Пример #1
0
void CVPU1::Cmd_DIRECT(StreamType& stream, CODE nCommand)
{
	uint32 nSize = stream.GetAvailableReadBytes();
	nSize = std::min<uint32>(m_CODE.nIMM * 0x10, nSize);
	assert((nSize & 0x0F) == 0);

	if(nSize != 0)
	{
		uint8* packet = reinterpret_cast<uint8*>(alloca(nSize));
		stream.Read(packet, nSize);

		int32 remainingLength = nSize;
		while(remainingLength > 0)
		{
			uint32 processed = m_vif.GetGif().ProcessPacket(packet, 0, remainingLength, CGsPacketMetadata(2));
			packet += processed;
			remainingLength -= processed;
			assert(remainingLength >= 0);
		}
	}

	m_CODE.nIMM -= (nSize / 0x10);
	if((m_CODE.nIMM == 0) && (nSize != 0))
	{
		m_STAT.nVPS = 0;
	}
	else
	{
		m_STAT.nVPS = 1;
	}
}
Пример #2
0
void CVPU::ProcessPacket(StreamType& stream)
{
	while(stream.GetAvailableReadBytes())
	{
		if(m_STAT.nVPS == 1)
		{
			//Command is waiting for more data...
			ExecuteCommand(stream, m_CODE);

			if((m_STAT.nVPS == 1) && (stream.GetAvailableReadBytes() != 0))
			{
				//We have data in our FIFO but we still need more than what's available
				break;
			}
			else
			{
				continue;
			}
		}
		if(m_STAT.nVEW == 1)
		{
			if(IsRunning()) break;
			m_STAT.nVEW = 0;
			//Command is waiting for micro-program to end.
			ExecuteCommand(stream, m_CODE);
			continue;
		}

#ifdef DELAYED_MSCAL
		m_previousCODE = m_CODE;
#endif
		stream.Read(&m_CODE, sizeof(CODE));

		assert(m_CODE.nI == 0);

		m_NUM = m_CODE.nNUM;

		ExecuteCommand(stream, m_CODE);
	}

#ifdef DELAYED_MSCAL
	if(stream.GetAvailableReadBytes() == 0)
	{
		ResumeDelayedMicroProgram();
	}
#endif
}
Пример #3
0
bool CVPU::Unpack_V32(StreamType& stream, uint128& result, unsigned int fields)
{
	if(stream.GetAvailableReadBytes() < (fields * 4)) return false;

	stream.Read(&result, (fields * 4));

	return true;
}
Пример #4
0
bool CVPU::Unpack_V45(StreamType& stream, uint128& result)
{
	if(stream.GetAvailableReadBytes() < 2) return false;

	uint16 nColor = 0;
	stream.Read(&nColor, 2);

	result.nV0 = ((nColor >>  0) & 0x1F) << 3;
	result.nV1 = ((nColor >>  5) & 0x1F) << 3;
	result.nV2 = ((nColor >> 10) & 0x1F) << 3;
	result.nV3 = ((nColor >> 15) & 0x01) << 7;

	return true;
}
Пример #5
0
bool CVPU::Unpack_S32(StreamType& stream, uint128& result)
{
	if(stream.GetAvailableReadBytes() < 4) return false;

	uint32 word = 0;
	stream.Read(&word, 4);

	for(unsigned int i = 0; i < 4; i++)
	{
		result.nV[i] = word;
	}

	return true;
}
Пример #6
0
void CVPU::Cmd_MPG(StreamType& stream, CODE nCommand)
{
	uint32 nSize = stream.GetAvailableReadBytes();

	uint32 nNum			= (m_NUM == 0) ? (256) : (m_NUM);
	uint32 nCodeNum		= (m_CODE.nNUM == 0) ? (256) : (m_CODE.nNUM);
	uint32 nTransfered	= (nCodeNum - nNum) * 8;

	nCodeNum *= 8;
	nNum *= 8;

	nSize = std::min<uint32>(nNum, nSize);

	uint32 nDstAddr = (m_CODE.nIMM * 8) + nTransfered;

	//Check if microprogram is running
	if(IsRunning())
	{
		m_STAT.nVEW = 1;
		return;
	}

	if(nSize != 0)
	{
		uint8* microProgram = reinterpret_cast<uint8*>(alloca(nSize));
		stream.Read(microProgram, nSize);

		//Check if there's a change
		if(memcmp(m_microMem + nDstAddr, microProgram, nSize) != 0)
		{
			m_executor.ClearActiveBlocks();
			memcpy(m_microMem + nDstAddr, microProgram, nSize);
		}
	}

	m_NUM -= static_cast<uint8>(nSize / 8);
	if((m_NUM == 0) && (nSize != 0))
	{
		m_STAT.nVPS = 0;
	}
	else
	{
		m_STAT.nVPS = 1;
	}
}
Пример #7
0
bool CVPU::Unpack_V16(StreamType& stream, uint128& result, unsigned int fields, bool zeroExtend)
{
	if(stream.GetAvailableReadBytes() < (fields * 2)) return false;

	for(unsigned int i = 0; i < fields; i++)
	{
		uint32 temp = 0;
		stream.Read(&temp, 2);
		if(!zeroExtend)
		{
			temp = static_cast<int16>(temp);
		}

		result.nV[i] = temp;
	}

	return true;
}
Пример #8
0
bool CVPU::Unpack_S8(StreamType& stream, uint128& result, bool zeroExtend)
{
	if(stream.GetAvailableReadBytes() < 1) return false;

	uint32 temp = 0;
	stream.Read(&temp, 1);
	if(!zeroExtend)
	{
		temp = static_cast<int8>(temp);
	}

	for(unsigned int i = 0; i < 4; i++)
	{
		result.nV[i] = temp;
	}

	return true;
}
Пример #9
0
void CVPU::Cmd_STMASK(StreamType& stream, CODE command)
{
	if(m_NUM == 0)
	{
		m_NUM = 1;
	}

	while(m_NUM != 0 && stream.GetAvailableReadBytes())
	{
		stream.Read(&m_MASK, 4);
		m_NUM--;
	}

	if(m_NUM == 0)
	{
		m_STAT.nVPS = 0;
	}
	else
	{
		m_STAT.nVPS = 1;
	}
}
Пример #10
0
void CVPU::Cmd_STCOL(StreamType& stream, CODE nCommand)
{
	if(m_NUM == 0)
	{
		m_NUM = 4;
	}

	while(m_NUM != 0 && stream.GetAvailableReadBytes())
	{
		assert(m_NUM <= 4);
		stream.Read(&m_C[4 - m_NUM], 4);
		m_NUM--;
	}

	if(m_NUM == 0)
	{
		m_STAT.nVPS = 0;
	}
	else
	{
		m_STAT.nVPS = 1;
	}
}
Пример #11
0
void CVif1::Cmd_DIRECT(StreamType& stream, CODE nCommand)
{
    uint32 nSize = stream.GetAvailableReadBytes();
    nSize = std::min<uint32>(m_CODE.nIMM * 0x10, nSize);
    assert((nSize & 0x0F) == 0);

    if(nSize != 0)
    {
        if(m_directBuffer.size() < nSize)
        {
            m_directBuffer.resize(nSize);
        }

        auto packet = m_directBuffer.data();
        stream.Read(packet, nSize);

        int32 remainingLength = nSize;
        while(remainingLength > 0)
        {
            uint32 processed = m_gif.ProcessPacket(packet, 0, remainingLength, CGsPacketMetadata(2));
            packet += processed;
            remainingLength -= processed;
            assert(remainingLength >= 0);
        }
    }

    m_CODE.nIMM -= (nSize / 0x10);
    if((m_CODE.nIMM == 0) && (nSize != 0))
    {
        m_STAT.nVPS = 0;
    }
    else
    {
        m_STAT.nVPS = 1;
    }
}
Пример #12
0
void CVPU::Cmd_UNPACK(StreamType& stream, CODE nCommand, uint32 nDstAddr)
{
	assert((nCommand.nCMD & 0x60) == 0x60);

	bool usn = (m_CODE.nIMM & 0x4000) != 0;
	bool useMask = (nCommand.nCMD & 0x10) != 0;
	uint32 cl = m_CYCLE.nCL;
	uint32 wl = m_CYCLE.nWL;

	if(m_NUM == nCommand.nNUM)
	{
		m_readTick = 0;
		m_writeTick = 0;
	}

	uint32 currentNum = (m_NUM == 0) ? 256 : m_NUM;
	uint32 codeNum = (m_CODE.nNUM == 0) ? 256 : m_CODE.nNUM;
	uint32 transfered = codeNum - currentNum;
	assert(transfered == 0 || cl == wl);	//The value above is only valid for specific combinations of cl and wl

	nDstAddr += transfered;
	nDstAddr *= 0x10;

	uint128* dst = reinterpret_cast<uint128*>(&m_vuMem[nDstAddr]);

	while((currentNum != 0) && stream.GetAvailableReadBytes())
	{
		bool mustWrite = false;
		uint128 writeValue;
		memset(&writeValue, 0, sizeof(writeValue));

		if(cl >= wl)
		{
			if(m_readTick < wl || wl == 0)
			{
				bool success = Unpack_ReadValue(nCommand, stream, writeValue, usn);
				if(!success) break;
				mustWrite = true;
			}
		}
		else
		{
			if(m_writeTick < cl)
			{
				bool success = Unpack_ReadValue(nCommand, stream, writeValue, usn);
				if(!success) break;
			}

			mustWrite = true;
		}

		if(mustWrite)
		{
			for(unsigned int i = 0; i < 4; i++)
			{
				uint32 maskOp = useMask ? GetMaskOp(i, m_writeTick) : MASK_DATA;

				if(maskOp == MASK_DATA)
				{
					if(m_MODE == MODE_OFFSET)
					{
						writeValue.nV[i] += m_R[i];
					}
					else if(m_MODE == MODE_DIFFERENCE)
					{
						assert(0);
					}

					dst->nV[i] = writeValue.nV[i];
				}
				else if(maskOp == MASK_ROW)
				{
					dst->nV[i] = m_R[i];
				}
				else if(maskOp == MASK_COL)
				{
					int index = (m_writeTick > 3) ? 3 : m_writeTick;
					dst->nV[i] = m_C[index];
				}
				else if(maskOp == MASK_MASK)
				{
					//Don't write anything
				}
				else
				{
					assert(0);
				}
			}
			
			currentNum--;
		}

		if(cl >= wl)
		{
			m_writeTick = std::min<uint32>(m_writeTick + 1, wl);
			m_readTick = std::min<uint32>(m_readTick + 1, cl);

			if(m_readTick == cl)
			{
				m_writeTick = 0;
				m_readTick = 0;
			}
		}
		else
		{
			m_writeTick = std::min<uint32>(m_writeTick + 1, wl);
			m_readTick = std::min<uint32>(m_readTick + 1, cl);

			if(m_writeTick == wl)
			{
				m_writeTick = 0;
				m_readTick = 0;
			}
		}

		dst++;
	}

	if(currentNum != 0)
	{
		m_STAT.nVPS = 1;
	}
	else
	{
//        assert((m_cmdBuffer.GetReadCount() & 0x03) == 0);
		stream.Align32();
		m_STAT.nVPS = 0;
	}

	m_NUM = static_cast<uint8>(currentNum);
}