void Optimizer::FitRest(mat& alpha, mat& beta, mat& rho, mat& lamda, InputPtr input, ModelPtr model, MeshPtr mesh, ShapePtr shape, TexturePtr texture) { mat alpha_gradient = mat(PrincipalNum, 1, fill::zeros); mat alpha_hessian_inv = mat(PrincipalNum, PrincipalNum, fill::zeros); mat beta_gradient = mat(PrincipalNum, 1, fill::zeros); mat beta_hessian_inv = mat(PrincipalNum, PrincipalNum, fill::zeros); Rho rho_para(rho, input, model, mesh, shape, texture); Lamda lamda_para(lamda, model, mesh, shape, texture); // 2500 1000 700 500 300 200 model->InitialRandomGenerator(ModelImage::REST); double weight = 1.0 / 200; for (int l = 0; l < 1000; ++l) { Alpha alpha_para(alpha, input, model, mesh, shape, texture); Beta beta_para(beta, model, mesh, shape, texture); // Generate random points GenerateRandomPoints(model, GradientRandomNum); double function_value = 0; for (int i = 0; i < PrincipalNum; ++i) { double variance = shape->GetVariance(i); alpha_gradient[i] = weight * ComputeIntensityGradient(input, &alpha_para, i) + 2 * alpha[i] / variance; } for (int i = 0; i < PrincipalNum; ++i) { double variance = texture->GetVariance(i); beta_gradient[i] = weight * ComputeIntensityGradient(input, &beta_para, i) + 2 * beta[i] / variance; } alpha -= alpha_para.Step*alpha_gradient; beta -= beta_para.Step*beta_gradient; } }
void Optimizer::FitFirstPrincipalComponents(mat& alpha, mat& beta, mat& rho, mat& lamda, InputPtr input, ModelPtr model, MeshPtr mesh, ShapePtr shape, TexturePtr texture, const cv::Mat& ready) { mat alpha_gradient = mat(PrincipalNum, 1, fill::zeros); mat alpha_hessian_inv = mat(PrincipalNum, PrincipalNum, fill::zeros); mat beta_gradient = mat(PrincipalNum, 1, fill::zeros); mat rho_gradient = mat(RhoNum, 1, fill::zeros); mat lamda_gradient = mat(LamdaNum, 1, fill::zeros); vec step(RhoNum, 1); step.rows(0, 2).fill(0.00000006); step.rows(3, 5).fill(0.0002); step.rows(6, 6).fill(2.0); mat step_mat = diagmat(step); // down sampled version cv::Mat down_sampled; pyrDown(ready, down_sampled, Size(IMAGE_WIDTH / 2, IMAGE_HEIGHT / 2)); input = make_shared<InputImage>(down_sampled); model->SetSize(IMAGE_WIDTH / 2, IMAGE_HEIGHT / 2); rho[FOCAL] /= 2; //SetStartingValue(rho, lamda); double para_num = 10; double weight = 1.0 / 900; int counter = 0; while (counter < 1000) { Alpha alpha_para(alpha, input, model, mesh, shape, texture); Beta beta_para(beta, model, mesh, shape, texture); Rho rho_para(rho, input, model, mesh, shape, texture); Lamda lamda_para(lamda, model, mesh, shape, texture); if (counter == 0 || counter % 1000 == 0) { Face3dModel face3d_model(shape, texture); mesh = face3d_model.Construction(alpha, beta); TwoPassZbuffer(rho, lamda, mesh, model); model->EnableIterator(); model->InitialRandomGenerator(); //GenerateRandomPoints(model, HessianRandomNum); //for (int i = 0; i < para_num; ++i) //{ // double variance = shape->GetVariance(i); // mat alpha1 = alpha; // alpha1[i] -= H; // Alpha alpha_para1(alpha1, input, model, mesh, shape, texture); // double first_derivative1 = weight * ComputeIntensityGradient(input, &alpha_para1, i) + 2 * alpha1[i] / variance; // mat alpha2 = alpha; // alpha2[i] += H; // Alpha alpha_para2(alpha2, input, model, mesh, shape, texture); // double first_derivative2 = weight * ComputeIntensityGradient(input, &alpha_para2, i) + 2 * alpha2[i] / variance; // double second_derivative = (first_derivative2 - first_derivative1) / (2 * H); // alpha_hessian_inv(i, i) = 1 / (second_derivative + 2 / variance); //} } // Generate random points GenerateRandomPoints(model, GradientRandomNum); double function_value = 0; function_value = ComputeCost(input, model, alpha_para); ofstream cost; cost.open("first_cost", ios::app); cost << function_value << "\n"; cost.close(); for (int i = 0; i < para_num; ++i) { double variance = shape->GetVariance(i); alpha_gradient[i] = weight * ComputeIntensityGradient(input, &alpha_para, i) + 2 * alpha[i] / variance; } //for (int i = 0; i < 10; ++i) //{ // double variance = texture->GetVariance(i); // beta_gradient[i] = weight *ComputeIntensityGradient(input, &beta_para, i) + 2 * beta[i] / variance; //} //for (int i = 0; i < RhoNum; ++i) //{ // double first_derivative1 = 1.0 / 1000*ComputeIntensityGradient(input, &rho_para, i); // //double variance = rho_para.GetVariance(i); // //double mean = rho_para.GetMean(i); // rho_gradient[i] = first_derivative1;// +2 * (rho[i] - mean) / variance; //} //for (int i = 0; i < LamdaNum-7; ++i) //{ // double first_derivative1 = 1.0 / 1000 * ComputeIntensityGradient(input, &lamda_para, i); // //double variance = lamda_para.GetVariance(i); // //double mean = lamda_para.GetMean(i); // lamda_gradient[i] = first_derivative1; //+2 * (lamda[i] - mean) / variance; //} alpha -= alpha_para.Step*alpha_gradient; //beta -= beta_para.Step*beta_gradient; //rho -= step_mat*rho_gradient; //lamda -= lamda_para.Step*lamda_gradient; //alpha -= 0.00008*alpha_hessian_inv*alpha_gradient; ++counter; } // restore original version input= make_shared<InputImage>(ready); model->SetSize(IMAGE_WIDTH, IMAGE_HEIGHT); rho[FOCAL] *= 2; Face3dModel face3d_model(shape, texture); mesh = face3d_model.Construction(alpha, beta); VisualizeResult(rho, lamda, input, mesh, "first"); }
void Optimizer::FitAll(mat& alpha, mat& beta, mat& rho, mat& lamda, InputPtr input, ModelPtr model, MeshPtr mesh, ShapePtr shape, TexturePtr texture) { mat alpha_gradient = mat(PrincipalNum, 1, fill::zeros); mat alpha_hessian_inv = mat(PrincipalNum, PrincipalNum, fill::zeros); mat beta_gradient = mat(PrincipalNum, 1, fill::zeros); mat beta_hessian_inv = mat(PrincipalNum, PrincipalNum, fill::zeros); mat rho_gradient = mat(RhoNum, 1, fill::zeros); mat rho_hessian_inv = mat(RhoNum, RhoNum, fill::zeros); mat lamda_gradient = mat(LamdaNum, 1, fill::zeros); mat lamda_hessian_inv = mat(LamdaNum, LamdaNum, fill::zeros); vec step(RhoNum, 1); step.rows(0, 2).fill(0.00000006); step.rows(3, 5).fill(0.0002); step.rows(6, 6).fill(2.0); mat step_mat = diagmat(step); SetStartingValue(rho, lamda); // 2500 1000 700 500 300 200 array<double, 6> weight_intensity = { { 1.0 / 1000, 1.0 / 900, 1.0 / 800, 1.0 / 700, 1.0 / 500, 1.0 / 300 } }; array<int, 6> para_num = { { 10, 15, 25, 35, 55, 99 } }; // 20 40 array<int, 6> iterations = { { 1000, 1000, 1000, 1000, 1000, 1000 } }; //array<double, 4> weight_intensity = { { 1.0 / 900, 1.0 / 700, 1.0 / 500, 1.0 / 400 } }; //array<int, 4> para_num = { { 10, 20, 40, 99 } }; // 20 40 //array<int, 4> iterations = { { 1000, 1000, 800, 600 } }; int counter = 0; for (int c = 0; c < 6; ++c) { for (int l = 0; l < iterations[c]; ++l) { if (counter == 0 || counter % 1000 == 0) { Face3dModel face3d_model(shape, texture); mesh = face3d_model.Construction(alpha, beta); TwoPassZbuffer(rho, lamda, mesh, model); model->EnableIterator(); model->InitialRandomGenerator(); //GenerateRandomPoints(model, HessianRandomNum); //for (int i = 0; i < para_num[c]; ++i) //{ // double variance = shape->GetVariance(i); // mat alpha1 = alpha; // alpha1[i] -= H; // Alpha alpha_para1(alpha1, input, model, mesh, shape, texture); // double first_derivative1 = weight_feature[c] * ComputeLandmarkGradient(input, &alpha_para1, i) + // weight_intensity[c] * ComputeIntensityGradient(input, &alpha_para1, i); // mat alpha2 = alpha; // alpha2[i] += H; // Alpha alpha_para2(alpha2, input, model, mesh, shape, texture); // double first_derivative2 = weight_feature[c] * ComputeLandmarkGradient(input, &alpha_para2, i) + // weight_intensity[c] * ComputeIntensityGradient(input, &alpha_para2, i); // double second_derivative = (first_derivative2 - first_derivative1) / (2 * H); // alpha_hessian_inv(i, i) = 1 / (second_derivative +2 / variance); //} /* for (int i = 0; i < para_num[c]; ++i) { double variance = texture->GetVariance(i); mat beta1 = beta; beta1[i] -= H; Beta beta_para1(beta1, model, mesh, shape, texture); double first_derivative1 = weight_intensity[c] * ComputeIntensityGradient(input, &beta_para1, i); mat beta2 = beta; beta2[i] += H; Beta beta_para2(beta2, model, mesh, shape, texture); double first_derivative2 = weight_intensity[c] * ComputeIntensityGradient(input, &beta_para2, i); double second_derivative = (first_derivative2 - first_derivative1) / (2 * H); beta_hessian_inv(i, i) = 1 / (second_derivative + 2 / variance); }*/ //for (int i = 0; i < RhoNum; ++i) //{ // double variance = GetRhoVariance(i); // mat rho1 = rho; // rho1[i] -= H; // Rho rho_para1(rho1, input, model, mesh, shape, texture); // double first_derivative1 =/* weight_feature[c] * ComputeLandmarkGradient(input, &rho_para1, i) +*/ // weight_intensity[c] * ComputeIntensityGradient(input, &rho_para1, i); // mat rho2 = rho; // rho2[i] += H; // Rho rho_para2(rho2, input, model, mesh, shape, texture); // double first_derivative2 = /*weight_feature[c] * ComputeLandmarkGradient(input, &rho_para2, i) +*/ // weight_intensity[c] * ComputeIntensityGradient(input, &rho_para2, i); // double second_derivative = (first_derivative2 - first_derivative1) / (2 * H); // rho_hessian_inv(i, i) = 1 / (second_derivative + 2 / variance); //} //for (int i = 0; i < LamdaNum - 7; ++i) //{ // double variance = GetLamdaVariance(i); // mat lamda1 = lamda; // lamda1[i] -= H; // Lamda lamda_para1(lamda1, model, mesh, shape, texture); // double first_derivative1 = weight_intensity[c] * ComputeIntensityGradient(input, &lamda_para1, i); // mat lamda2 = lamda; // lamda2[i] += H; // Lamda lamda_para2(lamda2, model, mesh, shape, texture); // double first_derivative2 = weight_intensity[c] * ComputeIntensityGradient(input, &lamda_para2, i); // double second_derivative = (first_derivative2 - first_derivative1) / (2 * H); // lamda_hessian_inv(i, i) = 1 / (second_derivative + 2 / variance); //} } Alpha alpha_para(alpha, input, model, mesh, shape, texture); Beta beta_para(beta, model, mesh, shape, texture); Rho rho_para(rho, input, model, mesh, shape, texture); Lamda lamda_para(lamda, model, mesh, shape, texture); GenerateRandomPoints(model, GradientRandomNum); //double function_value = 0; //function_value = ComputeCost(input, model, alpha_para); //ofstream cost; //cost.open("all_cost", ios::app); //cost << function_value << "\n"; //cost.close(); for (int i = 0; i < para_num[c]; ++i) { double variance = shape->GetVariance(i); alpha_gradient[i] = /*weight_feature[c] * ComputeLandmarkGradient(input, &alpha_para, i) +*/ weight_intensity[c] * ComputeIntensityGradient(input, &alpha_para, i) +2 * alpha[i] / variance; } for (int i = 0; i < para_num[c]; ++i) { double variance = texture->GetVariance(i); beta_gradient[i] = weight_intensity[c] * ComputeIntensityGradient(input, &beta_para, i) + 2 * beta[i] / variance; } for (int i = 0; i < RhoNum; ++i) { //double variance = GetRhoVariance(i); //double mean = GetRhoMean(i); rho_gradient[i] = /*weight_feature[c] * ComputeLandmarkGradient(input, &rho_para, i) +*/ weight_intensity[c] * ComputeIntensityGradient(input, &rho_para, i);// +2 * (rho[i] - mean) / variance; } for (int i = 0; i < LamdaNum; ++i) { double variance = GetLamdaVariance(i); double mean = GetLamdaMean(i); lamda_gradient[i] = weight_intensity[c] * ComputeIntensityGradient(input, &lamda_para, i) +2 * (lamda[i] - mean) / variance; } //alpha -= 0.00003*alpha_hessian_inv*alpha_gradient; // 0.01 0.00003 //beta -= 0.01*beta_hessian_inv*beta_gradient; //lamda -= 0.03*lamda_hessian_inv*lamda_gradient; //rho -= 0.0001*rho_hessian_inv*rho_gradient; alpha -= alpha_para.Step*alpha_gradient; beta -= beta_para.Step*beta_gradient; rho -= step_mat*rho_gradient; // gradient descent lamda -= lamda_para.Step*lamda_gradient; ++counter; } Face3dModel face3d_model(shape, texture); mesh = face3d_model.Construction(alpha, beta); VisualizeResult(rho, lamda, input, mesh, "segmented", c); } }
void Optimizer::FitPose(mat& alpha, mat& rho, mat& lamda, InputPtr input, ModelPtr model, MeshPtr mesh, ShapePtr shape, TexturePtr texture) { mat alpha_gradient=mat(PrincipalNum, 1,fill::zeros); mat alpha_hessian_inv = mat(PrincipalNum, PrincipalNum, fill::zeros); mat rho_gradient=mat(RhoNum, 1,fill::zeros); mat rho_hessian_inv = mat(RhoNum, RhoNum, fill::zeros); double weight = 0.05; int para_num = 10; int counter = 0; while (counter<300) // 300 { Alpha alpha_para(alpha, input, model, mesh, shape, texture); Rho rho_para(rho, input, model, mesh); Lamda lamda_para(lamda, model, mesh); //stringstream file; //double residual = 0; //residual = ComputeCost(input, alpha_para); //ofstream cost; //cost.open("cost", ios::app); //cost << residual << "\n"; //cost.close(); if (counter == 0 || counter % 1000 == 0) { for (int i = 0; i < para_num; ++i) { double variance = shape->GetVariance(i); mat alpha1 = alpha; alpha1[i] -= H; Alpha alpha_para1(alpha1, input, model, mesh, shape, texture); double first_derivative1 = weight * ComputeLandmarkGradient(input, &alpha_para1, i); mat alpha2 = alpha; alpha2[i] += H; Alpha alpha_para2(alpha2, input, model, mesh, shape, texture); double first_derivative2 = weight * ComputeLandmarkGradient(input, &alpha_para2, i); double second_derivative = (first_derivative2 - first_derivative1) / (2 * H); alpha_hessian_inv(i, i) = 1 / (second_derivative + 2 / variance); } for (int i = 0; i < RhoNum;++i) { // rho mat rho1 = rho; rho1[i] -= H; Rho rho_para1(rho1, input, model, mesh); double first_derivative1 = weight * ComputeLandmarkGradient(input, &rho_para1, i); mat rho2 = rho; rho1[i] += H; Rho rho_para2(rho2, input, model, mesh); double first_derivative2 = weight * ComputeLandmarkGradient(input, &rho_para2, i); double second_derivative = (first_derivative2 - first_derivative1) / (2 * H); rho_hessian_inv(i, i) = 1 / second_derivative; } } for (int i = 0; i < para_num; ++i) { double variance = shape->GetVariance(i); alpha_gradient[i] = weight*ComputeLandmarkGradient(input, &alpha_para, i)+2 * alpha[i] / variance; } for (int i = 0; i < RhoNum; ++i) { rho_gradient[i] = weight*ComputeLandmarkGradient(input, &rho_para, i); } alpha -= 0.0006*alpha_hessian_inv*alpha_gradient; rho -= 0.01*rho_hessian_inv*rho_gradient; ++counter; } }