void onDraw(SkCanvas* canvas) override { static const SkScalar kBlurRadius = SkIntToScalar(20); static const SkScalar kBoxSize = SkIntToScalar(100); SkRect clipRect = SkRect::MakeXYWH(0, 0, kBoxSize, kBoxSize); SkRect blurRects[] = { { -kBoxSize - (kBlurRadius+1), 0, -(kBlurRadius+1), kBoxSize }, { 0, -kBoxSize - (kBlurRadius+1), kBoxSize, -(kBlurRadius+1) }, { kBoxSize+kBlurRadius+1, 0, 2*kBoxSize+kBlurRadius+1, kBoxSize }, { 0, kBoxSize+kBlurRadius+1, kBoxSize, 2*kBoxSize+kBlurRadius+1 } }; SkColor colors[] = { SK_ColorRED, SK_ColorGREEN, SK_ColorBLUE, SK_ColorYELLOW, }; SkASSERT(SK_ARRAY_COUNT(colors) == SK_ARRAY_COUNT(blurRects)); SkPaint hairlinePaint; hairlinePaint.setStyle(SkPaint::kStroke_Style); hairlinePaint.setColor(SK_ColorWHITE); hairlinePaint.setStrokeWidth(0); SkPaint blurPaint; blurPaint.setFilterQuality(kLow_SkFilterQuality); blurPaint.setMaskFilter(SkBlurMaskFilter::Make(kNormal_SkBlurStyle, SkBlurMask::ConvertRadiusToSigma(kBlurRadius))); canvas->clear(SK_ColorBLACK); canvas->save(); canvas->translate(kBoxSize, kBoxSize); canvas->drawRect(clipRect, hairlinePaint); canvas->clipRect(clipRect); for (size_t i = 0; i < SK_ARRAY_COUNT(blurRects); ++i) { blurPaint.setColor(colors[i]); canvas->drawRect(blurRects[i], blurPaint); canvas->drawRect(blurRects[i], hairlinePaint); } canvas->restore(); }
static void mesh_slide(SkCanvas* canvas) { Rec fRecs[3]; SkIPoint size; auto fShader0 = make_shader0(&size); auto fShader1 = make_shader1(size); make_strip(&fRecs[0], size.fX, size.fY); make_fan(&fRecs[1], size.fX, size.fY); make_tris(&fRecs[2]); SkPaint paint; paint.setDither(true); paint.setFilterQuality(kLow_SkFilterQuality); for (size_t i = 0; i < SK_ARRAY_COUNT(fRecs); i++) { canvas->save(); paint.setShader(nullptr); canvas->drawVertices(fRecs[i].fMode, fRecs[i].fCount, fRecs[i].fVerts, fRecs[i].fTexs, nullptr, nullptr, nullptr, 0, paint); canvas->translate(SkIntToScalar(210), 0); paint.setShader(fShader0); canvas->drawVertices(fRecs[i].fMode, fRecs[i].fCount, fRecs[i].fVerts, fRecs[i].fTexs, nullptr, nullptr, nullptr, 0, paint); canvas->translate(SkIntToScalar(210), 0); paint.setShader(fShader1); canvas->drawVertices(fRecs[i].fMode, fRecs[i].fCount, fRecs[i].fVerts, fRecs[i].fTexs, nullptr, nullptr, nullptr, 0, paint); canvas->restore(); canvas->translate(0, SkIntToScalar(250)); } }
void drawTheImage(SkCanvas* canvas, const SkISize& size, SkFilterQuality filter, SkScalar dx, SkScalar dy) { SkPaint paint; paint.setAntiAlias(true); paint.setFilterQuality(filter); SkAutoCanvasRestore acr(canvas, true); canvas->translate(dx, dy); canvas->translate(SkScalarHalf(size.width()), SkScalarHalf(size.height())); canvas->scale(fScale, fScale); canvas->rotate(fAngle); canvas->drawImage(fImage, -SkScalarHalf(fImage->width()), -SkScalarHalf(fImage->height()), &paint); if (false) { acr.restore(); draw_box_frame(canvas, size.width(), size.height()); } }
static SkPaint make_paint() { SkPaint paint; paint.setHinting(make_paint_hinting()); paint.setAntiAlias(make_bool()); paint.setDither(make_bool()); paint.setLinearText(make_bool()); paint.setSubpixelText(make_bool()); paint.setLCDRenderText(make_bool()); paint.setEmbeddedBitmapText(make_bool()); paint.setAutohinted(make_bool()); paint.setVerticalText(make_bool()); paint.setFakeBoldText(make_bool()); paint.setDevKernText(make_bool()); paint.setFilterQuality(make_filter_quality()); paint.setStyle(make_paint_style()); paint.setColor(make_color()); paint.setStrokeWidth(make_scalar()); paint.setStrokeMiter(make_scalar()); paint.setStrokeCap(make_paint_cap()); paint.setStrokeJoin(make_paint_join()); paint.setColorFilter(make_color_filter()); paint.setBlendMode(make_xfermode()); paint.setPathEffect(make_path_effect()); paint.setMaskFilter(make_mask_filter()); if (false) { // our validating buffer does not support typefaces yet, so skip this for now paint.setTypeface(SkTypeface::MakeFromName(make_font_name().c_str(), make_typeface_style())); } paint.setImageFilter(make_image_filter()); sk_sp<SkData> data(make_3Dlut(nullptr, make_bool(), make_bool(), make_bool())); paint.setTextAlign(make_paint_align()); paint.setTextSize(make_scalar()); paint.setTextScaleX(make_scalar()); paint.setTextSkewX(make_scalar()); paint.setTextEncoding(make_paint_text_encoding()); return paint; }
PassRefPtr<SkImage> DragImage::resizeAndOrientImage(PassRefPtr<SkImage> image, ImageOrientation orientation, FloatSize imageScale, float opacity, InterpolationQuality interpolationQuality) { IntSize size(image->width(), image->height()); size.scale(imageScale.width(), imageScale.height()); AffineTransform transform; if (orientation != DefaultImageOrientation) { if (orientation.usesWidthAsHeight()) size = size.transposedSize(); transform *= orientation.transformFromDefault(size); } transform.scaleNonUniform(imageScale.width(), imageScale.height()); if (size.isEmpty()) return nullptr; if (transform.isIdentity() && opacity == 1) { // Nothing to adjust, just use the original. ASSERT(image->width() == size.width()); ASSERT(image->height() == size.height()); return image; } RefPtr<SkSurface> surface = adoptRef(SkSurface::NewRasterN32Premul(size.width(), size.height())); if (!surface) return nullptr; SkPaint paint; ASSERT(opacity >= 0 && opacity <= 1); paint.setAlpha(opacity * 255); paint.setFilterQuality(interpolationQuality == InterpolationNone ? kNone_SkFilterQuality : kHigh_SkFilterQuality); SkCanvas* canvas = surface->getCanvas(); canvas->clear(SK_ColorTRANSPARENT); canvas->concat(affineTransformToSkMatrix(transform)); canvas->drawImage(image.get(), 0, 0, &paint); return adoptRef(surface->newImageSnapshot()); }
static void Transform(DataSourceSurface* aDest, DataSourceSurface* aSource, const Matrix4x4& aTransform, const Point& aDestOffset) { if (aTransform.IsSingular()) { return; } IntSize destSize = aDest->GetSize(); SkImageInfo destInfo = SkImageInfo::Make(destSize.width, destSize.height, kBGRA_8888_SkColorType, kPremul_SkAlphaType); SkBitmap destBitmap; destBitmap.setInfo(destInfo, aDest->Stride()); destBitmap.setPixels((uint32_t*)aDest->GetData()); SkCanvas destCanvas(destBitmap); IntSize srcSize = aSource->GetSize(); SkImageInfo srcInfo = SkImageInfo::Make(srcSize.width, srcSize.height, kBGRA_8888_SkColorType, kPremul_SkAlphaType); SkBitmap src; src.setInfo(srcInfo, aSource->Stride()); src.setPixels((uint32_t*)aSource->GetData()); Matrix4x4 transform = aTransform; transform.PostTranslate(Point3D(-aDestOffset.x, -aDestOffset.y, 0)); destCanvas.setMatrix(Matrix3DToSkia(transform)); SkPaint paint; paint.setXfermodeMode(SkXfermode::kSrc_Mode); paint.setAntiAlias(true); paint.setFilterQuality(kLow_SkFilterQuality); SkRect destRect = SkRect::MakeXYWH(0, 0, srcSize.width, srcSize.height); destCanvas.drawBitmapRect(src, destRect, &paint); }
bool SVGPaintContext::paintForLayoutObject(const PaintInfo& paintInfo, const ComputedStyle& style, const LayoutObject& layoutObject, LayoutSVGResourceMode resourceMode, SkPaint& paint, const AffineTransform* additionalPaintServerTransform) { if (paintInfo.isRenderingClipPathAsMaskImage()) { if (resourceMode == ApplyToStrokeMode) return false; paint.setColor(SVGComputedStyle::initialFillPaintColor().rgb()); paint.setShader(nullptr); return true; } SVGPaintServer paintServer = SVGPaintServer::requestForLayoutObject(layoutObject, style, resourceMode); if (!paintServer.isValid()) return false; if (additionalPaintServerTransform && paintServer.isTransformDependent()) paintServer.prependTransform(*additionalPaintServerTransform); const SVGComputedStyle& svgStyle = style.svgStyle(); float paintAlpha = resourceMode == ApplyToFillMode ? svgStyle.fillOpacity() : svgStyle.strokeOpacity(); paintServer.applyToSkPaint(paint, paintAlpha); // We always set filter quality to 'low' here. This value will only have an // effect for patterns, which are SkPictures, so using high-order filter // should have little effect on the overall quality. paint.setFilterQuality(kLow_SkFilterQuality); // TODO(fs): The color filter can set when generating a picture for a mask - // due to color-interpolation. We could also just apply the // color-interpolation property from the the shape itself (which could mean // the paintserver if it has it specified), since that would be more in line // with the spec for color-interpolation. For now, just steal it from the GC // though. // Additionally, it's not really safe/guaranteed to be correct, as // something down the paint pipe may want to farther tweak the color // filter, which could yield incorrect results. (Consider just using // saveLayer() w/ this color filter explicitly instead.) paint.setColorFilter(paintInfo.context->colorFilter()); return true; }
void GM::DrawGpuOnlyMessage(SkCanvas* canvas) { SkBitmap bmp; bmp.allocN32Pixels(128, 64); SkCanvas bmpCanvas(bmp); bmpCanvas.drawColor(SK_ColorWHITE); SkPaint paint; paint.setAntiAlias(true); paint.setTextSize(20); paint.setColor(SK_ColorRED); sk_tool_utils::set_portable_typeface(&paint); static const char kTxt[] = "GPU Only"; bmpCanvas.drawText(kTxt, strlen(kTxt), 20, 40, paint); SkMatrix localM; localM.setRotate(35.f); localM.postTranslate(10.f, 0.f); paint.setShader(SkShader::MakeBitmapShader(bmp, SkShader::kMirror_TileMode, SkShader::kMirror_TileMode, &localM)); paint.setFilterQuality(kMedium_SkFilterQuality); canvas->drawPaint(paint); return; }
void onDrawContent(SkCanvas* canvas) override { SkPaint paint; paint.setTypeface(fTypeface); paint.setAntiAlias(true); paint.setFilterQuality(kMedium_SkFilterQuality); paint.setTextSize(50); // rough center of each glyph static constexpr auto kMidX = 35; static constexpr auto kMidY = 50; canvas->clear(SK_ColorWHITE); for (int i = 0; i < kNumChars; ++i) { canvas->save(); double rot = SkScalarInterp(fChars[i].fStartRotation, fChars[i].fEndRotation, fCurrTime/kDuration); canvas->translate(fChars[i].fPosition.fX + kMidX, fChars[i].fPosition.fY - kMidY); canvas->rotate(SkRadiansToDegrees(rot)); canvas->translate(-35,+50); canvas->drawString(fChars[i].fChar, 0, 0, paint); canvas->restore(); } }
virtual void onDrawContent(SkCanvas* canvas) { canvas->translate(this->width()/2, this->height()/2); Sk3DView view; view.rotateX(fRX); view.rotateY(fRY); view.applyToCanvas(canvas); SkPaint paint; if (fShaders.count() > 0) { bool frontFace = view.dotWithNormal(0, 0, SK_Scalar1) < 0; if (frontFace != fFrontFace) { fFrontFace = frontFace; fShaderIndex = (fShaderIndex + 1) % fShaders.count(); } paint.setAntiAlias(true); paint.setShader(fShaders[fShaderIndex]); paint.setFilterQuality(kLow_SkFilterQuality); SkRect r = { -150, -150, 150, 150 }; canvas->drawRoundRect(r, 30, 30, paint); } }
void onDraw(SkCanvas* canvas) override { if (nullptr == fBitmap.pixelRef()) { fImage = make_image(canvas, &fCenter); image_to_bitmap(fImage.get(), &fBitmap); } // amount of bm that should not be stretched (unless we have to) const SkScalar fixed = SkIntToScalar(fBitmap.width() - fCenter.width()); const SkTSize<SkScalar> size[] = { { fixed * 4 / 5, fixed * 4 / 5 }, // shrink in both axes { fixed * 4 / 5, fixed * 4 }, // shrink in X { fixed * 4, fixed * 4 / 5 }, // shrink in Y { fixed * 4, fixed * 4 } }; canvas->drawBitmap(fBitmap, 10, 10, nullptr); SkScalar x = SkIntToScalar(100); SkScalar y = SkIntToScalar(100); SkPaint paint; for (int filter = 0; filter < 2; filter++) { paint.setFilterQuality(filter == 0 ? kLow_SkFilterQuality : kNone_SkFilterQuality); canvas->translate(0, filter * SkIntToScalar(400)); for (int iy = 0; iy < 2; ++iy) { for (int ix = 0; ix < 2; ++ix) { int i = ix * 2 + iy; SkRect r = SkRect::MakeXYWH(x + ix * fixed, y + iy * fixed, size[i].width(), size[i].height()); canvas->drawBitmapNine(fBitmap, fCenter, r, &paint); canvas->drawImageNine(fImage.get(), fCenter, r.makeOffset(360, 0), &paint); } } } }
bool SkImageSource::onFilterImageDeprecated(Proxy* proxy, const SkBitmap& src, const Context& ctx, SkBitmap* result, SkIPoint* offset) const { SkRect dstRect; ctx.ctm().mapRect(&dstRect, fDstRect); SkRect bounds = SkRect::MakeIWH(fImage->width(), fImage->height()); if (fSrcRect == bounds && dstRect == bounds) { // No regions cropped out or resized; return entire image. offset->fX = offset->fY = 0; return fImage->asLegacyBitmap(result, SkImage::kRO_LegacyBitmapMode); } const SkIRect dstIRect = dstRect.roundOut(); SkAutoTUnref<SkBaseDevice> device(proxy->createDevice(dstIRect.width(), dstIRect.height())); if (nullptr == device.get()) { return false; } SkCanvas canvas(device.get()); SkPaint paint; // Subtract off the integer component of the translation (will be applied in loc, below). dstRect.offset(-SkIntToScalar(dstIRect.fLeft), -SkIntToScalar(dstIRect.fTop)); paint.setXfermodeMode(SkXfermode::kSrc_Mode); // FIXME: this probably shouldn't be necessary, but drawImageRect asserts // None filtering when it's translate-only paint.setFilterQuality( fSrcRect.width() == dstRect.width() && fSrcRect.height() == dstRect.height() ? kNone_SkFilterQuality : fFilterQuality); canvas.drawImageRect(fImage, fSrcRect, dstRect, &paint, SkCanvas::kStrict_SrcRectConstraint); *result = device.get()->accessBitmap(false); offset->fX = dstIRect.fLeft; offset->fY = dstIRect.fTop; return true; }
// Tests that MIP maps are created and invalidated as expected when drawing to and from GrTextures. DEF_GPUTEST_FOR_NULLGL_CONTEXT(GrTextureMipMapInvalidationTest, reporter, ctxInfo) { auto isMipped = [] (SkSurface* surf) { const GrTexture* texture = surf->makeImageSnapshot()->getTexture(); return GrMipMapped::kYes == texture->texturePriv().mipMapped(); }; auto mipsAreDirty = [] (SkSurface* surf) { return surf->makeImageSnapshot()->getTexture()->texturePriv().mipMapsAreDirty(); }; GrContext* context = ctxInfo.grContext(); auto info = SkImageInfo::MakeN32Premul(256, 256); auto surf1 = SkSurface::MakeRenderTarget(context, SkBudgeted::kYes, info); auto surf2 = SkSurface::MakeRenderTarget(context, SkBudgeted::kYes, info); // Draw something just in case we ever had a solid color optimization surf1->getCanvas()->drawCircle(128, 128, 50, SkPaint()); surf1->getCanvas()->flush(); // No mipmaps initially REPORTER_ASSERT(reporter, !isMipped(surf1.get())); // Painting with downscale and medium filter quality should result in mipmap creation SkPaint paint; paint.setFilterQuality(kMedium_SkFilterQuality); surf2->getCanvas()->scale(0.2f, 0.2f); surf2->getCanvas()->drawImage(surf1->makeImageSnapshot(), 0, 0, &paint); surf2->getCanvas()->flush(); REPORTER_ASSERT(reporter, isMipped(surf1.get())); REPORTER_ASSERT(reporter, !mipsAreDirty(surf1.get())); // Changing the contents of the surface should invalidate the mipmap, but not de-allocate surf1->getCanvas()->drawCircle(128, 128, 100, SkPaint()); surf1->getCanvas()->flush(); REPORTER_ASSERT(reporter, isMipped(surf1.get())); REPORTER_ASSERT(reporter, mipsAreDirty(surf1.get())); }
void onDraw(SkCanvas* canvas) override { SkRect dstRect = { 0, 0, SkIntToScalar(64), SkIntToScalar(64)}; static const int kMaxSrcRectSize = 1 << (SkNextLog2(gBmpSize) + 2); static const int kPadX = 30; static const int kPadY = 40; SkPaint paint; paint.setAlpha(0x20); canvas->drawBitmapRect(fLargeBitmap, SkRect::MakeIWH(gSize, gSize), &paint); canvas->translate(SK_Scalar1 * kPadX / 2, SK_Scalar1 * kPadY / 2); SkPaint blackPaint; SkScalar titleHeight = SK_Scalar1 * 24; blackPaint.setColor(SK_ColorBLACK); blackPaint.setTextSize(titleHeight); blackPaint.setAntiAlias(true); sk_tool_utils::set_portable_typeface(&blackPaint); SkString title; title.printf("Bitmap size: %d x %d", gBmpSize, gBmpSize); canvas->drawText(title.c_str(), title.size(), 0, titleHeight, blackPaint); canvas->translate(0, SK_Scalar1 * kPadY / 2 + titleHeight); int rowCount = 0; canvas->save(); for (int w = 1; w <= kMaxSrcRectSize; w *= 4) { for (int h = 1; h <= kMaxSrcRectSize; h *= 4) { SkIRect srcRect = SkIRect::MakeXYWH((gBmpSize - w) / 2, (gBmpSize - h) / 2, w, h); fProc(canvas, fImage, fLargeBitmap, srcRect, dstRect); SkString label; label.appendf("%d x %d", w, h); blackPaint.setAntiAlias(true); blackPaint.setStyle(SkPaint::kFill_Style); blackPaint.setTextSize(SK_Scalar1 * 10); SkScalar baseline = dstRect.height() + blackPaint.getTextSize() + SK_Scalar1 * 3; canvas->drawText(label.c_str(), label.size(), 0, baseline, blackPaint); blackPaint.setStyle(SkPaint::kStroke_Style); blackPaint.setStrokeWidth(SK_Scalar1); blackPaint.setAntiAlias(false); canvas->drawRect(dstRect, blackPaint); canvas->translate(dstRect.width() + SK_Scalar1 * kPadX, 0); ++rowCount; if ((dstRect.width() + kPadX) * rowCount > gSize) { canvas->restore(); canvas->translate(0, dstRect.height() + SK_Scalar1 * kPadY); canvas->save(); rowCount = 0; } } } { // test the following code path: // SkGpuDevice::drawPath() -> SkGpuDevice::drawWithMaskFilter() SkIRect srcRect; SkPaint paint; SkBitmap bm; bm = make_chessbm(5, 5); paint.setFilterQuality(kLow_SkFilterQuality); srcRect.setXYWH(1, 1, 3, 3); SkMaskFilter* mf = SkBlurMaskFilter::Create( kNormal_SkBlurStyle, SkBlurMask::ConvertRadiusToSigma(SkIntToScalar(5)), SkBlurMaskFilter::kHighQuality_BlurFlag | SkBlurMaskFilter::kIgnoreTransform_BlurFlag); paint.setMaskFilter(mf)->unref(); canvas->drawBitmapRect(bm, srcRect, dstRect, &paint); } }
int main(void) { GLFWwindow* window; glfwSetErrorCallback(error_callback); if (!glfwInit()) { exit(EXIT_FAILURE); } glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2); glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); glfwWindowHint(GLFW_SRGB_CAPABLE, GL_TRUE); window = glfwCreateWindow(kWidth, kHeight, "Simple example", NULL, NULL); if (!window) { glfwTerminate(); exit(EXIT_FAILURE); } glfwMakeContextCurrent(window); init_skia(kWidth, kHeight); SkAutoTUnref<SkImage> atlas; SkRSXform xform[kGrid*kGrid+1]; SkRect tex[kGrid*kGrid+1]; WallTimer timer; float times[32]; int currentTime; SkAutoTUnref<SkData> imageData(SkData::NewFromFileName("ship.png")); atlas.reset(SkImage::NewFromEncoded(imageData)); if (!atlas) { SkDebugf("\nCould not decode file ship.png\n"); cleanup_skia(); glfwDestroyWindow(window); glfwTerminate(); exit(EXIT_FAILURE); } SkScalar anchorX = atlas->width()*0.5f; SkScalar anchorY = atlas->height()*0.5f; int currIndex = 0; for (int x = 0; x < kGrid; x++) { for (int y = 0; y < kGrid; y++) { float xPos = (x / (kGrid - 1.0)) * kWidth; float yPos = (y / (kGrid - 1.0)) * kWidth; tex[currIndex] = SkRect::MakeLTRB(0.0f, 0.0f, atlas->width(), atlas->height()); xform[currIndex] = SkRSXform::MakeFromRadians(2.0f, SK_ScalarPI*0.5f, xPos, yPos, anchorX, anchorY); currIndex++; } } tex[currIndex] = SkRect::MakeLTRB(0.0f, 0.0f, atlas->width(), atlas->height()); xform[currIndex] = SkRSXform::MakeFromRadians(2.0f, SK_ScalarPI*0.5f, kWidth*0.5f, kHeight*0.5f, anchorX, anchorY); currentTime = 0; glfwSwapInterval(1); glfwSetKeyCallback(window, key_callback); // Draw to the surface via its SkCanvas. SkCanvas* canvas = sSurface->getCanvas(); // We don't manage this pointer's lifetime. SkPaint paint; paint.setFilterQuality(kLow_SkFilterQuality); paint.setColor(SK_ColorWHITE); paint.setTextSize(15.0f); while (!glfwWindowShouldClose(window)) { const float kCosDiff = 0.99984769515f; const float kSinDiff = 0.01745240643f; timer.start(); glfwPollEvents(); float meanTime = 0.0f; for (int i = 0; i < 32; ++i) { meanTime += times[i]; } meanTime /= 32.f; char outString[64]; float fps = 1000.f/meanTime; sprintf(outString, "fps: %f ms: %f", fps, meanTime); for (int i = 0; i < kGrid*kGrid+1; ++i) { SkScalar c = xform[i].fSCos; SkScalar s = xform[i].fSSin; SkScalar dx = c*anchorX - s*anchorY; SkScalar dy = s*anchorX + c*anchorY; xform[i].fSCos = kCosDiff*c - kSinDiff*s; xform[i].fSSin = kSinDiff*c + kCosDiff*s; dx -= xform[i].fSCos*anchorX - xform[i].fSSin*anchorY; dy -= xform[i].fSSin*anchorX + xform[i].fSCos*anchorY; xform[i].fTx += dx; xform[i].fTy += dy; } canvas->clear(SK_ColorBLACK); canvas->drawAtlas(atlas, xform, tex, nullptr, kGrid*kGrid+1, SkXfermode::kSrcOver_Mode, nullptr, &paint); canvas->drawText(outString, strlen(outString), 100.f, 100.f, paint); canvas->flush(); timer.end(); times[currentTime] = (float)(timer.fWall); currentTime = (currentTime + 1) & 0x1f; glfwSwapBuffers(window); } cleanup_skia(); glfwDestroyWindow(window); glfwTerminate(); exit(EXIT_SUCCESS); }
void SkScalerContext_FreeType_Base::generateGlyphImage( FT_Face face, const SkGlyph& glyph, const SkMatrix& bitmapTransform) { const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag); const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag); switch ( face->glyph->format ) { case FT_GLYPH_FORMAT_OUTLINE: { FT_Outline* outline = &face->glyph->outline; int dx = 0, dy = 0; if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) { dx = SkFixedToFDot6(glyph.getSubXFixed()); dy = SkFixedToFDot6(glyph.getSubYFixed()); // negate dy since freetype-y-goes-up and skia-y-goes-down dy = -dy; } memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight); if (SkMask::kLCD16_Format == glyph.fMaskFormat) { FT_Outline_Translate(outline, dx, dy); FT_Error err = FT_Render_Glyph(face->glyph, doVert ? FT_RENDER_MODE_LCD_V : FT_RENDER_MODE_LCD); if (err) { SK_TRACEFTR(err, "Could not render glyph."); return; } SkMask mask; glyph.toMask(&mask); #ifdef SK_SHOW_TEXT_BLIT_COVERAGE memset(mask.fImage, 0x80, mask.fBounds.height() * mask.fRowBytes); #endif FT_GlyphSlotRec& ftGlyph = *face->glyph; if (!SkIRect::Intersects(mask.fBounds, SkIRect::MakeXYWH( ftGlyph.bitmap_left, -ftGlyph.bitmap_top, ftGlyph.bitmap.width, ftGlyph.bitmap.rows))) { return; } // If the FT_Bitmap extent is larger, discard bits of the bitmap outside the mask. // If the SkMask extent is larger, shrink mask to fit bitmap (clearing discarded). unsigned char* origBuffer = ftGlyph.bitmap.buffer; // First align the top left (origin). if (-ftGlyph.bitmap_top < mask.fBounds.fTop) { int32_t topDiff = mask.fBounds.fTop - (-ftGlyph.bitmap_top); ftGlyph.bitmap.buffer += ftGlyph.bitmap.pitch * topDiff; ftGlyph.bitmap.rows -= topDiff; ftGlyph.bitmap_top = -mask.fBounds.fTop; } if (ftGlyph.bitmap_left < mask.fBounds.fLeft) { int32_t leftDiff = mask.fBounds.fLeft - ftGlyph.bitmap_left; ftGlyph.bitmap.buffer += leftDiff; ftGlyph.bitmap.width -= leftDiff; ftGlyph.bitmap_left = mask.fBounds.fLeft; } if (mask.fBounds.fTop < -ftGlyph.bitmap_top) { mask.fImage += mask.fRowBytes * (-ftGlyph.bitmap_top - mask.fBounds.fTop); mask.fBounds.fTop = -ftGlyph.bitmap_top; } if (mask.fBounds.fLeft < ftGlyph.bitmap_left) { mask.fImage += sizeof(uint16_t) * (ftGlyph.bitmap_left - mask.fBounds.fLeft); mask.fBounds.fLeft = ftGlyph.bitmap_left; } // Origins aligned, clean up the width and height. int ftVertScale = (doVert ? 3 : 1); int ftHoriScale = (doVert ? 1 : 3); if (mask.fBounds.height() * ftVertScale < SkToInt(ftGlyph.bitmap.rows)) { ftGlyph.bitmap.rows = mask.fBounds.height() * ftVertScale; } if (mask.fBounds.width() * ftHoriScale < SkToInt(ftGlyph.bitmap.width)) { ftGlyph.bitmap.width = mask.fBounds.width() * ftHoriScale; } if (SkToInt(ftGlyph.bitmap.rows) < mask.fBounds.height() * ftVertScale) { mask.fBounds.fBottom = mask.fBounds.fTop + ftGlyph.bitmap.rows / ftVertScale; } if (SkToInt(ftGlyph.bitmap.width) < mask.fBounds.width() * ftHoriScale) { mask.fBounds.fRight = mask.fBounds.fLeft + ftGlyph.bitmap.width / ftHoriScale; } if (fPreBlend.isApplicable()) { copyFT2LCD16<true>(ftGlyph.bitmap, mask, doBGR, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } else { copyFT2LCD16<false>(ftGlyph.bitmap, mask, doBGR, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } // Restore the buffer pointer so FreeType can properly free it. ftGlyph.bitmap.buffer = origBuffer; } else { FT_BBox bbox; FT_Bitmap target; FT_Outline_Get_CBox(outline, &bbox); /* what we really want to do for subpixel is offset(dx, dy) compute_bounds offset(bbox & !63) but that is two calls to offset, so we do the following, which achieves the same thing with only one offset call. */ FT_Outline_Translate(outline, dx - ((bbox.xMin + dx) & ~63), dy - ((bbox.yMin + dy) & ~63)); target.width = glyph.fWidth; target.rows = glyph.fHeight; target.pitch = glyph.rowBytes(); target.buffer = reinterpret_cast<uint8_t*>(glyph.fImage); target.pixel_mode = compute_pixel_mode( (SkMask::Format)fRec.fMaskFormat); target.num_grays = 256; FT_Outline_Get_Bitmap(face->glyph->library, outline, &target); #ifdef SK_SHOW_TEXT_BLIT_COVERAGE for (int y = 0; y < glyph.fHeight; ++y) { for (int x = 0; x < glyph.fWidth; ++x) { uint8_t& a = ((uint8_t*)glyph.fImage)[(glyph.rowBytes() * y) + x]; a = SkTMax<uint8_t>(a, 0x20); } } #endif } } break; case FT_GLYPH_FORMAT_BITMAP: { FT_Pixel_Mode pixel_mode = static_cast<FT_Pixel_Mode>(face->glyph->bitmap.pixel_mode); SkMask::Format maskFormat = static_cast<SkMask::Format>(glyph.fMaskFormat); // Assume that the other formats do not exist. SkASSERT(FT_PIXEL_MODE_MONO == pixel_mode || FT_PIXEL_MODE_GRAY == pixel_mode || FT_PIXEL_MODE_BGRA == pixel_mode); // These are the only formats this ScalerContext should request. SkASSERT(SkMask::kBW_Format == maskFormat || SkMask::kA8_Format == maskFormat || SkMask::kARGB32_Format == maskFormat || SkMask::kLCD16_Format == maskFormat); // If no scaling needed, directly copy glyph bitmap. if (bitmapTransform.isIdentity()) { SkMask dstMask; glyph.toMask(&dstMask); copyFTBitmap(face->glyph->bitmap, dstMask); break; } // Otherwise, scale the bitmap. // Copy the FT_Bitmap into an SkBitmap (either A8 or ARGB) SkBitmap unscaledBitmap; // TODO: mark this as sRGB when the blits will be sRGB. unscaledBitmap.allocPixels(SkImageInfo::Make(face->glyph->bitmap.width, face->glyph->bitmap.rows, SkColorType_for_FTPixelMode(pixel_mode), kPremul_SkAlphaType)); SkMask unscaledBitmapAlias; unscaledBitmapAlias.fImage = reinterpret_cast<uint8_t*>(unscaledBitmap.getPixels()); unscaledBitmapAlias.fBounds.set(0, 0, unscaledBitmap.width(), unscaledBitmap.height()); unscaledBitmapAlias.fRowBytes = unscaledBitmap.rowBytes(); unscaledBitmapAlias.fFormat = SkMaskFormat_for_SkColorType(unscaledBitmap.colorType()); copyFTBitmap(face->glyph->bitmap, unscaledBitmapAlias); // Wrap the glyph's mask in a bitmap, unless the glyph's mask is BW or LCD. // BW requires an A8 target for resizing, which can then be down sampled. // LCD should use a 4x A8 target, which will then be down sampled. // For simplicity, LCD uses A8 and is replicated. int bitmapRowBytes = 0; if (SkMask::kBW_Format != maskFormat && SkMask::kLCD16_Format != maskFormat) { bitmapRowBytes = glyph.rowBytes(); } SkBitmap dstBitmap; // TODO: mark this as sRGB when the blits will be sRGB. dstBitmap.setInfo(SkImageInfo::Make(glyph.fWidth, glyph.fHeight, SkColorType_for_SkMaskFormat(maskFormat), kPremul_SkAlphaType), bitmapRowBytes); if (SkMask::kBW_Format == maskFormat || SkMask::kLCD16_Format == maskFormat) { dstBitmap.allocPixels(); } else { dstBitmap.setPixels(glyph.fImage); } // Scale unscaledBitmap into dstBitmap. SkCanvas canvas(dstBitmap); #ifdef SK_SHOW_TEXT_BLIT_COVERAGE canvas.clear(0x33FF0000); #else canvas.clear(SK_ColorTRANSPARENT); #endif canvas.translate(-glyph.fLeft, -glyph.fTop); canvas.concat(bitmapTransform); canvas.translate(face->glyph->bitmap_left, -face->glyph->bitmap_top); SkPaint paint; paint.setFilterQuality(kMedium_SkFilterQuality); canvas.drawBitmap(unscaledBitmap, 0, 0, &paint); // If the destination is BW or LCD, convert from A8. if (SkMask::kBW_Format == maskFormat) { // Copy the A8 dstBitmap into the A1 glyph.fImage. SkMask dstMask; glyph.toMask(&dstMask); packA8ToA1(dstMask, dstBitmap.getAddr8(0, 0), dstBitmap.rowBytes()); } else if (SkMask::kLCD16_Format == maskFormat) { // Copy the A8 dstBitmap into the LCD16 glyph.fImage. uint8_t* src = dstBitmap.getAddr8(0, 0); uint16_t* dst = reinterpret_cast<uint16_t*>(glyph.fImage); for (int y = dstBitmap.height(); y --> 0;) { for (int x = 0; x < dstBitmap.width(); ++x) { dst[x] = grayToRGB16(src[x]); } dst = (uint16_t*)((char*)dst + glyph.rowBytes()); src += dstBitmap.rowBytes(); } } } break; default: SkDEBUGFAIL("unknown glyph format"); memset(glyph.fImage, 0, glyph.rowBytes() * glyph.fHeight); return; } // We used to always do this pre-USE_COLOR_LUMINANCE, but with colorlum, // it is optional #if defined(SK_GAMMA_APPLY_TO_A8) if (SkMask::kA8_Format == glyph.fMaskFormat && fPreBlend.isApplicable()) { uint8_t* SK_RESTRICT dst = (uint8_t*)glyph.fImage; unsigned rowBytes = glyph.rowBytes(); for (int y = glyph.fHeight - 1; y >= 0; --y) { for (int x = glyph.fWidth - 1; x >= 0; --x) { dst[x] = fPreBlend.fG[dst[x]]; } dst += rowBytes; } } #endif }
void onDraw(SkCanvas* canvas) override { static const char kText[] = "SKIA"; static const int kTextLen = SK_ARRAY_COUNT(kText) - 1; static const int kPointSize = 55; SkTDArray<LabeledMatrix> matrices; matrices.append()->fMatrix.reset(); matrices.top().fLabel = "Identity"; matrices.append()->fMatrix.setScale(1.2f, 0.8f); matrices.top().fLabel = "Scale"; matrices.append()->fMatrix.setRotate(10.f); matrices.top().fLabel = "Rotate"; matrices.append()->fMatrix.reset(); matrices.top().fMatrix.setPerspX(-0.0015f); matrices.top().fMatrix.setPerspY(+0.0015f); matrices.top().fLabel = "Persp"; SkTDArray<LabeledMatrix> localMatrices; localMatrices.append()->fMatrix.reset(); localMatrices.top().fLabel = "Identity"; localMatrices.append()->fMatrix.setScale(2.5f, 0.2f); localMatrices.top().fLabel = "Scale"; localMatrices.append()->fMatrix.setRotate(45.f); localMatrices.top().fLabel = "Rotate"; localMatrices.append()->fMatrix.reset(); localMatrices.top().fMatrix.setPerspX(-0.007f); localMatrices.top().fMatrix.setPerspY(+0.008f); localMatrices.top().fLabel = "Persp"; static SkBitmap bmp; if (bmp.isNull()) { makebm(&bmp, kPointSize / 2, kPointSize / 2); } SkPaint fillPaint; fillPaint.setAntiAlias(true); sk_tool_utils::set_portable_typeface_always(&fillPaint); fillPaint.setTextSize(SkIntToScalar(kPointSize)); fillPaint.setFilterQuality(kLow_SkFilterQuality); SkPaint outlinePaint; outlinePaint.setAntiAlias(true); sk_tool_utils::set_portable_typeface_always(&outlinePaint); outlinePaint.setTextSize(SkIntToScalar(kPointSize)); outlinePaint.setStyle(SkPaint::kStroke_Style); outlinePaint.setStrokeWidth(0.f); SkScalar w = fillPaint.measureText(kText, kTextLen); static SkScalar kPadY = 0.5f * kPointSize; static SkScalar kPadX = 1.5f * kPointSize; SkPaint strokePaint(fillPaint); strokePaint.setStyle(SkPaint::kStroke_Style); strokePaint.setStrokeWidth(kPointSize * 0.1f); SkPaint labelPaint; labelPaint.setColor(0xff000000); labelPaint.setAntiAlias(true); sk_tool_utils::set_portable_typeface_always(&labelPaint); labelPaint.setTextSize(12.f); canvas->translate(15.f, 15.f); canvas->drawBitmap(bmp, 0, 0); canvas->translate(0, bmp.height() + labelPaint.getTextSize() + 15.f); static const char kLabelLabel[] = "localM / canvasM"; canvas->drawText(kLabelLabel, strlen(kLabelLabel), 0, 0, labelPaint); canvas->translate(0, 15.f); canvas->save(); SkScalar maxLabelW = 0; canvas->translate(0, kPadY / 2 + kPointSize); for (int lm = 0; lm < localMatrices.count(); ++lm) { canvas->drawText(matrices[lm].fLabel, strlen(matrices[lm].fLabel), 0, labelPaint.getTextSize() - 1, labelPaint); SkScalar labelW = labelPaint.measureText(matrices[lm].fLabel, strlen(matrices[lm].fLabel)); maxLabelW = SkMaxScalar(maxLabelW, labelW); canvas->translate(0.f, 2 * kPointSize + 2.5f * kPadY); } canvas->restore(); canvas->translate(maxLabelW + kPadX / 2.f, 0.f); for (int s = 0; s < 2; ++s) { SkPaint& paint = s ? strokePaint : fillPaint; SkScalar columnH = 0; for (int m = 0; m < matrices.count(); ++m) { columnH = 0; canvas->save(); canvas->drawText(matrices[m].fLabel, strlen(matrices[m].fLabel), 0, labelPaint.getTextSize() - 1, labelPaint); canvas->translate(0, kPadY / 2 + kPointSize); columnH += kPadY / 2 + kPointSize; for (int lm = 0; lm < localMatrices.count(); ++lm) { paint.setShader( SkShader::CreateBitmapShader(bmp, SkShader::kMirror_TileMode, SkShader::kRepeat_TileMode, &localMatrices[lm].fMatrix))->unref(); canvas->save(); canvas->concat(matrices[m].fMatrix); canvas->drawText(kText, kTextLen, 0, 0, paint); canvas->drawText(kText, kTextLen, 0, 0, outlinePaint); canvas->restore(); SkPath path; path.arcTo(SkRect::MakeXYWH(-0.1f * w, 0.f, 1.2f * w, 2.f * kPointSize), 225.f, 359.f, false); path.close(); canvas->translate(0.f, kPointSize + kPadY); columnH += kPointSize + kPadY; canvas->save(); canvas->concat(matrices[m].fMatrix); canvas->drawTextOnPath(kText, kTextLen, path, NULL, paint); canvas->drawTextOnPath(kText, kTextLen, path, NULL, outlinePaint); canvas->restore(); SkPaint stroke; stroke.setStyle(SkPaint::kStroke_Style); canvas->translate(0.f, kPointSize + kPadY); columnH += kPointSize + kPadY; } canvas->restore(); canvas->translate(w + kPadX, 0.f); } if (0 == s) { canvas->drawLine(0.f, -kPadY, 0.f, columnH + kPadY, outlinePaint); canvas->translate(kPadX / 2, 0.f); static const char kFillLabel[] = "Filled"; static const char kStrokeLabel[] = "Stroked"; SkScalar y = columnH + kPadY / 2; SkScalar fillX = -outlinePaint.measureText(kFillLabel, strlen(kFillLabel)) - kPadX; SkScalar strokeX = kPadX; canvas->drawText(kFillLabel, strlen(kFillLabel), fillX, y, labelPaint); canvas->drawText(kStrokeLabel, strlen(kStrokeLabel), strokeX, y, labelPaint); } } }
sk_sp<SkSpecialImage> SkDownSampleImageFilter::onFilterImage(SkSpecialImage* source, const Context& ctx, SkIPoint* offset) const { if (fScale > SK_Scalar1 || fScale <= 0) { return nullptr; } int dstW = SkScalarRoundToInt(source->width() * fScale); int dstH = SkScalarRoundToInt(source->height() * fScale); if (dstW < 1) { dstW = 1; } if (dstH < 1) { dstH = 1; } sk_sp<SkSpecialImage> tmp; // downsample { const SkImageInfo info = SkImageInfo::MakeN32Premul(dstW, dstH); sk_sp<SkSpecialSurface> surf(source->makeSurface(info)); if (!surf) { return nullptr; } SkCanvas* canvas = surf->getCanvas(); SkASSERT(canvas); canvas->clear(0x0); SkPaint paint; paint.setXfermodeMode(SkXfermode::kSrcOver_Mode); paint.setFilterQuality(kLow_SkFilterQuality); canvas->scale(fScale, fScale); source->draw(canvas, 0, 0, &paint); tmp = surf->makeImageSnapshot(); } // upscale { const SkImageInfo info = SkImageInfo::MakeN32Premul(source->width(), source->height()); sk_sp<SkSpecialSurface> surf(source->makeSurface(info)); if (!surf) { return nullptr; } SkCanvas* canvas = surf->getCanvas(); SkASSERT(canvas); canvas->clear(0x0); SkPaint paint; paint.setXfermodeMode(SkXfermode::kSrcOver_Mode); canvas->scale(SkScalarInvert(fScale), SkScalarInvert(fScale)); tmp->draw(canvas, 0, 0, &paint); return surf->makeImageSnapshot(); } }
void NativeImageSkia::drawPattern( GraphicsContext* context, const FloatRect& floatSrcRect, const FloatSize& scale, const FloatPoint& phase, CompositeOperator compositeOp, const FloatRect& destRect, WebBlendMode blendMode, const IntSize& repeatSpacing) const { FloatRect normSrcRect = floatSrcRect; normSrcRect.intersect(FloatRect(0, 0, bitmap().width(), bitmap().height())); if (destRect.isEmpty() || normSrcRect.isEmpty()) return; // nothing to draw SkMatrix totalMatrix = context->getTotalMatrix(); AffineTransform ctm = context->getCTM(); SkScalar ctmScaleX = ctm.xScale(); SkScalar ctmScaleY = ctm.yScale(); totalMatrix.preScale(scale.width(), scale.height()); // Figure out what size the bitmap will be in the destination. The // destination rect is the bounds of the pattern, we need to use the // matrix to see how big it will be. SkRect destRectTarget; totalMatrix.mapRect(&destRectTarget, normSrcRect); float destBitmapWidth = SkScalarToFloat(destRectTarget.width()); float destBitmapHeight = SkScalarToFloat(destRectTarget.height()); bool isLazyDecoded = DeferredImageDecoder::isLazyDecoded(bitmap()); // Compute the resampling mode. InterpolationQuality resampling; if (context->isAccelerated()) resampling = InterpolationLow; else if (isLazyDecoded) resampling = InterpolationHigh; else resampling = computeInterpolationQuality(totalMatrix, normSrcRect.width(), normSrcRect.height(), destBitmapWidth, destBitmapHeight, isDataComplete()); resampling = limitInterpolationQuality(context, resampling); SkMatrix localMatrix; // We also need to translate it such that the origin of the pattern is the // origin of the destination rect, which is what WebKit expects. Skia uses // the coordinate system origin as the base for the pattern. If WebKit wants // a shifted image, it will shift it from there using the localMatrix. const float adjustedX = phase.x() + normSrcRect.x() * scale.width(); const float adjustedY = phase.y() + normSrcRect.y() * scale.height(); localMatrix.setTranslate(SkFloatToScalar(adjustedX), SkFloatToScalar(adjustedY)); RefPtr<SkShader> shader; SkFilterQuality filterLevel = static_cast<SkFilterQuality>(resampling); // Bicubic filter is only applied to defer-decoded images, see // NativeImageSkia::draw for details. if (resampling == InterpolationHigh && !isLazyDecoded) { // Do nice resampling. filterLevel = kNone_SkFilterQuality; float scaleX = destBitmapWidth / normSrcRect.width(); float scaleY = destBitmapHeight / normSrcRect.height(); SkRect scaledSrcRect; // Since we are resizing the bitmap, we need to remove the scale // applied to the pixels in the bitmap shader. This means we need // CTM * localMatrix to have identity scale. Since we // can't modify CTM (or the rectangle will be drawn in the wrong // place), we must set localMatrix's scale to the inverse of // CTM scale. localMatrix.preScale(ctmScaleX ? 1 / ctmScaleX : 1, ctmScaleY ? 1 / ctmScaleY : 1); // The image fragment generated here is not exactly what is // requested. The scale factor used is approximated and image // fragment is slightly larger to align to integer // boundaries. SkBitmap resampled = extractScaledImageFragment(normSrcRect, scaleX, scaleY, &scaledSrcRect); if (repeatSpacing.isZero()) { shader = adoptRef(SkShader::CreateBitmapShader(resampled, SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode, &localMatrix)); } else { shader = adoptRef(SkShader::CreateBitmapShader( createBitmapWithSpace(resampled, repeatSpacing.width() * ctmScaleX, repeatSpacing.height() * ctmScaleY), SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode, &localMatrix)); } } else { // Because no resizing occurred, the shader transform should be // set to the pattern's transform, which just includes scale. localMatrix.preScale(scale.width(), scale.height()); // No need to resample before drawing. SkBitmap srcSubset; bitmap().extractSubset(&srcSubset, enclosingIntRect(normSrcRect)); if (repeatSpacing.isZero()) { shader = adoptRef(SkShader::CreateBitmapShader(srcSubset, SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode, &localMatrix)); } else { shader = adoptRef(SkShader::CreateBitmapShader( createBitmapWithSpace(srcSubset, repeatSpacing.width() * ctmScaleX, repeatSpacing.height() * ctmScaleY), SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode, &localMatrix)); } } SkPaint paint; paint.setShader(shader.get()); paint.setXfermodeMode(WebCoreCompositeToSkiaComposite(compositeOp, blendMode)); paint.setColorFilter(context->colorFilter()); paint.setFilterQuality(filterLevel); context->drawRect(destRect, paint); }
void onDraw(int loops, SkCanvas* canvas) override { SkRandom scaleRand; SkRandom transRand; SkRandom rotRand; int width, height; if (fUseAtlas) { width = kAtlasCellWidth; height = kAtlasCellHeight; } else { width = kCheckerboardWidth; height = kCheckerboardHeight; } SkPaint clearPaint; clearPaint.setColor(0xFF000000); clearPaint.setAntiAlias(true); SkISize size = canvas->getDeviceSize(); SkScalar maxTransX, maxTransY; if (kScale_Type == fType) { maxTransX = size.fWidth - (1.5f * width); maxTransY = size.fHeight - (1.5f * height); } else if (kTranslate_Type == fType) { maxTransX = SkIntToScalar(size.fWidth - width); maxTransY = SkIntToScalar(size.fHeight - height); } else { SkASSERT(kRotate_Type == fType); // Yes, some rotations will be off the top and left sides maxTransX = size.fWidth - SK_ScalarSqrt2 * height; maxTransY = size.fHeight - SK_ScalarSqrt2 * height; } SkMatrix mat; SkRect dst = { 0, 0, SkIntToScalar(width), SkIntToScalar(height) }; SkRect clearRect = { -1.0f, -1.0f, width+1.0f, height+1.0f }; SkPoint verts[4] = { // for drawVertices path { 0, 0 }, { 0, SkIntToScalar(height) }, { SkIntToScalar(width), SkIntToScalar(height) }, { SkIntToScalar(width), 0 } }; uint16_t indices[6] = { 0, 1, 2, 0, 2, 3 }; SkPaint p; p.setColor(0xFF000000); p.setFilterQuality(kLow_SkFilterQuality); SkPaint p2; // for drawVertices path p2.setColor(0xFF000000); p2.setFilterQuality(kLow_SkFilterQuality); p2.setShader(SkShader::MakeBitmapShader(fAtlas, SkShader::kClamp_TileMode, SkShader::kClamp_TileMode)); for (int i = 0; i < loops; ++i, ++fNumSaved) { if (0 == i % kNumBeforeClear) { if (kPartial_Clear == fClear) { for (int j = 0; j < fNumSaved; ++j) { canvas->setMatrix(SkMatrix::I()); mat.setTranslate(fSaved[j][0], fSaved[j][1]); if (kScale_Type == fType) { mat.preScale(fSaved[j][2], fSaved[j][2]); } else if (kRotate_Type == fType) { mat.preRotate(fSaved[j][2]); } canvas->concat(mat); canvas->drawRect(clearRect, clearPaint); } } else { canvas->clear(0xFF000000); } fNumSaved = 0; } SkASSERT(fNumSaved < kNumBeforeClear); canvas->setMatrix(SkMatrix::I()); fSaved[fNumSaved][0] = transRand.nextRangeScalar(0.0f, maxTransX); fSaved[fNumSaved][1] = transRand.nextRangeScalar(0.0f, maxTransY); if (fAligned) { // make the translations integer aligned fSaved[fNumSaved][0] = SkScalarFloorToScalar(fSaved[fNumSaved][0]); fSaved[fNumSaved][1] = SkScalarFloorToScalar(fSaved[fNumSaved][1]); } mat.setTranslate(fSaved[fNumSaved][0], fSaved[fNumSaved][1]); if (kScale_Type == fType) { fSaved[fNumSaved][2] = scaleRand.nextRangeScalar(0.5f, 1.5f); mat.preScale(fSaved[fNumSaved][2], fSaved[fNumSaved][2]); } else if (kRotate_Type == fType) { fSaved[fNumSaved][2] = rotRand.nextRangeScalar(0.0f, 360.0f); mat.preRotate(fSaved[fNumSaved][2]); } canvas->concat(mat); if (fUseAtlas) { const int curCell = i % (kNumAtlasedX * kNumAtlasedY); SkIRect src = fAtlasRects[curCell % (kNumAtlasedX)][curCell / (kNumAtlasedX)]; if (fUseDrawVertices) { SkPoint uvs[4] = { { SkIntToScalar(src.fLeft), SkIntToScalar(src.fBottom) }, { SkIntToScalar(src.fLeft), SkIntToScalar(src.fTop) }, { SkIntToScalar(src.fRight), SkIntToScalar(src.fTop) }, { SkIntToScalar(src.fRight), SkIntToScalar(src.fBottom) }, }; canvas->drawVertices(SkCanvas::kTriangles_VertexMode, 4, verts, uvs, nullptr, nullptr, indices, 6, p2); } else { canvas->drawBitmapRect(fAtlas, src, dst, &p, SkCanvas::kFast_SrcRectConstraint); } } else { canvas->drawBitmapRect(fCheckerboard, dst, &p); } } }