bool initialize(StateP state) { voidP lBound = state->getGenotypes()[0]->getParameterValue(state, "lbound"); lbound = *((double*) lBound.get()); voidP uBound = state->getGenotypes()[0]->getParameterValue(state, "ubound"); ubound = *((double*) uBound.get()); voidP dimension_ = state->getGenotypes()[0]->getParameterValue(state, "dimension"); dimension = *((uint*) dimension_.get()); voidP dup_ = getParameterValue(state, "dup"); dup = *((uint*) dup_.get()); if( *((int*) dup_.get()) <= 0 ) { ECF_LOG(state, 1, "Error: opt-IA requires parameter 'dup' to be an integer greater than 0"); throw "";} voidP c_ = getParameterValue(state, "c"); c = *((double*) c_.get()); if( c <= 0 ) { ECF_LOG(state, 1, "Error: opt-IA requires parameter 'c' to be a double greater than 0"); throw "";} voidP tauB_ = getParameterValue(state, "tauB"); tauB = *((double*) tauB_.get()); if( tauB < 0 ) { ECF_LOG(state, 1, "Error: opt-IA requires parameter 'tauB' to be a nonnegative double value"); throw "";} voidP elitism_ = getParameterValue(state, "elitism"); elitism = *((string*) elitism_.get()); if( elitism != "true" && elitism != "false" ) { ECF_LOG(state, 1, "Error: opt-IA requires parameter 'elitism' to be either 'true' or 'false'"); throw "";} // algorithm accepts a single FloatingPoint Genotype FloatingPointP flp (new FloatingPoint::FloatingPoint); if(state->getGenotypes()[0]->getName() != flp->getName()) { ECF_LOG_ERROR(state, "Error: opt-IA algorithm accepts only a FloatingPoint genotype!"); throw ("");} // algorithm adds another FloatingPoint genotype (age) FloatingPointP flpoint[2]; for(uint iGen = 1; iGen < 2; iGen++) { flpoint[iGen] = (FloatingPointP) new FloatingPoint::FloatingPoint; state->setGenotype(flpoint[iGen]); flpoint[iGen]->setParameterValue(state, "dimension", (voidP) new uint(1)); // initial value of age parameter should be (or as close as possible to) 0 flpoint[iGen]->setParameterValue(state, "lbound", (voidP) new double(0)); flpoint[iGen]->setParameterValue(state, "ubound", (voidP) new double(0.01)); } ECF_LOG(state, 1, "opt-IA algorithm: added 1 FloatingPoint genotype (antibody age)"); return true; }
bool ArtificialBeeColony::initialize(StateP state) { // initialize all operators selFitOp->initialize(state); selFitOp->setSelPressure(2); selBestOp->initialize(state); selWorstOp->initialize(state); selRandomOp->initialize(state); voidP sptr = state->getRegistry()->getEntry("population.size"); uint size = *((uint*) sptr.get()); probability_.resize(size); // this algorithm accepts a single FloatingPoint Genotype FloatingPointP flp (new FloatingPoint::FloatingPoint); if(state->getGenotypes()[0]->getName() != flp->getName()) { ECF_LOG_ERROR(state, "Error: ABC algorithm accepts only a single FloatingPoint genotype!"); throw (""); } voidP limitp = getParameterValue(state, "limit"); limit_ = *((uint*) limitp.get()); voidP lBound = state->getGenotypes()[0]->getParameterValue(state, "lbound"); lbound_ = *((double*) lBound.get()); voidP uBound = state->getGenotypes()[0]->getParameterValue(state, "ubound"); ubound_ = *((double*) uBound.get()); // batch run check if(isTrialAdded_) return true; FloatingPointP flpoint[2]; for(uint iGen = 1; iGen < 2; iGen++) { flpoint[iGen] = (FloatingPointP) new FloatingPoint::FloatingPoint; state->setGenotype(flpoint[iGen]); flpoint[iGen]->setParameterValue(state, "dimension", (voidP) new uint(1)); // initial value of trial parameter should be (as close as possible to) 0 flpoint[iGen]->setParameterValue(state, "lbound", (voidP) new double(0)); flpoint[iGen]->setParameterValue(state, "ubound", (voidP) new double(0.01)); } ECF_LOG(state, 1, "ABC algorithm: added 1 FloatingPoint genotype (trial)"); // mark adding of trial genotype isTrialAdded_ = true; return true; }
bool Individual::initialize(StateP state) { state_ = state; this->clear(); // copy genotypes from State for(uint i = 0; i < state->getGenotypes().size(); i++) { this->push_back(static_cast<GenotypeP> (state->getGenotypes()[i]->copy())); (*this)[i]->setGenotypeId(i); } // init genotypes for(uint i = 0; i < this->size(); i++) (*this)[i]->initialize(state); return true; }
bool DifferentialEvolution::initialize(StateP state) { selRandomOp->initialize(state); donor_vector.clear(); // read parameters, check defined genotype (only a single FloatingPoint is allowed) voidP F = getParameterValue(state, "F"); Fconst_ = *((double*) F.get()); voidP CR = getParameterValue(state, "CR"); CR_ = *((double*) CR.get()); FloatingPointP flp (new FloatingPoint::FloatingPoint); if(state->getGenotypes()[0]->getName() != flp->getName() || state->getGenotypes().size() != 1) { state->getLogger()->log(1, "Error: DE algorithm accepts only a single FloatingPoint genotype!"); throw (""); } return true; }
bool initialize(StateP state) { // initialize all operators selFitOp->initialize(state); selBestOp->initialize(state); selRandomOp->initialize(state); voidP limit_ = getParameterValue(state, "limit"); limit = *((uint*) limit_.get()); voidP lBound = state->getGenotypes()[0]->getParameterValue(state, "lbound"); lbound = *((double*) lBound.get()); voidP uBound = state->getGenotypes()[0]->getParameterValue(state, "ubound"); ubound = *((double*) uBound.get()); // algorithm accepts a single FloatingPoint Genotype FloatingPointP flp (new FloatingPoint::FloatingPoint); if(state->getGenotypes()[0]->getName() != flp->getName()) { ECF_LOG_ERROR(state, "Error: ABC algorithm accepts only a FloatingPoint genotype!"); throw (""); } FloatingPointP flpoint[2]; for(uint iGen = 1; iGen < 2; iGen++) { flpoint[iGen] = (FloatingPointP) new FloatingPoint::FloatingPoint; state->setGenotype(flpoint[iGen]); flpoint[iGen]->setParameterValue(state, "dimension", (voidP) new uint(1)); // initial value of trial parameter should be (as close as possible to) 0 flpoint[iGen]->setParameterValue(state, "lbound", (voidP) new double(0)); flpoint[iGen]->setParameterValue(state, "ubound", (voidP) new double(0.01)); } ECF_LOG(state, 1, "ABC algorithm: added 1 FloatingPoint genotype (trial)"); return true; }
bool PSOInheritance::initialize(StateP state) { // initialize all operators selBestOp->initialize(state); voidP weightType = getParameterValue(state, "weightType"); m_weightType = *((InertiaWeightType*) weightType.get()); voidP weight = getParameterValue(state, "weight"); m_weight = *((double*) weight.get()); voidP maxV = getParameterValue(state, "maxVelocity"); m_maxV = *((double*) maxV.get()); // test if inertia weight type is time variant and if so, check if max iterations specified if(m_weightType == TIME_VARIANT) { if(state->getRegistry()->isModified("term.maxgen")) { // read maxgen parameter m_maxIter = *(boost::static_pointer_cast<int>( state->getRegistry()->getEntry("term.maxgen") )); } else { ECF_LOG_ERROR(state, "Error: term.maxgen has to be specified in order to use time variant inertia eight in PSO algorithm"); throw(""); } } // algorithm accepts a single FloatingPoint Genotype FloatingPointP flp (new FloatingPoint::FloatingPoint); if(state->getGenotypes()[0]->getName() != flp->getName()) { ECF_LOG_ERROR(state, "Error: PSO algorithm accepts only a single FloatingPoint genotype!"); throw (""); } voidP sptr = state->getGenotypes()[0]->getParameterValue(state, "dimension"); uint numDimension = *((uint*) sptr.get()); voidP bounded = getParameterValue(state, "bounded"); bounded_ = *((bool*) bounded.get()); sptr = state->getGenotypes()[0]->getParameterValue(state, "lbound"); lbound_ = *((double*) sptr.get()); sptr = state->getGenotypes()[0]->getParameterValue(state, "ubound"); ubound_ = *((double*) sptr.get()); // batch run check if(areGenotypesAdded_) return true; FloatingPointP flpoint[4]; for(uint iGen = 1; iGen < 4; iGen++) { flpoint[iGen] = (FloatingPointP) new FloatingPoint::FloatingPoint; state->setGenotype(flpoint[iGen]); if(iGen == 3) flpoint[iGen]->setParameterValue(state, "dimension", (voidP) new uint(1)); else flpoint[iGen]->setParameterValue(state, "dimension", (voidP) new uint(numDimension)); // other parameters are proprietary (ignored by the algorithm) flpoint[iGen]->setParameterValue(state, "lbound", (voidP) new double(0)); flpoint[iGen]->setParameterValue(state, "ubound", (voidP) new double(1)); } ECF_LOG(state, 1, "PSO algorithm: added 3 FloatingPoint genotypes (particle velocity, best-so-far postition, best-so-far fitness value)"); // mark adding of genotypes areGenotypesAdded_ = true; return true; }