Пример #1
0
			inline void trackFeatures_checkResponses<TSimpleFeatureList>(TSimpleFeatureList &featureList,const CImage &cur_gray,const float minimum_KLT_response,const unsigned int KLT_response_half_win,const unsigned int max_x, const unsigned int max_y)
			{
				if (featureList.empty()) return;

				for (int N = featureList.size()-1; N>=0 ; --N)
				{
					TSimpleFeature & ft = featureList[N];
					if (ft.track_status!=status_TRACKED)
						continue; // Skip if it's not correctly tracked.

					const unsigned int x = ft.pt.x;
					const unsigned int y = ft.pt.y;
					if (x>KLT_response_half_win && y>KLT_response_half_win && x<max_x && y<max_y)
					{	// Update response:
						ft.response = cur_gray.KLT_response(x,y,KLT_response_half_win);

						// Is it good enough? http://grooveshark.com/s/Goonies+Are+Good+Enough/2beBfO?src=5
						if (ft.response<minimum_KLT_response)
						{	// Nope!
							ft.track_status = status_LOST;
						}
					}
					else
					{	// Out of bounds
						ft.response = 0;
						ft.track_status = status_OOB;
					}
				}
			} // end of trackFeatures_checkResponses<>
Пример #2
0
			inline size_t trackFeatures_deleteOOB(
				TSimpleFeatureList &trackedFeats,
				const size_t img_width, const size_t img_height,
				const int MIN_DIST_MARGIN_TO_STOP_TRACKING)
			{
				if (trackedFeats.empty()) return 0;

				std::vector<size_t> survival_idxs;
				const size_t N = trackedFeats.size();

				// 1st: Build list of survival indexes:
				survival_idxs.reserve(N);
				for (size_t i=0;i<N;i++)
				{
					const TSimpleFeature &ft = trackedFeats[i];
					const TFeatureTrackStatus status = ft.track_status;
					bool eras = (status_TRACKED!=status && status_IDLE!=status);
					if (!eras)
					{
						// Also, check if it's too close to the image border:
						const int x= ft.pt.x;
						const int y= ft.pt.y;
						if (x<MIN_DIST_MARGIN_TO_STOP_TRACKING  || y<MIN_DIST_MARGIN_TO_STOP_TRACKING ||
							x>(img_width-MIN_DIST_MARGIN_TO_STOP_TRACKING) ||
							y>(img_height-MIN_DIST_MARGIN_TO_STOP_TRACKING))
						{
							eras = true;
						}
					}
					if (!eras) survival_idxs.push_back(i);
				}

				// 2nd: Build updated list:
				const size_t N2 = survival_idxs.size();
				const size_t n_removed = N-N2;
				for (size_t i=0;i<N2;i++)
				{
					if (survival_idxs[i]!=i)
						trackedFeats[i] = trackedFeats[ survival_idxs[i] ];
				}
				trackedFeats.resize(N2);
				return n_removed;
			} // end of trackFeatures_deleteOOB
Пример #3
0
			inline void trackFeatures_addNewFeats<TSimpleFeatureList>(TSimpleFeatureList &featureList,const TSimpleFeatureList &new_feats, const std::vector<size_t> &sorted_indices, const size_t nNewToCheck,const size_t maxNumFeatures,const float minimum_KLT_response_to_add,const double threshold_sqr_dist_to_add_new,const size_t patchSize,const CImage &cur_gray, TFeatureID  &max_feat_ID_at_input)
			{
#if 0
				// Brute-force version:
				const int max_manhatan_dist = std::sqrt(2*threshold_sqr_dist_to_add_new);

				for (size_t i=0;i<nNewToCheck && featureList.size()<maxNumFeatures;i++)
				{
					const TSimpleFeature &feat = new_feats[ sorted_indices[i] ];
					if (feat.response<minimum_KLT_response_to_add) break; // continue;

					// Check the min-distance:
					int manh_dist = std::numeric_limits<int>::max();
					for (size_t j=0;j<featureList.size();j++)
					{
						const TSimpleFeature &existing = featureList[j];
						const int d = std::abs(existing.pt.x-feat.pt.x)+std::abs(existing.pt.y-feat.pt.y);
						mrpt::utils::keep_min(manh_dist, d);
					}

					if (manh_dist<max_manhatan_dist)
						continue; // Already occupied! skip.

					// OK: accept it
					featureList.push_back_fast(feat.pt.x,feat.pt.y);  // (x,y)
					//featureList.mark_kdtree_as_outdated();

					// Fill out the rest of data:
					TSimpleFeature &newFeat = featureList.back();

					newFeat.ID			= ++max_feat_ID_at_input;
					newFeat.response	= feat.response;
					newFeat.octave		= 0;
					newFeat.track_status = status_IDLE;  //!< Inactive: right after detection, and before being tried to track
				}
#elif 0
				// Version with an occupancy grid:
				const int grid_cell_log2 = round( std::log(std::sqrt(threshold_sqr_dist_to_add_new)*0.5)/std::log(2.0));

				int grid_lx = 1+(cur_gray.getWidth() >> grid_cell_log2);
				int grid_ly = 1+(cur_gray.getHeight()>> grid_cell_log2);

				mrpt::math::CMatrixBool & occupied_sections = featureList.getOccupiedSectionsMatrix();

				occupied_sections.setSize(grid_lx,grid_ly);  // See the comments above for an explanation.
				occupied_sections.fillAll(false);

				for (size_t i=0;i<featureList.size();i++)
				{
					const TSimpleFeature &feat = featureList[i];
					const int section_idx_x = feat.pt.x >> grid_cell_log2;
					const int section_idx_y = feat.pt.y >> grid_cell_log2;

					if (!section_idx_x || !section_idx_y || section_idx_x>=grid_lx-1 || section_idx_y>=grid_ly-1)
						continue; // This may be too radical, but speeds up the logic below...
					
					// Mark sections as occupied
					bool *ptr1 = &occupied_sections.get_unsafe(section_idx_x-1,section_idx_y-1);
					bool *ptr2 = &occupied_sections.get_unsafe(section_idx_x-1,section_idx_y  );
					bool *ptr3 = &occupied_sections.get_unsafe(section_idx_x-1,section_idx_y+1);
					ptr1[0]=ptr1[1]=ptr1[2]=true;
					ptr2[0]=ptr2[1]=ptr2[2]=true;
					ptr3[0]=ptr3[1]=ptr3[2]=true;
				}

				for (size_t i=0;i<nNewToCheck && featureList.size()<maxNumFeatures;i++)
				{
					const TSimpleFeature &feat = new_feats[ sorted_indices[i] ];
					if (feat.response<minimum_KLT_response_to_add) break; // continue;

					// Check the min-distance:
					const int section_idx_x = feat.pt.x >> grid_cell_log2;
					const int section_idx_y = feat.pt.y >> grid_cell_log2;

					if (!section_idx_x || !section_idx_y || section_idx_x>=grid_lx-2 || section_idx_y>=grid_ly-2)
						continue; // This may be too radical, but speeds up the logic below...

					if (occupied_sections(section_idx_x,section_idx_y))
						continue; // Already occupied! skip.

					// Mark section as occupied
					bool *ptr1 = &occupied_sections.get_unsafe(section_idx_x-1,section_idx_y-1);
					bool *ptr2 = &occupied_sections.get_unsafe(section_idx_x-1,section_idx_y  );
					bool *ptr3 = &occupied_sections.get_unsafe(section_idx_x-1,section_idx_y+1);

					ptr1[0]=ptr1[1]=ptr1[2]=true;
					ptr2[0]=ptr2[1]=ptr2[2]=true;
					ptr3[0]=ptr3[1]=ptr3[2]=true;

					// OK: accept it
					featureList.push_back_fast(feat.pt.x,feat.pt.y);  // (x,y)
					//featureList.mark_kdtree_as_outdated();

					// Fill out the rest of data:
					TSimpleFeature &newFeat = featureList.back();

					newFeat.ID			= ++max_feat_ID_at_input;
					newFeat.response	= feat.response;
					newFeat.octave		= 0;
					newFeat.track_status = status_IDLE;  //!< Inactive: right after detection, and before being tried to track
				}
#else
				// Version with KD-tree
				CFeatureListKDTree<TSimpleFeature>  kdtree(featureList.getVector());


				for (size_t i=0;i<nNewToCheck && featureList.size()<maxNumFeatures;i++)
				{
					const TSimpleFeature &feat = new_feats[ sorted_indices[i] ];
					if (feat.response<minimum_KLT_response_to_add) break; // continue;

					// Check the min-distance:
					double min_dist_sqr = std::numeric_limits<double>::max();

					if (!featureList.empty())
					{
						//m_timlog.enter("[CGenericFeatureTracker] add new features.kdtree");
						min_dist_sqr = kdtree.kdTreeClosestPoint2DsqrError(feat.pt.x,feat.pt.y );
						//m_timlog.leave("[CGenericFeatureTracker] add new features.kdtree");
					}

					if (min_dist_sqr>threshold_sqr_dist_to_add_new)
					{
						// OK: accept it
						featureList.push_back_fast(feat.pt.x,feat.pt.y);  // (x,y)
						kdtree.mark_as_outdated();

						// Fill out the rest of data:
						TSimpleFeature &newFeat = featureList.back();

						newFeat.ID			= ++max_feat_ID_at_input;
						newFeat.response	= feat.response;
						newFeat.octave		= 0;
						newFeat.track_status = status_IDLE;  //!< Inactive: right after detection, and before being tried to track
					}
				}

#endif
			} // end of trackFeatures_addNewFeats<>