bool SeqScanPlan::SerializeTo(SerializeOutput &output) { // A placeholder for the total size written at the end int start = output.Position(); output.WriteInt(-1); // Write the SeqScanPlan type PlanNodeType plan_type = GetPlanNodeType(); output.WriteByte(static_cast<int8_t>(plan_type)); // Write database id and table id if (!GetTable()) { // The plan is not completed return false; } oid_t database_id = GetTable()->GetDatabaseOid(); oid_t table_id = GetTable()->GetOid(); output.WriteInt(static_cast<int>(database_id)); output.WriteInt(static_cast<int>(table_id)); // If column has 0 item, just write the columnid_count with 0 int columnid_count = GetColumnIds().size(); output.WriteInt(columnid_count); // If column has 0 item, nothing happens here for (int it = 0; it < columnid_count; it++) { oid_t col_id = GetColumnIds()[it]; output.WriteInt(static_cast<int>(col_id)); } // Write predicate if (GetPredicate() == nullptr) { // Write the type output.WriteByte(static_cast<int8_t>(EXPRESSION_TYPE_INVALID)); } else { // Write the expression type ExpressionType expr_type = GetPredicate()->GetExpressionType(); output.WriteByte(static_cast<int8_t>(expr_type)); } // Write parent, but parent seems never be set or used right now if (GetParent() == nullptr) { // Write the type output.WriteByte(static_cast<int8_t>(PLAN_NODE_TYPE_INVALID)); } else { // Write the parent type PlanNodeType parent_type = GetParent()->GetPlanNodeType(); output.WriteByte(static_cast<int8_t>(parent_type)); // Write parent GetParent()->SerializeTo(output); } // Write the total length int32_t sz = static_cast<int32_t>(output.Position() - start - sizeof(int)); PL_ASSERT(sz > 0); output.WriteIntAt(start, sz); return true; }
bool Tile::SerializeHeaderTo(SerializeOutput &output) { std::size_t start; // Use the cache if possible if (column_header != NULL) { PL_ASSERT(column_header_size != INVALID_OID); output.WriteBytes(column_header, column_header_size); return true; } PL_ASSERT(column_header_size == INVALID_OID); // Skip header position start = output.Position(); output.WriteInt(-1); // Status code output.WriteByte(-128); // Column counts as a short output.WriteShort(static_cast<int16_t>(column_count)); // Write an array of column types as bytes for (oid_t column_itr = 0; column_itr < column_count; ++column_itr) { type::Type::TypeId type = schema.GetType(column_itr); output.WriteByte(static_cast<int8_t>(type)); } // Write the array of column names as strings // NOTE: strings are ASCII only in metadata (UTF-8 in table storage) for (oid_t column_itr = 0; column_itr < column_count; ++column_itr) { // Column name: Write (offset, length) for column definition, and string to // string table const std::string &name = GetColumnName(column_itr); // Column names can't be null, so length must be >= 0 int32_t length = static_cast<int32_t>(name.size()); PL_ASSERT(length >= 0); // this is standard string serialization for voltdb output.WriteInt(length); output.WriteBytes(name.data(), length); } // Write the header size which is a non-inclusive int size_t Position = output.Position(); column_header_size = static_cast<int32_t>(Position - start); int32_t non_inclusive_header_size = static_cast<int32_t>(column_header_size - sizeof(int32_t)); output.WriteIntAt(start, non_inclusive_header_size); // Cache the column header column_header = new char[column_header_size]; PL_MEMCPY(column_header, static_cast<const char *>(output.Data()) + start, column_header_size); return true; }
void Tuple::SerializeWithHeaderTo(SerializeOutput &output) { PL_ASSERT(tuple_schema_); PL_ASSERT(tuple_data_); size_t start = output.Position(); output.WriteInt(0); // reserve first 4 bytes for the total tuple size const int column_count = tuple_schema_->GetColumnCount(); for (int column_itr = 0; column_itr < column_count; column_itr++) { type::Value value = GetValue(column_itr); value.SerializeTo(output); } int32_t serialized_size = static_cast<int32_t>(output.Position() - start - sizeof(int32_t)); // write out the length of the tuple at start output.WriteIntAt(start, serialized_size); }
// Serialized only the tuples specified, along with header. bool Tile::SerializeTuplesTo(SerializeOutput &output, Tuple *tuples, int num_tuples) { std::size_t pos = output.Position(); output.WriteInt(-1); PL_ASSERT(!tuples[0].IsNull()); // Serialize the header if (!SerializeHeaderTo(output)) return false; output.WriteInt(static_cast<int32_t>(num_tuples)); for (int tuple_itr = 0; tuple_itr < num_tuples; tuple_itr++) { tuples[tuple_itr].SerializeTo(output); } // Length prefix is non-inclusive output.WriteIntAt( pos, static_cast<int32_t>(output.Position() - pos - sizeof(int32_t))); return true; }
bool Tile::SerializeTo(SerializeOutput &output, oid_t num_tuples) { /** * The table is serialized as: * * [(int) total size] * [(int) header size] [num columns] [column types] [column names] * [(int) num tuples] [tuple data] * */ // A placeholder for the total table size written at the end std::size_t pos = output.Position(); output.WriteInt(-1); // Serialize the header if (!SerializeHeaderTo(output)) return false; // Active tuple count output.WriteInt(static_cast<int>(num_tuples)); oid_t written_count = 0; TupleIterator tile_itr(this); Tuple tuple(&schema); while (tile_itr.Next(tuple) && written_count < num_tuples) { tuple.SerializeTo(output); ++written_count; } tuple.SetNull(); PL_ASSERT(written_count == num_tuples); // Length prefix is non-inclusive int32_t sz = static_cast<int32_t>(output.Position() - pos - sizeof(int32_t)); PL_ASSERT(sz > 0); output.WriteIntAt(pos, sz); return true; }
void Tuple::SerializeTo(SerializeOutput &output) { PL_ASSERT(tuple_schema_); size_t start = output.ReserveBytes(4); const int column_count = tuple_schema_->GetColumnCount(); for (int column_itr = 0; column_itr < column_count; column_itr++) { type::Value value(GetValue(column_itr)); value.SerializeTo(output); } output.WriteIntAt( start, static_cast<int32_t>(output.Position() - start - sizeof(int32_t))); }