnit to following instructions in the same scheduling region that /// depend the physical register referenced at OperIdx. void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { const MachineInstr *MI = SU->getInstr(); const MachineOperand &MO = MI->getOperand(OperIdx); // Optionally add output and anti dependencies. For anti // dependencies we use a latency of 0 because for a multi-issue // target we want to allow the defining instruction to issue // in the same cycle as the using instruction. // TODO: Using a latency of 1 here for output dependencies assumes // there's no cost for reusing registers. SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); Alias.isValid(); ++Alias) { if (!Defs.contains(*Alias)) continue; std::vector<PhysRegSUOper> &DefList = Defs[*Alias]; for (unsigned i = 0, e = DefList.size(); i != e; ++i) { SUnit *DefSU = DefList[i].SU; if (DefSU == &ExitSU) continue; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || !DefSU->getInstr()->registerDefIsDead(*Alias))) { if (Kind == SDep::Anti) DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias)); else { unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx, DefSU->getInstr()); DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias)); } } } } if (!MO.isDef()) { // Either insert a new Reg2SUnits entry with an empty SUnits list, or // retrieve the existing SUnits list for this register's uses. // Push this SUnit on the use list. Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx)); } else { addPhysRegDataDeps(SU, OperIdx); // Either insert a new Reg2SUnits entry with an empty SUnits list, or // retrieve the existing SUnits list for this register's defs. std::vector<PhysRegSUOper> &DefList = Defs[MO.getReg()]; // If a def is going to wrap back around to the top of the loop, // backschedule it. if (!UnitLatencies && DefList.empty()) { LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg()); if (I != LoopRegs.Deps.end()) { const MachineOperand *UseMO = I->second.first; unsigned Count = I->second.second; const MachineInstr *UseMI = UseMO->getParent(); unsigned UseMOIdx = UseMO - &UseMI->getOperand(0); const MCInstrDesc &UseMCID = UseMI->getDesc(); const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>(); unsigned SpecialAddressLatency = ST.getSpecialAddressLatency(); // TODO: If we knew the total depth of the region here, we could // handle the case where the whole loop is inside the region but // is large enough that the isScheduleHigh trick isn't needed. if (UseMOIdx < UseMCID.getNumOperands()) { // Currently, we only support scheduling regions consisting of // single basic blocks. Check to see if the instruction is in // the same region by checking to see if it has the same parent. if (UseMI->getParent() != MI->getParent()) { unsigned Latency = SU->Latency; if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) Latency += SpecialAddressLatency; // This is a wild guess as to the portion of the latency which // will be overlapped by work done outside the current // scheduling region. Latency -= std::min(Latency, Count); // Add the artificial edge. ExitSU.addPred(SDep(SU, SDep::Order, Latency, /*Reg=*/0, /*isNormalMemory=*/false, /*isMustAlias=*/false, /*isArtificial=*/true)); } else if (SpecialAddressLatency > 0 && UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) { // The entire loop body is within the current scheduling region // and the latency of this operation is assumed to be greater // than the latency of the loop. // TODO: Recursively mark data-edge predecessors as // isScheduleHigh too. SU->isScheduleHigh = true; } } LoopRegs.Deps.erase(I); } } // clear this register's use list if (Uses.contains(MO.getReg())) Uses[MO.getReg()].clear(); if (!MO.isDead()) DefList.clear(); // Calls will not be reordered because of chain dependencies (see // below). Since call operands are dead, calls may continue to be added // to the DefList making dependence checking quadratic in the size of // the block. Instead, we leave only one call at the back of the // DefList. if (SU->isCall) { while (!DefList.empty() && DefList.back().SU->isCall) DefList.pop_back(); } // Defs are pushed in the order they are visited and never reordered. DefList.push_back(PhysRegSUOper(SU, OperIdx)); } }
/// addPhysRegDeps - Add register dependencies (data, anti, and output) from /// this SUnit to following instructions in the same scheduling region that /// depend the physical register referenced at OperIdx. void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { const MachineInstr *MI = SU->getInstr(); const MachineOperand &MO = MI->getOperand(OperIdx); // Optionally add output and anti dependencies. For anti // dependencies we use a latency of 0 because for a multi-issue // target we want to allow the defining instruction to issue // in the same cycle as the using instruction. // TODO: Using a latency of 1 here for output dependencies assumes // there's no cost for reusing registers. SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; for (MCRegAliasIterator Alias(MO.getReg(), TRI, true); Alias.isValid(); ++Alias) { if (!Defs.contains(*Alias)) continue; std::vector<PhysRegSUOper> &DefList = Defs[*Alias]; for (unsigned i = 0, e = DefList.size(); i != e; ++i) { SUnit *DefSU = DefList[i].SU; if (DefSU == &ExitSU) continue; if (DefSU != SU && (Kind != SDep::Output || !MO.isDead() || !DefSU->getInstr()->registerDefIsDead(*Alias))) { if (Kind == SDep::Anti) DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias)); else { unsigned AOLat = SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()); DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias)); } } } } if (!MO.isDef()) { // Either insert a new Reg2SUnits entry with an empty SUnits list, or // retrieve the existing SUnits list for this register's uses. // Push this SUnit on the use list. Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx)); } else { addPhysRegDataDeps(SU, OperIdx); // Either insert a new Reg2SUnits entry with an empty SUnits list, or // retrieve the existing SUnits list for this register's defs. std::vector<PhysRegSUOper> &DefList = Defs[MO.getReg()]; // clear this register's use list if (Uses.contains(MO.getReg())) Uses[MO.getReg()].clear(); if (!MO.isDead()) DefList.clear(); // Calls will not be reordered because of chain dependencies (see // below). Since call operands are dead, calls may continue to be added // to the DefList making dependence checking quadratic in the size of // the block. Instead, we leave only one call at the back of the // DefList. if (SU->isCall) { while (!DefList.empty() && DefList.back().SU->isCall) DefList.pop_back(); } // Defs are pushed in the order they are visited and never reordered. DefList.push_back(PhysRegSUOper(SU, OperIdx)); } }
// PacketizeMIs - Bundle machine instructions into packets. void VLIWPacketizerList::PacketizeMIs(MachineBasicBlock *MBB, MachineBasicBlock::iterator BeginItr, MachineBasicBlock::iterator EndItr) { assert(VLIWScheduler && "VLIW Scheduler is not initialized!"); VLIWScheduler->startBlock(MBB); VLIWScheduler->enterRegion(MBB, BeginItr, EndItr, std::distance(BeginItr, EndItr)); VLIWScheduler->schedule(); // Generate MI -> SU map. MIToSUnit.clear(); for (unsigned i = 0, e = VLIWScheduler->SUnits.size(); i != e; ++i) { SUnit *SU = &VLIWScheduler->SUnits[i]; MIToSUnit[SU->getInstr()] = SU; } // The main packetizer loop. for (; BeginItr != EndItr; ++BeginItr) { MachineInstr *MI = BeginItr; this->initPacketizerState(); // End the current packet if needed. if (this->isSoloInstruction(MI)) { endPacket(MBB, MI); continue; } // Ignore pseudo instructions. if (this->ignorePseudoInstruction(MI, MBB)) continue; SUnit *SUI = MIToSUnit[MI]; assert(SUI && "Missing SUnit Info!"); // Ask DFA if machine resource is available for MI. bool ResourceAvail = ResourceTracker->canReserveResources(MI); if (ResourceAvail) { // Dependency check for MI with instructions in CurrentPacketMIs. for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end(); VI != VE; ++VI) { MachineInstr *MJ = *VI; SUnit *SUJ = MIToSUnit[MJ]; assert(SUJ && "Missing SUnit Info!"); // Is it legal to packetize SUI and SUJ together. if (!this->isLegalToPacketizeTogether(SUI, SUJ)) { // Allow packetization if dependency can be pruned. if (!this->isLegalToPruneDependencies(SUI, SUJ)) { // End the packet if dependency cannot be pruned. endPacket(MBB, MI); break; } // !isLegalToPruneDependencies. } // !isLegalToPacketizeTogether. } // For all instructions in CurrentPacketMIs. } else { // End the packet if resource is not available. endPacket(MBB, MI); } // Add MI to the current packet. BeginItr = this->addToPacket(MI); } // For all instructions in BB. // End any packet left behind. endPacket(MBB, EndItr); VLIWScheduler->exitRegion(); VLIWScheduler->finishBlock(); }
void PatmosPostRASchedStrategy::postprocessDAG(ScheduleDAGPostRA *dag) { DAG = dag; SUnit *CFL = NULL; // Find the inline asm statement, if any. Note that asm is a barrier, // therefore there is at most one CFL or inline asm. SUnit *Asm = NULL; // Push up loads to ensure load delay slot across BBs // TODO For some reasons, loads do not always have exit edges, and a latency // of 1; find out why. Happens e.g. in coremark with 16k methods setup. for (std::vector<SUnit>::reverse_iterator it = DAG->SUnits.rbegin(), ie = DAG->SUnits.rend(); it != ie; it++) { MachineInstr *MI = it->getInstr(); if (!MI) continue; if (MI->mayLoad()) { SDep Dep(&*it, SDep::Artificial); Dep.setLatency(computeExitLatency(*it)); DAG->ExitSU.addPred(Dep); } } // Find the branch/call/ret instruction if available for (std::vector<SUnit>::reverse_iterator it = DAG->SUnits.rbegin(), ie = DAG->SUnits.rend(); it != ie; it++) { MachineInstr *MI = it->getInstr(); if (!MI) continue; if (isPatmosCFL(MI->getOpcode(), MI->getDesc().TSFlags)) { CFL = &*it; break; } if (MI->isInlineAsm()) { Asm = &*it; break; } } const PatmosSubtarget *PST = PTM.getSubtargetImpl(); unsigned DelaySlot = CFL ? PST->getDelaySlotCycles(CFL->getInstr()) : 0; if (CFL) { // RET and CALL have implicit deps on the return values and call // arguments. Remove all those edges to schedule them into the delay slot // if the registers are not actually used by CALL and RET if (CFL->getInstr()->isReturn() || CFL->getInstr()->isCall()) removeImplicitCFLDeps(*CFL); // Add an artificial dep from CFL to exit for the delay slot SDep DelayDep(CFL, SDep::Artificial); DelayDep.setLatency(DelaySlot + 1); DAG->ExitSU.addPred(DelayDep); CFL->isScheduleLow = true; if (PTM.getSubtargetImpl()->getCFLType() != PatmosSubtarget::CFL_DELAYED) { // Push up single instructions that can be scheduled in the same // cycle as the branch unsigned LowCount = 0; SUnit *LowSU = 0; for (std::vector<SUnit>::reverse_iterator it = DAG->SUnits.rbegin(), ie = DAG->SUnits.rend(); it != ie; it++) { if (&*it == CFL) continue; MachineInstr *MI = it->getInstr(); if (!MI) continue; if (it->getHeight() <= DelaySlot) { LowCount++; if (PII.canIssueInSlot(MI, LowCount)) { LowSU = &*it; } } } if (LowSU && LowCount == 1) { SDep Dep(LowSU, SDep::Artificial); Dep.setLatency(DelaySlot + 1); DAG->ExitSU.addPred(Dep); } } if (PTM.getSubtargetImpl()->getCFLType() == PatmosSubtarget::CFL_NON_DELAYED) { // Add dependencies from all other instructions to exit for (std::vector<SUnit>::reverse_iterator it = DAG->SUnits.rbegin(), ie = DAG->SUnits.rend(); it != ie; it++) { if (&*it == CFL) continue; MachineInstr *MI = it->getInstr(); if (!MI) continue; SDep Dep(&*it, SDep::Artificial); Dep.setLatency(DelaySlot + 1); DAG->ExitSU.addPred(Dep); } } } // Add an exit delay between loads and inline asm, in case asm is empty if (Asm) { std::vector<SUnit*> PredLoads; for (SUnit::pred_iterator it = Asm->Preds.begin(), ie = Asm->Preds.end(); it != ie; it++) { if (!it->getSUnit()) continue; MachineInstr *MI = it->getSUnit()->getInstr(); // Check for loads if (!MI || !MI->mayLoad()) continue; PredLoads.push_back(it->getSUnit()); } for (std::vector<SUnit*>::iterator it = PredLoads.begin(), ie = PredLoads.end(); it != ie; it++) { // Add a delay between loads and inline-asm, even if the operand is not // used. SDep Dep(*it, SDep::Artificial); Dep.setLatency( computeExitLatency(**it) ); Asm->addPred(Dep); } } // remove barriers between loads/stores with different memory type removeTypedMemBarriers(); // remove any dependency between instructions with mutually exclusive // predicates removeExclusivePredDeps(); // TODO SWS and LWS do not have ST as implicit def edges // TODO CALL has chain edges to all SWS/.. instructions, remove // TODO remove edges from MUL to other MULs to overlap MUL and MFS for // pipelined muls. }