/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void IA64DAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
  DEBUG(BB->dump());

  // Select target instructions for the DAG.
  DAG.setRoot(SelectRoot(DAG.getRoot()));
  DAG.RemoveDeadNodes();
  
  // Emit machine code to BB. 
  ScheduleAndEmitDAG(DAG);
}
// After instruction selection, insert COPY_TO_REGCLASS nodes to help in
// choosing the proper register classes.
void BlackfinDAGToDAGISel::FixRegisterClasses(SelectionDAG &DAG) {
  const BlackfinInstrInfo &TII = getInstrInfo();
  const BlackfinRegisterInfo *TRI = getRegisterInfo();
  DAG.AssignTopologicalOrder();
  HandleSDNode Dummy(DAG.getRoot());

  for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin();
       NI != DAG.allnodes_end(); ++NI) {
    if (NI->use_empty() || !NI->isMachineOpcode())
      continue;
    const TargetInstrDesc &DefTID = TII.get(NI->getMachineOpcode());
    for (SDNode::use_iterator UI = NI->use_begin(); !UI.atEnd(); ++UI) {
      if (!UI->isMachineOpcode())
        continue;

      if (UI.getUse().getResNo() >= DefTID.getNumDefs())
        continue;
      const TargetRegisterClass *DefRC =
        DefTID.OpInfo[UI.getUse().getResNo()].getRegClass(TRI);

      const TargetInstrDesc &UseTID = TII.get(UI->getMachineOpcode());
      if (UseTID.getNumDefs()+UI.getOperandNo() >= UseTID.getNumOperands())
        continue;
      const TargetRegisterClass *UseRC =
        UseTID.OpInfo[UseTID.getNumDefs()+UI.getOperandNo()].getRegClass(TRI);
      if (!DefRC || !UseRC)
        continue;
      // We cannot copy CC <-> !(CC/D)
      if ((isCC(DefRC) && !isDCC(UseRC)) || (isCC(UseRC) && !isDCC(DefRC))) {
        SDNode *Copy =
          DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
                             NI->getDebugLoc(),
                             MVT::i32,
                             UI.getUse().get(),
                             DAG.getTargetConstant(BF::DRegClassID, MVT::i32));
        UpdateNodeOperand(DAG, *UI, UI.getOperandNo(), SDValue(Copy, 0));
      }
    }
  }
  DAG.setRoot(Dummy.getValue());
}
Пример #3
0
SDValue
NVPTXTargetLowering::LowerFormalArguments(SDValue Chain,
                                        CallingConv::ID CallConv, bool isVarArg,
                                      const SmallVectorImpl<ISD::InputArg> &Ins,
                                          DebugLoc dl, SelectionDAG &DAG,
                                       SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  const DataLayout *TD = getDataLayout();

  const Function *F = MF.getFunction();
  const AttrListPtr &PAL = F->getAttributes();

  SDValue Root = DAG.getRoot();
  std::vector<SDValue> OutChains;

  bool isKernel = llvm::isKernelFunction(*F);
  bool isABI = (nvptxSubtarget.getSmVersion() >= 20);

  std::vector<Type *> argTypes;
  std::vector<const Argument *> theArgs;
  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
      I != E; ++I) {
    theArgs.push_back(I);
    argTypes.push_back(I->getType());
  }
  assert(argTypes.size() == Ins.size() &&
         "Ins types and function types did not match");

  int idx = 0;
  for (unsigned i=0, e=Ins.size(); i!=e; ++i, ++idx) {
    Type *Ty = argTypes[i];
    EVT ObjectVT = getValueType(Ty);
    assert(ObjectVT == Ins[i].VT &&
           "Ins type did not match function type");

    // If the kernel argument is image*_t or sampler_t, convert it to
    // a i32 constant holding the parameter position. This can later
    // matched in the AsmPrinter to output the correct mangled name.
    if (isImageOrSamplerVal(theArgs[i],
                           (theArgs[i]->getParent() ?
                               theArgs[i]->getParent()->getParent() : 0))) {
      assert(isKernel && "Only kernels can have image/sampler params");
      InVals.push_back(DAG.getConstant(i+1, MVT::i32));
      continue;
    }

    if (theArgs[i]->use_empty()) {
      // argument is dead
      InVals.push_back(DAG.getNode(ISD::UNDEF, dl, ObjectVT));
      continue;
    }

    // In the following cases, assign a node order of "idx+1"
    // to newly created nodes. The SDNOdes for params have to
    // appear in the same order as their order of appearance
    // in the original function. "idx+1" holds that order.
    if (PAL.getParamAttributes(i+1).hasAttribute(Attributes::ByVal) == false) {
      // A plain scalar.
      if (isABI || isKernel) {
        // If ABI, load from the param symbol
        SDValue Arg = getParamSymbol(DAG, idx);
        Value *srcValue = new Argument(PointerType::get(ObjectVT.getTypeForEVT(
            F->getContext()),
            llvm::ADDRESS_SPACE_PARAM));
        SDValue p = DAG.getLoad(ObjectVT, dl, Root, Arg,
                                MachinePointerInfo(srcValue), false, false,
                                false,
                                TD->getABITypeAlignment(ObjectVT.getTypeForEVT(
                                  F->getContext())));
        if (p.getNode())
          DAG.AssignOrdering(p.getNode(), idx+1);
        InVals.push_back(p);
      }
      else {
        // If no ABI, just move the param symbol
        SDValue Arg = getParamSymbol(DAG, idx, ObjectVT);
        SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
        if (p.getNode())
          DAG.AssignOrdering(p.getNode(), idx+1);
        InVals.push_back(p);
      }
      continue;
    }

    // Param has ByVal attribute
    if (isABI || isKernel) {
      // Return MoveParam(param symbol).
      // Ideally, the param symbol can be returned directly,
      // but when SDNode builder decides to use it in a CopyToReg(),
      // machine instruction fails because TargetExternalSymbol
      // (not lowered) is target dependent, and CopyToReg assumes
      // the source is lowered.
      SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
      SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
      if (p.getNode())
        DAG.AssignOrdering(p.getNode(), idx+1);
      if (isKernel)
        InVals.push_back(p);
      else {
        SDValue p2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ObjectVT,
                    DAG.getConstant(Intrinsic::nvvm_ptr_local_to_gen, MVT::i32),
                                 p);
        InVals.push_back(p2);
      }
    } else {
      // Have to move a set of param symbols to registers and
      // store them locally and return the local pointer in InVals
      const PointerType *elemPtrType = dyn_cast<PointerType>(argTypes[i]);
      assert(elemPtrType &&
             "Byval parameter should be a pointer type");
      Type *elemType = elemPtrType->getElementType();
      // Compute the constituent parts
      SmallVector<EVT, 16> vtparts;
      SmallVector<uint64_t, 16> offsets;
      ComputeValueVTs(*this, elemType, vtparts, &offsets, 0);
      unsigned totalsize = 0;
      for (unsigned j=0, je=vtparts.size(); j!=je; ++j)
        totalsize += vtparts[j].getStoreSizeInBits();
      SDValue localcopy =  DAG.getFrameIndex(MF.getFrameInfo()->
                                      CreateStackObject(totalsize/8, 16, false),
                                             getPointerTy());
      unsigned sizesofar = 0;
      std::vector<SDValue> theChains;
      for (unsigned j=0, je=vtparts.size(); j!=je; ++j) {
        unsigned numElems = 1;
        if (vtparts[j].isVector()) numElems = vtparts[j].getVectorNumElements();
        for (unsigned k=0, ke=numElems; k!=ke; ++k) {
          EVT tmpvt = vtparts[j];
          if (tmpvt.isVector()) tmpvt = tmpvt.getVectorElementType();
          SDValue arg = DAG.getNode(NVPTXISD::MoveParam, dl, tmpvt,
                                    getParamSymbol(DAG, idx, tmpvt));
          SDValue addr = DAG.getNode(ISD::ADD, dl, getPointerTy(), localcopy,
                                    DAG.getConstant(sizesofar, getPointerTy()));
          theChains.push_back(DAG.getStore(Chain, dl, arg, addr,
                                        MachinePointerInfo(), false, false, 0));
          sizesofar += tmpvt.getStoreSizeInBits()/8;
          ++idx;
        }
      }
      --idx;
      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &theChains[0],
                          theChains.size());
      InVals.push_back(localcopy);
    }
  }

  // Clang will check explicit VarArg and issue error if any. However, Clang
  // will let code with
  // implicit var arg like f() pass.
  // We treat this case as if the arg list is empty.
  //if (F.isVarArg()) {
  // assert(0 && "VarArg not supported yet!");
  //}

  if (!OutChains.empty())
    DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                            &OutChains[0], OutChains.size()));

  return Chain;
}
Пример #4
0
SDValue AVM2TargetLowering::
LowerFormalArguments(SDValue Chain,
                     CallingConv::ID CallConv, bool isVarArg,
                     const SmallVectorImpl<ISD::InputArg> &Ins,
                     DebugLoc DL, SelectionDAG &DAG,
                     SmallVectorImpl<SDValue> &InVals) const
{
    MachineFunction &MF = DAG.getMachineFunction();
    AVM2MachineFunctionInfo *FuncInfo = MF.getInfo<AVM2MachineFunctionInfo>();


    // Assign locations to all of the incoming arguments.
    SmallVector<CCValAssign, 16> ArgLocs;
    CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
    CCInfo.AnalyzeFormalArguments(Ins, CC_AVM2_32);

    SDValue Root = DAG.getRoot();
    unsigned ArgOffset = 0;

    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
        SDValue ArgValue;
        CCValAssign &VA = ArgLocs[i];
        // FIXME: We ignore the register assignments of AnalyzeFormalArguments
        // because it doesn't know how to split a double into two i32 registers.
        EVT ObjectVT = VA.getValVT();

        switch (ObjectVT.getSimpleVT().SimpleTy) {
        default:
            assert(0 && "Unhandled argument type!");
        case MVT::i1:
        case MVT::i8:
        case MVT::i16:
        case MVT::i32:
            if (!Ins[i].Used) { // Argument is dead.
                InVals.push_back(DAG.getNode(ISD::UNDEF, DL, ObjectVT));
            } else {
                int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, true);
                SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
                SDValue Load;
                if (ObjectVT == MVT::i32) {
                    Load = DAG.getLoad(MVT::i32, DL, Root, FIPtr, MachinePointerInfo(), false, false, 0);
                } else {
                    ISD::LoadExtType LoadOp = ISD::SEXTLOAD;

                    unsigned Offset = 0; // LE
                    FIPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, FIPtr,
                                        DAG.getConstant(Offset, MVT::i32));
                    Load = DAG.getExtLoad(LoadOp, DL, MVT::i32, Root, FIPtr,
                                          MachinePointerInfo(), ObjectVT, false, false, 0);
                    Load = DAG.getNode(ISD::TRUNCATE, DL, ObjectVT, Load);
                }
                InVals.push_back(Load);
            }
            ArgOffset += 4;
            break;
        case MVT::f32:
            if (!Ins[i].Used) { // Argument is dead.
                InVals.push_back(DAG.getNode(ISD::UNDEF, DL, ObjectVT));
            } else {
                int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset, true);
                SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
                InVals.push_back(DAG.getLoad(ObjectVT, DL, Root, FIPtr, MachinePointerInfo(), false, false, 0));
            }
            ArgOffset += 4;
            break;

        case MVT::i64:
            if (!Ins[i].Used) { // Argument is dead.
                InVals.push_back(DAG.getNode(ISD::UNDEF, DL, ObjectVT));
            } else {
                int FrameIdx = MF.getFrameInfo()->CreateFixedObject(8, ArgOffset, true);
                SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
                SDValue FIPtr4 = DAG.getNode(ISD::ADD, DL, MVT::i32, FIPtr, DAG.getConstant(4, MVT::i32));
                SDValue Lo = DAG.getLoad(MVT::i32, DL, Root, FIPtr, MachinePointerInfo(), false, false, 0);
                SDValue Hi = DAG.getLoad(MVT::i32, DL, Root, FIPtr4, MachinePointerInfo(), false, false, 0);
                InVals.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi));
            }
            ArgOffset += 8;
            break;
        case MVT::f64:
            if (!Ins[i].Used) { // Argument is dead.
                InVals.push_back(DAG.getNode(ISD::UNDEF, DL, ObjectVT));
            } else {
                int FrameIdx = MF.getFrameInfo()->CreateFixedObject(8, ArgOffset, true);
                SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
                InVals.push_back(DAG.getLoad(ObjectVT, DL, Root, FIPtr, MachinePointerInfo(), false, false, 0));
            }
            ArgOffset += 8;
            break;
        }
    }

    if (isVarArg) {
        // Remember the vararg offset for the va_start implementation.
        FuncInfo->setVarArgsFrameOffset(ArgOffset);
    }

    return Chain;
}
Пример #5
0
/// LowerFormalArguments - V8 uses a very simple ABI, where all values are
/// passed in either one or two GPRs, including FP values.  TODO: we should
/// pass FP values in FP registers for fastcc functions.
SDValue
SparcTargetLowering::LowerFormalArguments(SDValue Chain,
                                          CallingConv::ID CallConv, bool isVarArg,
                                          const SmallVectorImpl<ISD::InputArg>
                                            &Ins,
                                          DebugLoc dl, SelectionDAG &DAG,
                                          SmallVectorImpl<SDValue> &InVals)
                                            const {

  MachineFunction &MF = DAG.getMachineFunction();
  MachineRegisterInfo &RegInfo = MF.getRegInfo();
  SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
                 ArgLocs, *DAG.getContext());
  CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);

  static const unsigned ArgRegs[] = {
    SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
  };
  const unsigned *CurArgReg = ArgRegs, *ArgRegEnd = ArgRegs+6;
  unsigned ArgOffset = 68;

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    SDValue ArgValue;
    CCValAssign &VA = ArgLocs[i];
    // FIXME: We ignore the register assignments of AnalyzeFormalArguments
    // because it doesn't know how to split a double into two i32 registers.
    EVT ObjectVT = VA.getValVT();
    switch (ObjectVT.getSimpleVT().SimpleTy) {
    default: llvm_unreachable("Unhandled argument type!");
    case MVT::i1:
    case MVT::i8:
    case MVT::i16:
    case MVT::i32:
      if (!Ins[i].Used) {                  // Argument is dead.
        if (CurArgReg < ArgRegEnd) ++CurArgReg;
        InVals.push_back(DAG.getUNDEF(ObjectVT));
      } else if (CurArgReg < ArgRegEnd) {  // Lives in an incoming GPR
        unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
        MF.getRegInfo().addLiveIn(*CurArgReg++, VReg);
        SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
        if (ObjectVT != MVT::i32) {
          unsigned AssertOp = ISD::AssertSext;
          Arg = DAG.getNode(AssertOp, dl, MVT::i32, Arg,
                            DAG.getValueType(ObjectVT));
          Arg = DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, Arg);
        }
        InVals.push_back(Arg);
      } else {
        int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset,
                                                            true, false);
        SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
        SDValue Load;
        if (ObjectVT == MVT::i32) {
          Load = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, NULL, 0,
                             false, false, 0);
        } else {
          ISD::LoadExtType LoadOp = ISD::SEXTLOAD;

          // Sparc is big endian, so add an offset based on the ObjectVT.
          unsigned Offset = 4-std::max(1U, ObjectVT.getSizeInBits()/8);
          FIPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIPtr,
                              DAG.getConstant(Offset, MVT::i32));
          Load = DAG.getExtLoad(LoadOp, dl, MVT::i32, Chain, FIPtr,
                                NULL, 0, ObjectVT, false, false, 0);
          Load = DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, Load);
        }
        InVals.push_back(Load);
      }

      ArgOffset += 4;
      break;
    case MVT::f32:
      if (!Ins[i].Used) {                  // Argument is dead.
        if (CurArgReg < ArgRegEnd) ++CurArgReg;
        InVals.push_back(DAG.getUNDEF(ObjectVT));
      } else if (CurArgReg < ArgRegEnd) {  // Lives in an incoming GPR
        // FP value is passed in an integer register.
        unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
        MF.getRegInfo().addLiveIn(*CurArgReg++, VReg);
        SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);

        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Arg);
        InVals.push_back(Arg);
      } else {
        int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset,
                                                            true, false);
        SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
        SDValue Load = DAG.getLoad(MVT::f32, dl, Chain, FIPtr, NULL, 0,
                                   false, false, 0);
        InVals.push_back(Load);
      }
      ArgOffset += 4;
      break;

    case MVT::i64:
    case MVT::f64:
      if (!Ins[i].Used) {                // Argument is dead.
        if (CurArgReg < ArgRegEnd) ++CurArgReg;
        if (CurArgReg < ArgRegEnd) ++CurArgReg;
        InVals.push_back(DAG.getUNDEF(ObjectVT));
      } else {
        SDValue HiVal;
        if (CurArgReg < ArgRegEnd) {  // Lives in an incoming GPR
          unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
          MF.getRegInfo().addLiveIn(*CurArgReg++, VRegHi);
          HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
        } else {
          int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset,
                                                              true, false);
          SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
          HiVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, NULL, 0,
                              false, false, 0);
        }

        SDValue LoVal;
        if (CurArgReg < ArgRegEnd) {  // Lives in an incoming GPR
          unsigned VRegLo = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
          MF.getRegInfo().addLiveIn(*CurArgReg++, VRegLo);
          LoVal = DAG.getCopyFromReg(Chain, dl, VRegLo, MVT::i32);
        } else {
          int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset+4,
                                                              true, false);
          SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
          LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr, NULL, 0,
                              false, false, 0);
        }

        // Compose the two halves together into an i64 unit.
        SDValue WholeValue =
          DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);

        // If we want a double, do a bit convert.
        if (ObjectVT == MVT::f64)
          WholeValue = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, WholeValue);

        InVals.push_back(WholeValue);
      }
      ArgOffset += 8;
      break;
    }
  }

  // Store remaining ArgRegs to the stack if this is a varargs function.
  if (isVarArg) {
    // Remember the vararg offset for the va_start implementation.
    FuncInfo->setVarArgsFrameOffset(ArgOffset);

    std::vector<SDValue> OutChains;

    for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
      unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
      MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
      SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);

      int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset,
                                                          true, false);
      SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);

      OutChains.push_back(DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, NULL, 0,
                                       false, false, 0));
      ArgOffset += 4;
    }

    if (!OutChains.empty()) {
      OutChains.push_back(Chain);
      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                          &OutChains[0], OutChains.size());
    }
  }

  return Chain;
}
Пример #6
0
/// LowerArguments - V8 uses a very simple ABI, where all values are passed in
/// either one or two GPRs, including FP values.  TODO: we should pass FP values
/// in FP registers for fastcc functions.
void
SparcTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
                                    SmallVectorImpl<SDValue> &ArgValues,
                                    DebugLoc dl) {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineRegisterInfo &RegInfo = MF.getRegInfo();

  static const unsigned ArgRegs[] = {
    SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
  };

  const unsigned *CurArgReg = ArgRegs, *ArgRegEnd = ArgRegs+6;
  unsigned ArgOffset = 68;

  SDValue Root = DAG.getRoot();
  std::vector<SDValue> OutChains;

  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
    MVT ObjectVT = getValueType(I->getType());

    switch (ObjectVT.getSimpleVT()) {
    default: assert(0 && "Unhandled argument type!");
    case MVT::i1:
    case MVT::i8:
    case MVT::i16:
    case MVT::i32:
      if (I->use_empty()) {                // Argument is dead.
        if (CurArgReg < ArgRegEnd) ++CurArgReg;
        ArgValues.push_back(DAG.getUNDEF(ObjectVT));
      } else if (CurArgReg < ArgRegEnd) {  // Lives in an incoming GPR
        unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
        MF.getRegInfo().addLiveIn(*CurArgReg++, VReg);
        SDValue Arg = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
        if (ObjectVT != MVT::i32) {
          unsigned AssertOp = ISD::AssertSext;
          Arg = DAG.getNode(AssertOp, dl, MVT::i32, Arg,
                            DAG.getValueType(ObjectVT));
          Arg = DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, Arg);
        }
        ArgValues.push_back(Arg);
      } else {
        int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset);
        SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
        SDValue Load;
        if (ObjectVT == MVT::i32) {
          Load = DAG.getLoad(MVT::i32, dl, Root, FIPtr, NULL, 0);
        } else {
          ISD::LoadExtType LoadOp = ISD::SEXTLOAD;

          // Sparc is big endian, so add an offset based on the ObjectVT.
          unsigned Offset = 4-std::max(1U, ObjectVT.getSizeInBits()/8);
          FIPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIPtr,
                              DAG.getConstant(Offset, MVT::i32));
          Load = DAG.getExtLoad(LoadOp, dl, MVT::i32, Root, FIPtr,
                                NULL, 0, ObjectVT);
          Load = DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, Load);
        }
        ArgValues.push_back(Load);
      }

      ArgOffset += 4;
      break;
    case MVT::f32:
      if (I->use_empty()) {                // Argument is dead.
        if (CurArgReg < ArgRegEnd) ++CurArgReg;
        ArgValues.push_back(DAG.getUNDEF(ObjectVT));
      } else if (CurArgReg < ArgRegEnd) {  // Lives in an incoming GPR
        // FP value is passed in an integer register.
        unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
        MF.getRegInfo().addLiveIn(*CurArgReg++, VReg);
        SDValue Arg = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);

        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Arg);
        ArgValues.push_back(Arg);
      } else {
        int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset);
        SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
        SDValue Load = DAG.getLoad(MVT::f32, dl, Root, FIPtr, NULL, 0);
        ArgValues.push_back(Load);
      }
      ArgOffset += 4;
      break;

    case MVT::i64:
    case MVT::f64:
      if (I->use_empty()) {                // Argument is dead.
        if (CurArgReg < ArgRegEnd) ++CurArgReg;
        if (CurArgReg < ArgRegEnd) ++CurArgReg;
        ArgValues.push_back(DAG.getUNDEF(ObjectVT));
      } else {
        SDValue HiVal;
        if (CurArgReg < ArgRegEnd) {  // Lives in an incoming GPR
          unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
          MF.getRegInfo().addLiveIn(*CurArgReg++, VRegHi);
          HiVal = DAG.getCopyFromReg(Root, dl, VRegHi, MVT::i32);
        } else {
          int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset);
          SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
          HiVal = DAG.getLoad(MVT::i32, dl, Root, FIPtr, NULL, 0);
        }

        SDValue LoVal;
        if (CurArgReg < ArgRegEnd) {  // Lives in an incoming GPR
          unsigned VRegLo = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
          MF.getRegInfo().addLiveIn(*CurArgReg++, VRegLo);
          LoVal = DAG.getCopyFromReg(Root, dl, VRegLo, MVT::i32);
        } else {
          int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset+4);
          SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
          LoVal = DAG.getLoad(MVT::i32, dl, Root, FIPtr, NULL, 0);
        }

        // Compose the two halves together into an i64 unit.
        SDValue WholeValue =
          DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);

        // If we want a double, do a bit convert.
        if (ObjectVT == MVT::f64)
          WholeValue = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, WholeValue);

        ArgValues.push_back(WholeValue);
      }
      ArgOffset += 8;
      break;
    }
  }

  // Store remaining ArgRegs to the stack if this is a varargs function.
  if (F.isVarArg()) {
    // Remember the vararg offset for the va_start implementation.
    VarArgsFrameOffset = ArgOffset;

    for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
      unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
      MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
      SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);

      int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset);
      SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);

      OutChains.push_back(DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr, NULL, 0));
      ArgOffset += 4;
    }
  }

  if (!OutChains.empty())
    DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                            &OutChains[0], OutChains.size()));
}
Пример #7
0
/// LowerFormalArguments - V8 uses a very simple ABI, where all values are
/// passed in either one or two GPRs, including FP values.  TODO: we should
/// pass FP values in FP registers for fastcc functions.
SDValue
SparcTargetLowering::LowerFormalArguments(SDValue Chain,
                                          CallingConv::ID CallConv, bool isVarArg,
                                          const SmallVectorImpl<ISD::InputArg>
                                            &Ins,
                                          DebugLoc dl, SelectionDAG &DAG,
                                          SmallVectorImpl<SDValue> &InVals)
                                            const {

  MachineFunction &MF = DAG.getMachineFunction();
  MachineRegisterInfo &RegInfo = MF.getRegInfo();
  SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
                 ArgLocs, *DAG.getContext());
  CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);

  const unsigned StackOffset = 92;

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];

    if (i == 0  && Ins[i].Flags.isSRet()) {
      //Get SRet from [%fp+64]
      int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, 64, true);
      SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
      SDValue Arg = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
                                MachinePointerInfo(),
                                false, false, 0);
      InVals.push_back(Arg);
      continue;
    }

    if (VA.isRegLoc()) {
      if (VA.needsCustom()) {
        assert(VA.getLocVT() == MVT::f64);
        unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
        MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi);
        SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);

        assert(i+1 < e);
        CCValAssign &NextVA = ArgLocs[++i];

        SDValue LoVal;
        if (NextVA.isMemLoc()) {
          int FrameIdx = MF.getFrameInfo()->
            CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true);
          SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
          LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
                              MachinePointerInfo(),
                              false, false, 0);
        } else {
          unsigned loReg = MF.addLiveIn(NextVA.getLocReg(),
                                        &SP::IntRegsRegClass);
          LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32);
        }
        SDValue WholeValue =
          DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
        WholeValue = DAG.getNode(ISD::BITCAST, dl, MVT::f64, WholeValue);
        InVals.push_back(WholeValue);
        continue;
      }
      unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
      MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg);
      SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
      if (VA.getLocVT() == MVT::f32)
        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg);
      else if (VA.getLocVT() != MVT::i32) {
        Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg,
                          DAG.getValueType(VA.getLocVT()));
        Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg);
      }
      InVals.push_back(Arg);
      continue;
    }

    assert(VA.isMemLoc());

    unsigned Offset = VA.getLocMemOffset()+StackOffset;

    if (VA.needsCustom()) {
      assert(VA.getValVT() == MVT::f64);
      //If it is double-word aligned, just load.
      if (Offset % 8 == 0) {
        int FI = MF.getFrameInfo()->CreateFixedObject(8,
                                                      Offset,
                                                      true);
        SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
        SDValue Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr,
                                   MachinePointerInfo(),
                                   false,false, 0);
        InVals.push_back(Load);
        continue;
      }

      int FI = MF.getFrameInfo()->CreateFixedObject(4,
                                                    Offset,
                                                    true);
      SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
      SDValue HiVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
                                  MachinePointerInfo(),
                                  false, false, 0);
      int FI2 = MF.getFrameInfo()->CreateFixedObject(4,
                                                     Offset+4,
                                                     true);
      SDValue FIPtr2 = DAG.getFrameIndex(FI2, getPointerTy());

      SDValue LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr2,
                                  MachinePointerInfo(),
                                  false, false, 0);

      SDValue WholeValue =
        DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
      WholeValue = DAG.getNode(ISD::BITCAST, dl, MVT::f64, WholeValue);
      InVals.push_back(WholeValue);
      continue;
    }

    int FI = MF.getFrameInfo()->CreateFixedObject(4,
                                                  Offset,
                                                  true);
    SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
    SDValue Load ;
    if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) {
      Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr,
                         MachinePointerInfo(),
                         false, false, 0);
    } else {
      ISD::LoadExtType LoadOp = ISD::SEXTLOAD;
      // Sparc is big endian, so add an offset based on the ObjectVT.
      unsigned Offset = 4-std::max(1U, VA.getValVT().getSizeInBits()/8);
      FIPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIPtr,
                          DAG.getConstant(Offset, MVT::i32));
      Load = DAG.getExtLoad(LoadOp, dl, MVT::i32, Chain, FIPtr,
                            MachinePointerInfo(),
                            VA.getValVT(), false, false,0);
      Load = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Load);
    }
    InVals.push_back(Load);
  }

  if (MF.getFunction()->hasStructRetAttr()) {
    //Copy the SRet Argument to SRetReturnReg
    SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
    unsigned Reg = SFI->getSRetReturnReg();
    if (!Reg) {
      Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass);
      SFI->setSRetReturnReg(Reg);
    }
    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
  }

  // Store remaining ArgRegs to the stack if this is a varargs function.
  if (isVarArg) {
    static const unsigned ArgRegs[] = {
      SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
    };
    unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs, 6);
    const unsigned *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6;
    unsigned ArgOffset = CCInfo.getNextStackOffset();
    if (NumAllocated == 6)
      ArgOffset += StackOffset;
    else {
      assert(!ArgOffset);
      ArgOffset = 68+4*NumAllocated;
    }

    // Remember the vararg offset for the va_start implementation.
    FuncInfo->setVarArgsFrameOffset(ArgOffset);

    std::vector<SDValue> OutChains;

    for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
      unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
      MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
      SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);

      int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset,
                                                          true);
      SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);

      OutChains.push_back(DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr,
                                       MachinePointerInfo(),
                                       false, false, 0));
      ArgOffset += 4;
    }

    if (!OutChains.empty()) {
      OutChains.push_back(Chain);
      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                          &OutChains[0], OutChains.size());
    }
  }

  return Chain;
}
Пример #8
0
std::vector<SDOperand>
IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
  std::vector<SDOperand> ArgValues;
  //
  // add beautiful description of IA64 stack frame format
  // here (from intel 24535803.pdf most likely)
  //
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();
  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
  
  GP = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
  SP = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
  RP = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
  
  MachineBasicBlock& BB = MF.front();

  unsigned args_int[] = {IA64::r32, IA64::r33, IA64::r34, IA64::r35,
                         IA64::r36, IA64::r37, IA64::r38, IA64::r39};

  unsigned args_FP[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11,
                        IA64::F12,IA64::F13,IA64::F14, IA64::F15};

  unsigned argVreg[8];
  unsigned argPreg[8];
  unsigned argOpc[8];

  unsigned used_FPArgs = 0; // how many FP args have been used so far?

  unsigned ArgOffset = 0;
  int count = 0;

  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
    {
      SDOperand newroot, argt;
      if(count < 8) { // need to fix this logic? maybe.

        switch (getValueType(I->getType())) {
          default:
            assert(0 && "ERROR in LowerArgs: can't lower this type of arg.\n"); 
          case MVT::f32:
            // fixme? (well, will need to for weird FP structy stuff,
            // see intel ABI docs)
          case MVT::f64:
//XXX            BuildMI(&BB, IA64::IDEF, 0, args_FP[used_FPArgs]);
            MF.getRegInfo().addLiveIn(args_FP[used_FPArgs]);
            // mark this reg as liveIn
            // floating point args go into f8..f15 as-needed, the increment
            argVreg[count] =                              // is below..:
            MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::f64));
            // FP args go into f8..f15 as needed: (hence the ++)
            argPreg[count] = args_FP[used_FPArgs++];
            argOpc[count] = IA64::FMOV;
            argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), argVreg[count],
                                                MVT::f64);
            if (I->getType() == Type::FloatTy)
              argt = DAG.getNode(ISD::FP_ROUND, MVT::f32, argt,
                                 DAG.getIntPtrConstant(0));
            break;
          case MVT::i1: // NOTE: as far as C abi stuff goes,
                        // bools are just boring old ints
          case MVT::i8:
          case MVT::i16:
          case MVT::i32:
          case MVT::i64:
//XXX            BuildMI(&BB, IA64::IDEF, 0, args_int[count]);
            MF.getRegInfo().addLiveIn(args_int[count]);
            // mark this register as liveIn
            argVreg[count] =
            MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
            argPreg[count] = args_int[count];
            argOpc[count] = IA64::MOV;
            argt = newroot =
              DAG.getCopyFromReg(DAG.getRoot(), argVreg[count], MVT::i64);
            if ( getValueType(I->getType()) != MVT::i64)
              argt = DAG.getNode(ISD::TRUNCATE, getValueType(I->getType()),
                  newroot);
            break;
        }
      } else { // more than 8 args go into the frame
        // Create the frame index object for this incoming parameter...
        ArgOffset = 16 + 8 * (count - 8);
        int FI = MFI->CreateFixedObject(8, ArgOffset);

        // Create the SelectionDAG nodes corresponding to a load
        //from this parameter
        SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64);
        argt = newroot = DAG.getLoad(getValueType(I->getType()),
                                     DAG.getEntryNode(), FIN, NULL, 0);
      }
      ++count;
      DAG.setRoot(newroot.getValue(1));
      ArgValues.push_back(argt);
    }


  // Create a vreg to hold the output of (what will become)
  // the "alloc" instruction
  VirtGPR = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
  BuildMI(&BB, TII->get(IA64::PSEUDO_ALLOC), VirtGPR);
  // we create a PSEUDO_ALLOC (pseudo)instruction for now
/*
  BuildMI(&BB, IA64::IDEF, 0, IA64::r1);

  // hmm:
  BuildMI(&BB, IA64::IDEF, 0, IA64::r12);
  BuildMI(&BB, IA64::IDEF, 0, IA64::rp);
  // ..hmm.
  
  BuildMI(&BB, IA64::MOV, 1, GP).addReg(IA64::r1);

  // hmm:
  BuildMI(&BB, IA64::MOV, 1, SP).addReg(IA64::r12);
  BuildMI(&BB, IA64::MOV, 1, RP).addReg(IA64::rp);
  // ..hmm.
*/

  unsigned tempOffset=0;

  // if this is a varargs function, we simply lower llvm.va_start by
  // pointing to the first entry
  if(F.isVarArg()) {
    tempOffset=0;
    VarArgsFrameIndex = MFI->CreateFixedObject(8, tempOffset);
  }

  // here we actually do the moving of args, and store them to the stack
  // too if this is a varargs function:
  for (int i = 0; i < count && i < 8; ++i) {
    BuildMI(&BB, TII->get(argOpc[i]), argVreg[i]).addReg(argPreg[i]);
    if(F.isVarArg()) {
      // if this is a varargs function, we copy the input registers to the stack
      int FI = MFI->CreateFixedObject(8, tempOffset);
      tempOffset+=8;   //XXX: is it safe to use r22 like this?
      BuildMI(&BB, TII->get(IA64::MOV), IA64::r22).addFrameIndex(FI);
      // FIXME: we should use st8.spill here, one day
      BuildMI(&BB, TII->get(IA64::ST8), IA64::r22).addReg(argPreg[i]);
    }
  }

  // Finally, inform the code generator which regs we return values in.
  // (see the ISD::RET: case in the instruction selector)
  switch (getValueType(F.getReturnType())) {
  default: assert(0 && "i have no idea where to return this type!");
  case MVT::isVoid: break;
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
  case MVT::i32:
  case MVT::i64:
    MF.getRegInfo().addLiveOut(IA64::r8);
    break;
  case MVT::f32:
  case MVT::f64:
    MF.getRegInfo().addLiveOut(IA64::F8);
    break;
  }

  return ArgValues;
}