Пример #1
0
        /// Called once before each time step.
        /// \param[in] timer                  simulation timer
        void prepareStep(const SimulatorTimerInterface& timer)
        {
            // update the solution variables in ebos
            if ( timer.lastStepFailed() ) {
                ebosSimulator_.model().updateFailed();
            } else {
                ebosSimulator_.model().advanceTimeLevel();
            }

            // set the timestep size and episode index for ebos explicitly. ebos needs to
            // know the report step/episode index because of timing dependend data
            // despide the fact that flow uses its own time stepper. (The length of the
            // episode does not matter, though.)
            ebosSimulator_.setTime(timer.simulationTimeElapsed());
            ebosSimulator_.setTimeStepSize(timer.currentStepLength());
            ebosSimulator_.problem().beginTimeStep();

            unsigned numDof = ebosSimulator_.model().numGridDof();
            wasSwitched_.resize(numDof);
            std::fill(wasSwitched_.begin(), wasSwitched_.end(), false);

            if (param_.update_equations_scaling_) {
                std::cout << "equation scaling not suported yet" << std::endl;
                //updateEquationsScaling();
            }
        }
    void
    BlackoilMultiSegmentModel<Grid>::
    prepareStep(const SimulatorTimerInterface& timer,
                const ReservoirState& reservoir_state,
                const WellState& well_state)
    {
        const double dt = timer.currentStepLength();
        pvdt_ = geo_.poreVolume() / dt;
        if (active_[Gas]) {
            updatePrimalVariableFromState(reservoir_state);
        }

        const int nw = wellsMultiSegment().size();

        if ( !msWellOps().has_multisegment_wells ) {
            wellModel().segVDt() = V::Zero(nw);
            return;
        }

        const int nseg_total = well_state.numSegments();
        std::vector<double> segment_volume;
        segment_volume.reserve(nseg_total);
        for (int w = 0; w < nw; ++w) {
            WellMultiSegmentConstPtr well = wellsMultiSegment()[w];
            const std::vector<double>& segment_volume_well = well->segmentVolume();
            segment_volume.insert(segment_volume.end(), segment_volume_well.begin(), segment_volume_well.end());
        }
        assert(int(segment_volume.size()) == nseg_total);
        wellModel().segVDt() = Eigen::Map<V>(segment_volume.data(), nseg_total) / dt;
    }
Пример #3
0
    void
    BlackoilOutputWriter::
    writeTimeStepSerial(const SimulatorTimerInterface& timer,
                        const SimulationDataContainer& state,
                        const WellState& wellState,
                        const data::Solution& simProps,
                        bool substep)
    {
        // Matlab output
        if( matlabWriter_ ) {
            matlabWriter_->writeTimeStep( timer, state, wellState, substep );
        }

        // ECL output
        if ( eclWriter_ )
        {
            const auto& initConfig = eclipseState_.getInitConfig();
            if (initConfig.restartRequested() && ((initConfig.getRestartStep()) == (timer.currentStepNum()))) {
                std::cout << "Skipping restart write in start of step " << timer.currentStepNum() << std::endl;
            } else {
                data::Solution combined_sol = simToSolution(state, phaseUsage_); // Get "normal" data (SWAT, PRESSURE, ...)
                combined_sol.insert(simProps.begin(), simProps.end());           // ... insert "extra" data (KR, VISC, ...)
                eclWriter_->writeTimeStep(timer.reportStepNum(),
                                          substep,
                                          timer.simulationTimeElapsed(),
                                          combined_sol,
                                          wellState.report(phaseUsage_));
            }
        }

        // write backup file
        if( backupfile_.is_open() )
        {
            int reportStep      = timer.reportStepNum();
            int currentTimeStep = timer.currentStepNum();
            if( (reportStep == currentTimeStep || // true for SimulatorTimer
                 currentTimeStep == 0 || // true for AdaptiveSimulatorTimer at reportStep
                 timer.done() ) // true for AdaptiveSimulatorTimer at reportStep
               && lastBackupReportStep_ != reportStep ) // only backup report step once
            {
                // store report step
                lastBackupReportStep_ = reportStep;
                // write resport step number
                backupfile_.write( (const char *) &reportStep, sizeof(int) );

                try {
                    backupfile_ << state;

                    const WellStateFullyImplicitBlackoil& boWellState = static_cast< const WellStateFullyImplicitBlackoil& > (wellState);
                    backupfile_ << boWellState;
                }
                catch ( const std::bad_cast& e )
                {
                }

                backupfile_ << std::flush;
            }
        } // end backup
    }
Пример #4
0
    void
    BlackoilOutputWriter::
    writeTimeStepWithCellProperties(
                  const SimulatorTimerInterface& timer,
                  const SimulationDataContainer& localState,
                  const WellState& localWellState,
                  const data::Solution& cellData,
                  bool substep)
    {
        // VTK output (is parallel if grid is parallel)
        if( vtkWriter_ ) {
            vtkWriter_->writeTimeStep( timer, localState, localWellState, false );
        }

        bool isIORank = output_ ;
        if( parallelOutput_ && parallelOutput_->isParallel() )
        {
            // If this is not the initial write and no substep, then the well
            // state used in the computation is actually the one of the last
            // step. We need that well state for the gathering. Otherwise
            // It an exception with a message like "global state does not
            // contain well ..." might be thrown.
            int wellStateStepNumber = ( ! substep && timer.reportStepNum() > 0) ?
                (timer.reportStepNum() - 1) : timer.reportStepNum();
            // collect all solutions to I/O rank
            isIORank = parallelOutput_->collectToIORank( localState, localWellState, wellStateStepNumber );
        }

        const SimulationDataContainer& state = (parallelOutput_ && parallelOutput_->isParallel() ) ? parallelOutput_->globalReservoirState() : localState;
        const WellState& wellState  = (parallelOutput_ && parallelOutput_->isParallel() ) ? parallelOutput_->globalWellState() : localWellState;

        // serial output is only done on I/O rank
        if( isIORank )
        {
            if( asyncOutput_ ) {
                // dispatch the write call to the extra thread
                asyncOutput_->dispatch( detail::WriterCall( *this, timer, state, wellState, cellData, substep ) );
            }
            else {
                // just write the data to disk
                writeTimeStepSerial( timer, state, wellState, cellData, substep );
            }
        }
    }
Пример #5
0
    AdaptiveSimulatorTimer::
    AdaptiveSimulatorTimer( const SimulatorTimerInterface& timer,
                            const double lastStepTaken,
                            const double maxTimeStep )
        : start_date_time_( timer.startDateTime() )
        , start_time_( timer.simulationTimeElapsed() )
        , total_time_( start_time_ + timer.currentStepLength() )
        , report_step_( timer.reportStepNum() )
        , max_time_step_( maxTimeStep )
        , current_time_( start_time_ )
        , dt_( 0.0 )
        , current_step_( 0 )
        , steps_()
    {
        // reserve memory for sub steps
        steps_.reserve( 10 );

        // set appropriate value for dt_
        provideTimeStepEstimate( lastStepTaken );
    }
Пример #6
0
    void EclipseWriteRFTHandler::writeTimeStep(const std::string& filename,
                                               const ert_ecl_unit_enum ecl_unit,
                                               const SimulatorTimerInterface& simulatorTimer,
                                               std::vector<WellConstPtr>& wells,
                                               EclipseGridConstPtr eclipseGrid,
                                               std::vector<double>& pressure,
                                               std::vector<double>& swat,
                                               std::vector<double>& sgas) {



        std::vector<ecl_rft_node_type *> rft_nodes;
        for (std::vector<WellConstPtr>::const_iterator ci = wells.begin(); ci != wells.end(); ++ci) {
            WellConstPtr well = *ci;
            if ((well->getRFTActive(simulatorTimer.currentStepNum())) || (well->getPLTActive(simulatorTimer.currentStepNum()))) {
                ecl_rft_node_type * ecl_node = createEclRFTNode(well,
                                                                 simulatorTimer,
                                                                 eclipseGrid,
                                                                 pressure,
                                                                 swat,
                                                                 sgas);

                if (well->getPLTActive(simulatorTimer.currentStepNum())) {
                    std::cerr << "PLT not supported, writing RFT data" << std::endl;
                }

                rft_nodes.push_back(ecl_node);
            }
        }


        if (rft_nodes.size() > 0) {
            ecl_rft_file_update(filename.c_str(), rft_nodes.data(), rft_nodes.size(), ecl_unit);
        }

        //Cleanup: The ecl_rft_file_update method takes care of freeing the ecl_rft_nodes that it receives.
        //         Each ecl_rft_node is again responsible for freeing it's cells.
    }
Пример #7
0
 explicit WriterCall( BlackoilOutputWriter& writer,
                      const SimulatorTimerInterface& timer,
                      const SimulationDataContainer& state,
                      const WellState& wellState,
                      const data::Solution& simProps,
                      bool substep )
     : writer_( writer ),
       timer_( timer.clone() ),
       state_( state ),
       wellState_( wellState ),
       simProps_( simProps ),
       substep_( substep )
 {
 }
Пример #8
0
        SimulatorReport nonlinearIteration(const int iteration,
                                           const SimulatorTimerInterface& timer,
                                           NonlinearSolverType& nonlinear_solver)
        {
            SimulatorReport report;
            failureReport_ = SimulatorReport();
            Dune::Timer perfTimer;

            perfTimer.start();
            if (iteration == 0) {
                // For each iteration we store in a vector the norms of the residual of
                // the mass balance for each active phase, the well flux and the well equations.
                residual_norms_history_.clear();
                current_relaxation_ = 1.0;
                dx_old_ = 0.0;
                convergence_reports_.push_back({timer.reportStepNum(), timer.currentStepNum(), {}});
                convergence_reports_.back().report.reserve(11);
            }

            report.total_linearizations = 1;

            try {
                report += assembleReservoir(timer, iteration);
                report.assemble_time += perfTimer.stop();
            }
            catch (...) {
                report.assemble_time += perfTimer.stop();
                failureReport_ += report;
                // todo (?): make the report an attribute of the class
                throw; // continue throwing the stick
            }

            std::vector<double> residual_norms;
            perfTimer.reset();
            perfTimer.start();
            // the step is not considered converged until at least minIter iterations is done
            {
                auto convrep = getConvergence(timer, iteration,residual_norms);
                report.converged = convrep.converged()  && iteration > nonlinear_solver.minIter();;
                ConvergenceReport::Severity severity = convrep.severityOfWorstFailure();
                convergence_reports_.back().report.push_back(std::move(convrep));

                // Throw if any NaN or too large residual found.
                if (severity == ConvergenceReport::Severity::NotANumber) {
                    OPM_THROW(Opm::NumericalIssue, "NaN residual found!");
                } else if (severity == ConvergenceReport::Severity::TooLarge) {
                    OPM_THROW(Opm::NumericalIssue, "Too large residual found!");
                }
            }

             // checking whether the group targets are converged
             if (wellModel().wellCollection().groupControlActive()) {
                  report.converged = report.converged && wellModel().wellCollection().groupTargetConverged(wellModel().wellState().wellRates());
             }

            report.update_time += perfTimer.stop();
            residual_norms_history_.push_back(residual_norms);
            if (!report.converged) {
                perfTimer.reset();
                perfTimer.start();
                report.total_newton_iterations = 1;

                // enable single precision for solvers when dt is smaller then 20 days
                //residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ;

                // Compute the nonlinear update.
                const int nc = UgGridHelpers::numCells(grid_);
                BVector x(nc);

                // apply the Schur compliment of the well model to the reservoir linearized
                // equations
                wellModel().linearize(ebosSimulator().model().linearizer().jacobian(),
                                      ebosSimulator().model().linearizer().residual());

                // Solve the linear system.
                linear_solve_setup_time_ = 0.0;
                try {
                    solveJacobianSystem(x);
                    report.linear_solve_setup_time += linear_solve_setup_time_;
                    report.linear_solve_time += perfTimer.stop();
                    report.total_linear_iterations += linearIterationsLastSolve();
                }
                catch (...) {
                    report.linear_solve_setup_time += linear_solve_setup_time_;
                    report.linear_solve_time += perfTimer.stop();
                    report.total_linear_iterations += linearIterationsLastSolve();

                    failureReport_ += report;
                    throw; // re-throw up
                }

                perfTimer.reset();
                perfTimer.start();

                // handling well state update before oscillation treatment is a decision based
                // on observation to avoid some big performance degeneration under some circumstances.
                // there is no theorectical explanation which way is better for sure.
                wellModel().postSolve(x);

                if (param_.use_update_stabilization_) {
                    // Stabilize the nonlinear update.
                    bool isOscillate = false;
                    bool isStagnate = false;
                    nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate);
                    if (isOscillate) {
                        current_relaxation_ -= nonlinear_solver.relaxIncrement();
                        current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax());
                        if (terminalOutputEnabled()) {
                            std::string msg = "    Oscillating behavior detected: Relaxation set to "
                                    + std::to_string(current_relaxation_);
                            OpmLog::info(msg);
                        }
                    }
                    nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_);
                }

                // Apply the update, with considering model-dependent limitations and
                // chopping of the update.
                updateSolution(x);

                report.update_time += perfTimer.stop();
            }

            return report;
        }
Пример #9
0
    void
    BlackoilOutputWriter::
    restore(SimulatorTimerInterface& timer,
            BlackoilState& state,
            WellStateFullyImplicitBlackoil& wellState,
            const std::string& filename,
            const int desiredResportStep )
    {
        std::ifstream restorefile( filename.c_str() );
        if( restorefile )
        {
            std::cout << "============================================================================"<<std::endl;
            std::cout << "Restoring from ";
            if( desiredResportStep < 0 ) {
                std::cout << "last";
            }
            else {
                std::cout << desiredResportStep;
            }
            std::cout << " report step! filename = " << filename << std::endl << std::endl;

            int reportStep;
            restorefile.read( (char *) &reportStep, sizeof(int) );

            const int readReportStep = (desiredResportStep < 0) ?
                std::numeric_limits<int>::max() : desiredResportStep;

            while( reportStep <= readReportStep && ! timer.done() && restorefile )
            {
                restorefile >> state;
                restorefile >> wellState;

                // No per cell data is written for restore steps, but will be
                // for subsequent steps, when we have started simulating
                writeTimeStepWithoutCellProperties( timer, state, wellState );

                // some output
                std::cout << "Restored step " << timer.reportStepNum() << " at day "
                          <<  unit::convert::to(timer.simulationTimeElapsed(),unit::day) << std::endl;

                if( readReportStep == reportStep ) {
                    break;
                }

                // if the stream is not valid anymore we just use the last state read
                if( ! restorefile ) {
                    std::cerr << "Reached EOF, using last state read!" << std::endl;
                    break;
                }

                // try to read next report step
                restorefile.read( (char *) &reportStep, sizeof(int) );

                // if read failed, exit loop
                if( ! restorefile ) {
                    break;
                }

                // next step
                timer.advance();

                if( timer.reportStepNum() != reportStep ) {
                    break;
                }
            }
        }
        else
        {