// returns false if there's more than one intercept or the intercept doesn't match the point // returns true if the intercept was successfully added or if the // original quads need to be subdivided static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax, SkIntersections* i, bool* subDivide) { double tMid = (tMin + tMax) / 2; SkDPoint mid = q2.ptAtT(tMid); SkDLine line; line[0] = line[1] = mid; SkDVector dxdy = q2.dxdyAtT(tMid); line[0] -= dxdy; line[1] += dxdy; SkIntersections rootTs; rootTs.allowNear(false); int roots = rootTs.intersect(q1, line); if (roots == 0) { if (subDivide) { *subDivide = true; } return true; } if (roots == 2) { return false; } SkDPoint pt2 = q1.ptAtT(rootTs[0][0]); if (!pt2.approximatelyEqualHalf(mid)) { return false; } i->insertSwap(rootTs[0][0], tMid, pt2); return true; }
// determine that slop required after quad/quad finds a candidate intersection // use the cross of the tangents plus the distance from 1 or 0 as knobs DEF_TEST(PathOpsCubicQuadSlop, reporter) { // create a random non-selfintersecting cubic // break it into quadratics // offset the quadratic, measuring the slop required to find the intersection if (!gPathOpCubicQuadSlopVerbose) { // takes a while to run -- so exclude it by default return; } int results[101]; sk_bzero(results, sizeof(results)); double minCross[101]; sk_bzero(minCross, sizeof(minCross)); double maxCross[101]; sk_bzero(maxCross, sizeof(maxCross)); double sumCross[101]; sk_bzero(sumCross, sizeof(sumCross)); int foundOne = 0; int slopCount = 1; SkRandom ran; for (int index = 0; index < 10000000; ++index) { if (index % 1000 == 999) SkDebugf("."); SkDCubic cubic = {{ {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)} }}; SkIntersections i; if (i.intersect(cubic)) { continue; } SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts; cubic.toQuadraticTs(cubic.calcPrecision(), &ts); double tStart = 0; int tsCount = ts.count(); for (int i1 = 0; i1 <= tsCount; ++i1) { const double tEnd = i1 < tsCount ? ts[i1] : 1; SkDCubic part = cubic.subDivide(tStart, tEnd); SkDQuad quad = part.toQuad(); SkReduceOrder reducer; int order = reducer.reduce(quad); if (order != 3) { continue; } for (int i2 = 0; i2 < 100; ++i2) { SkDPoint endDisplacement = {ran.nextRangeF(-100, 100), ran.nextRangeF(-100, 100)}; SkDQuad nearby = {{ {quad[0].fX + endDisplacement.fX, quad[0].fY + endDisplacement.fY}, {quad[1].fX + ran.nextRangeF(-100, 100), quad[1].fY + ran.nextRangeF(-100, 100)}, {quad[2].fX - endDisplacement.fX, quad[2].fY - endDisplacement.fY} }}; order = reducer.reduce(nearby); if (order != 3) { continue; } SkIntersections locals; locals.allowNear(false); locals.intersect(quad, nearby); if (locals.used() != 1) { continue; } // brute force find actual intersection SkDLine cubicLine = {{ {0, 0}, {cubic[0].fX, cubic[0].fY } }}; SkIntersections liner; int i3; int found = -1; int foundErr = true; for (i3 = 1; i3 <= 1000; ++i3) { cubicLine[0] = cubicLine[1]; cubicLine[1] = cubic.ptAtT(i3 / 1000.); liner.reset(); liner.allowNear(false); liner.intersect(nearby, cubicLine); if (liner.used() == 0) { continue; } if (liner.used() > 1) { foundErr = true; break; } if (found > 0) { foundErr = true; break; } foundErr = false; found = i3; } if (foundErr) { continue; } SkDVector dist = liner.pt(0) - locals.pt(0); SkDVector qV = nearby.dxdyAtT(locals[0][0]); double cubicT = (found - 1 + liner[1][0]) / 1000.; SkDVector cV = cubic.dxdyAtT(cubicT); double qxc = qV.crossCheck(cV); double qvLen = qV.length(); double cvLen = cV.length(); double maxLen = SkTMax(qvLen, cvLen); qxc /= maxLen; double quadT = tStart + (tEnd - tStart) * locals[0][0]; double diffT = fabs(cubicT - quadT); int diffIdx = (int) (diffT * 100); results[diffIdx]++; double absQxc = fabs(qxc); if (sumCross[diffIdx] == 0) { minCross[diffIdx] = maxCross[diffIdx] = sumCross[diffIdx] = absQxc; } else { minCross[diffIdx] = SkTMin(minCross[diffIdx], absQxc); maxCross[diffIdx] = SkTMax(maxCross[diffIdx], absQxc); sumCross[diffIdx] += absQxc; } if (diffIdx >= 20) { #if 01 SkDebugf("cubic={{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}" " quad={{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}" " {{{%1.9g,%1.9g}, {%1.9g,%1.9g}}}" " qT=%1.9g cT=%1.9g dist=%1.9g cross=%1.9g\n", cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY, nearby[0].fX, nearby[0].fY, nearby[1].fX, nearby[1].fY, nearby[2].fX, nearby[2].fY, liner.pt(0).fX, liner.pt(0).fY, locals.pt(0).fX, locals.pt(0).fY, quadT, cubicT, dist.length(), qxc); #else SkDebugf("qT=%1.9g cT=%1.9g dist=%1.9g cross=%1.9g\n", quadT, cubicT, dist.length(), qxc); SkDebugf("<div id=\"slop%d\">\n", ++slopCount); SkDebugf("{{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n" "{{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n" "{{{%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n", cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY, nearby[0].fX, nearby[0].fY, nearby[1].fX, nearby[1].fY, nearby[2].fX, nearby[2].fY, liner.pt(0).fX, liner.pt(0).fY, locals.pt(0).fX, locals.pt(0).fY); SkDebugf("</div>\n\n"); #endif } ++foundOne; } tStart = tEnd; } if (++foundOne >= 100000) { break; } } #if 01 SkDebugf("slopCount=%d\n", slopCount); int max = 100; while (results[max] == 0) { --max; } for (int i = 0; i <= max; ++i) { if (i > 0 && i % 10 == 0) { SkDebugf("\n"); } SkDebugf("%d ", results[i]); } SkDebugf("min\n"); for (int i = 0; i <= max; ++i) { if (i > 0 && i % 10 == 0) { SkDebugf("\n"); } SkDebugf("%1.9g ", minCross[i]); } SkDebugf("max\n"); for (int i = 0; i <= max; ++i) { if (i > 0 && i % 10 == 0) { SkDebugf("\n"); } SkDebugf("%1.9g ", maxCross[i]); } SkDebugf("avg\n"); for (int i = 0; i <= max; ++i) { if (i > 0 && i % 10 == 0) { SkDebugf("\n"); } SkDebugf("%1.9g ", sumCross[i] / results[i]); } #else for (int i = 1; i < slopCount; ++i) { SkDebugf(" slop%d,\n", i); } #endif SkDebugf("\n"); }
static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2, double t2s, double t2e, SkIntersections* i, bool* subDivide) { SkDQuad hull = q1.subDivide(t1s, t1e); SkDLine line = {{hull[2], hull[0]}}; const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] }; const size_t kTestCount = SK_ARRAY_COUNT(testLines); SkSTArray<kTestCount * 2, double, true> tsFound; for (size_t index = 0; index < kTestCount; ++index) { SkIntersections rootTs; rootTs.allowNear(false); int roots = rootTs.intersect(q2, *testLines[index]); for (int idx2 = 0; idx2 < roots; ++idx2) { double t = rootTs[0][idx2]; #ifdef SK_DEBUG SkDPoint qPt = q2.ptAtT(t); SkDPoint lPt = testLines[index]->ptAtT(rootTs[1][idx2]); SkASSERT(qPt.approximatelyEqual(lPt)); #endif if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) { continue; } tsFound.push_back(rootTs[0][idx2]); } } int tCount = tsFound.count(); if (tCount <= 0) { return true; } double tMin, tMax; if (tCount == 1) { tMin = tMax = tsFound[0]; } else { SkASSERT(tCount > 1); SkTQSort<double>(tsFound.begin(), tsFound.end() - 1); tMin = tsFound[0]; tMax = tsFound[tsFound.count() - 1]; } SkDPoint end = q2.ptAtT(t2s); bool startInTriangle = hull.pointInHull(end); if (startInTriangle) { tMin = t2s; } end = q2.ptAtT(t2e); bool endInTriangle = hull.pointInHull(end); if (endInTriangle) { tMax = t2e; } int split = 0; SkDVector dxy1, dxy2; if (tMin != tMax || tCount > 2) { dxy2 = q2.dxdyAtT(tMin); for (int index = 1; index < tCount; ++index) { dxy1 = dxy2; dxy2 = q2.dxdyAtT(tsFound[index]); double dot = dxy1.dot(dxy2); if (dot < 0) { split = index - 1; break; } } } if (split == 0) { // there's one point if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) { return true; } i->swap(); return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide); } // At this point, we have two ranges of t values -- treat each separately at the split bool result; if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) { result = true; } else { i->swap(); result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide); } if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) { result = true; } else { i->swap(); result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide); } return result; }