int leftScanlineIntersections(const TQuadratic &q, double t0, double t1, bool &ascending) { const TPointD &p0 = q.getP0(), &p1 = q.getP1(), &p2 = q.getP2(); double y1_y0 = y(p1) - y(p0), accel = y(p2) - y(p1) - y1_y0; // Fallback to segment case whenever we have too flat quads if (std::fabs(accel) < m_tol) return leftScanlineIntersections(TSegment(q.getPoint(t0), q.getPoint(t1)), ascending); // Calculate new ascension int ascends = isAscending(q, t1, t0 < t1); bool wasAscending = ascending; ascending = (ascends > 0) ? true : (ascends < 0) ? false : (wasAscending = !ascending, ascending); // Couples with the cusps check below // In case the y coords are not in range, quit int solIdx[2]; if (!areInYRange(q, t0, t1, solIdx)) return 0; // Identify coordinates for which q(t) == y double poly[3] = {y(p0) - m_y, 2.0 * y1_y0, accel}, s[2]; int sCount = tcg::poly_ops::solve_2(poly, s); // Tolerance dealt at the first bailout above if (sCount == 2) { // Calculate result int result = 0; if (solIdx[0] >= 0) { result += int(getX(q, s[solIdx[0]]) < m_x && (getY(q, t0) != m_y || ascending == wasAscending)); // Cusp check } if (solIdx[1] >= 0) result += int(getX(q, s[solIdx[1]]) < m_x); return result; } return (assert(sCount == 0), 0); // Should never happen, since m_y is in range. If it ever happens, // it must be close to the extremal - so quit with no intersections. }
int intersect(const TQuadratic &q, const TSegment &s, std::vector<DoublePair> &intersections, bool firstIsQuad) { int solutionNumber = 0; // Note the line `a*x+b*y+c = 0` we search for solutions // di a*x(t)+b*y(t)+c=0 in [0,1] double a = s.getP0().y - s.getP1().y, b = s.getP1().x - s.getP0().x, c = -(a * s.getP0().x + b * s.getP0().y); // se il segmento e' un punto if (0.0 == a && 0.0 == b) { double outParForQuad = q.getT(s.getP0()); if (areAlmostEqual(q.getPoint(outParForQuad), s.getP0())) { if (firstIsQuad) intersections.push_back(DoublePair(outParForQuad, 0)); else intersections.push_back(DoublePair(0, outParForQuad)); return 1; } return 0; } if (q.getP2() - q.getP1() == q.getP1() - q.getP0()) { // the second is a segment.... if (firstIsQuad) return intersect(TSegment(q.getP0(), q.getP2()), s, intersections); else return intersect(s, TSegment(q.getP0(), q.getP2()), intersections); } std::vector<TPointD> bez, pol; bez.push_back(q.getP0()); bez.push_back(q.getP1()); bez.push_back(q.getP2()); bezier2poly(bez, pol); std::vector<double> poly_1(3, 0), sol; poly_1[0] = a * pol[0].x + b * pol[0].y + c; poly_1[1] = a * pol[1].x + b * pol[1].y; poly_1[2] = a * pol[2].x + b * pol[2].y; if (!(rootFinding(poly_1, sol))) return 0; double segmentPar, solution; TPointD v10(s.getP1() - s.getP0()); for (UINT i = 0; i < sol.size(); ++i) { solution = sol[i]; if ((0.0 <= solution && solution <= 1.0) || areAlmostEqual(solution, 0.0, 1e-6) || areAlmostEqual(solution, 1.0, 1e-6)) { segmentPar = (q.getPoint(solution) - s.getP0()) * v10 / (v10 * v10); if ((0.0 <= segmentPar && segmentPar <= 1.0) || areAlmostEqual(segmentPar, 0.0, 1e-6) || areAlmostEqual(segmentPar, 1.0, 1e-6)) { TPointD p1 = q.getPoint(solution); TPointD p2 = s.getPoint(segmentPar); assert(areAlmostEqual(p1, p2, 1e-1)); if (firstIsQuad) intersections.push_back(DoublePair(solution, segmentPar)); else intersections.push_back(DoublePair(segmentPar, solution)); solutionNumber++; } } } return solutionNumber; }
int intersect(const TQuadratic &c0, const TQuadratic &c1, std::vector<DoublePair> &intersections, bool checksegments) { int ret; // Works baddly, sometimes patch intersections... if (checksegments) { ret = intersectCloseControlPoints(c0, c1, intersections); if (ret != -2) return ret; } double a = c0.getP0().x - 2 * c0.getP1().x + c0.getP2().x; double b = 2 * (c0.getP1().x - c0.getP0().x); double d = c0.getP0().y - 2 * c0.getP1().y + c0.getP2().y; double e = 2 * (c0.getP1().y - c0.getP0().y); double coeff = b * d - a * e; int i = 0; if (areAlmostEqual(coeff, 0.0)) // c0 is a Segment, or a single point!!! { TSegment s = TSegment(c0.getP0(), c0.getP2()); ret = intersect(s, c1, intersections); if (a == 0 && d == 0) // values of t in s coincide with values of t in c0 return ret; for (i = intersections.size() - ret; i < (int)intersections.size(); i++) { intersections[i].first = c0.getT(s.getPoint(intersections[i].first)); } return ret; } double c = c0.getP0().x; double f = c0.getP0().y; double g = c1.getP0().x - 2 * c1.getP1().x + c1.getP2().x; double h = 2 * (c1.getP1().x - c1.getP0().x); double k = c1.getP0().x; double m = c1.getP0().y - 2 * c1.getP1().y + c1.getP2().y; double p = 2 * (c1.getP1().y - c1.getP0().y); double q = c1.getP0().y; if (areAlmostEqual(h * m - g * p, 0.0)) // c1 is a Segment, or a single point!!! { TSegment s = TSegment(c1.getP0(), c1.getP2()); ret = intersect(c0, s, intersections); if (g == 0 && m == 0) // values of t in s coincide with values of t in c0 return ret; for (i = intersections.size() - ret; i < (int)intersections.size(); i++) { intersections[i].second = c1.getT(s.getPoint(intersections[i].second)); } return ret; } double a2 = (g * d - a * m); double b2 = (h * d - a * p); double c2 = ((k - c) * d + (f - q) * a); coeff = 1.0 / coeff; double A = (a * a + d * d) * coeff * coeff; double aux = A * c2 + (a * b + d * e) * coeff; std::vector<double> t; std::vector<double> solutions; t.push_back(aux * c2 + a * c + d * f - k * a - d * q); aux += A * c2; t.push_back(aux * b2 - h * a - d * p); t.push_back(aux * a2 + A * b2 * b2 - g * a - d * m); t.push_back(2 * A * a2 * b2); t.push_back(A * a2 * a2); rootFinding(t, solutions); // solutions.push_back(0.0); //per convenzione; un valore vale l'altro.... for (i = 0; i < (int)solutions.size(); i++) { if (solutions[i] < 0) { if (areAlmostEqual(solutions[i], 0, 1e-6)) solutions[i] = 0; else continue; } else if (solutions[i] > 1) { if (areAlmostEqual(solutions[i], 1, 1e-6)) solutions[i] = 1; else continue; } DoublePair tt; tt.second = solutions[i]; tt.first = coeff * (tt.second * (a2 * tt.second + b2) + c2); if (tt.first < 0) { if (areAlmostEqual(tt.first, 0, 1e-6)) tt.first = 0; else continue; } else if (tt.first > 1) { if (areAlmostEqual(tt.first, 1, 1e-6)) tt.first = 1; else continue; } intersections.push_back(tt); assert(areAlmostEqual(c0.getPoint(tt.first), c1.getPoint(tt.second), 1e-1)); } return intersections.size(); }