/**
* create and score a trajectory given the current pose of the robot and selected velocities
*/
void CalibrateAction::generateTrajectory(
    double x, double y, double theta,
    double vx, double vy, double vtheta, double  sim_time_, double vx_samp, double vy_samp, double vtheta_samp,
        double acc_x, double acc_y, double acc_theta, Trajectory& traj) {

    double x_i = x;
    double y_i = y;
    double theta_i = theta;
    double vx_i, vy_i, vtheta_i;
    vx_i = vx;
    vy_i = vy;
    vtheta_i = vtheta;

    //compute the number of steps we must take along this trajectory to be "safe"
    int num_steps = int(sim_time_ / traj_sim_granularity_ + 0.5);

    //we at least want to take one step... even if we won't move, we want to score our current position
    if(num_steps == 0) {
        num_steps = 1;
    }
    double dt = sim_time_ / num_steps;

    //create a potential trajectory    
    traj.resetPoints();
    traj.xv_ = vx_i;
    traj.yv_ = vy_i;
    traj.thetav_ = vtheta_i;

    for(int i = 0; i < num_steps; ++i){
        //the point is legal... add it to the trajectory
        traj.addPoint(x_i, y_i, theta_i);

        //calculate velocities
        vx_i = computeNewVelocity(vx_samp, vx_i, acc_x, dt);
        vy_i = computeNewVelocity(vy_samp, vy_i, acc_y, dt);
        vtheta_i = computeNewVelocity(vtheta_samp, vtheta_i, acc_theta, dt);

        //calculate positions
        x_i = computeNewXPosition(x_i, vx_i, vy_i, theta_i, dt);
        y_i = computeNewYPosition(y_i, vx_i, vy_i, theta_i, dt);
        theta_i = computeNewThetaPosition(theta_i, vtheta_i, dt);
    } // end for i < numsteps
}
  bool SimpleScoredSamplingPlanner::findBestTrajectory(Trajectory& traj, std::vector<Trajectory>* all_explored) {
    Trajectory loop_traj;
    Trajectory best_traj;
    double loop_traj_cost, best_traj_cost = -1;
    bool gen_success;
    int count, count_valid;
    for (std::vector<TrajectoryCostFunction*>::iterator loop_critic = critics_.begin(); loop_critic != critics_.end(); ++loop_critic) {
      TrajectoryCostFunction* loop_critic_p = *loop_critic;
      if (loop_critic_p->prepare() == false) {
        ROS_WARN("A scoring function failed to prepare");
        return false;
      }
    }

    for (std::vector<TrajectorySampleGenerator*>::iterator loop_gen = gen_list_.begin(); loop_gen != gen_list_.end(); ++loop_gen) {
      count = 0;
      count_valid = 0;
      TrajectorySampleGenerator* gen_ = *loop_gen;
      while (gen_->hasMoreTrajectories()) {
        gen_success = gen_->nextTrajectory(loop_traj);
        if (gen_success == false) {
          // TODO use this for debugging
          continue;
        }
        loop_traj_cost = scoreTrajectory(loop_traj, best_traj_cost);
        if (all_explored != NULL) {
          loop_traj.cost_ = loop_traj_cost;
          all_explored->push_back(loop_traj);
        }

        if (loop_traj_cost >= 0) {
          count_valid++;
          if (best_traj_cost < 0 || loop_traj_cost < best_traj_cost) {
            best_traj_cost = loop_traj_cost;
            best_traj = loop_traj;
          }
        }
        count++;
        if (max_samples_ > 0 && count >= max_samples_) {
          break;
        }        
      }
      if (best_traj_cost >= 0) {
        traj.xv_ = best_traj.xv_;
        traj.yv_ = best_traj.yv_;
        traj.thetav_ = best_traj.thetav_;
        traj.cost_ = best_traj_cost;
        traj.resetPoints();
        double px, py, pth;
        for (unsigned int i = 0; i < best_traj.getPointsSize(); i++) {
          best_traj.getPoint(i, px, py, pth);
          traj.addPoint(px, py, pth);
        }
      }
      ROS_DEBUG("Evaluated %d trajectories, found %d valid", count, count_valid);
      if (best_traj_cost >= 0) {
        // do not try fallback generators
        break;
      }
    }
    return best_traj_cost >= 0;
  }
Пример #3
0
  /**
   * create and score a trajectory given the current pose of the robot and selected velocities
   */
  void TrajectoryPlanner::generateTrajectory(
      double x, double y, double theta,
      double vx, double vy, double vtheta,
      double vx_samp, double vy_samp, double vtheta_samp,
      double acc_x, double acc_y, double acc_theta,
      double impossible_cost,
      Trajectory& traj) {

    // make sure the configuration doesn't change mid run
    boost::mutex::scoped_lock l(configuration_mutex_);

    double x_i = x;
    double y_i = y;
    double theta_i = theta;

    double vx_i, vy_i, vtheta_i;

    vx_i = vx;
    vy_i = vy;
    vtheta_i = vtheta;

    //compute the magnitude of the velocities
    double vmag = sqrt(vx_samp * vx_samp + vy_samp * vy_samp);

    //compute the number of steps we must take along this trajectory to be "safe"
    int num_steps;
    if(!heading_scoring_) {
      num_steps = int(max((vmag * sim_time_) / sim_granularity_, fabs(vtheta_samp) / angular_sim_granularity_) + 0.5);
    } else {
      num_steps = int(sim_time_ / sim_granularity_ + 0.5);
    }

    //we at least want to take one step... even if we won't move, we want to score our current position
    if(num_steps == 0) {
      num_steps = 1;
    }

    double dt = sim_time_ / num_steps;
    double time = 0.0;

    //create a potential trajectory
    traj.resetPoints();
    traj.xv_ = vx_samp; 
    traj.yv_ = vy_samp; 
    traj.thetav_ = vtheta_samp;
    traj.cost_ = -1.0;

    //initialize the costs for the trajectory
    double path_dist = 0.0;
    double goal_dist = 0.0;
    double occ_cost = 0.0;
    double heading_diff = 0.0;

    for(int i = 0; i < num_steps; ++i){
      //get map coordinates of a point
      unsigned int cell_x, cell_y;

      //we don't want a path that goes off the know map
      if(!costmap_.worldToMap(x_i, y_i, cell_x, cell_y)){
        traj.cost_ = -1.0;
        return;
      }

      //check the point on the trajectory for legality
      double footprint_cost = footprintCost(x_i, y_i, theta_i);

      //if the footprint hits an obstacle this trajectory is invalid
      if(footprint_cost < 0){
        traj.cost_ = -1.0;
        return;
        //TODO: Really look at getMaxSpeedToStopInTime... dues to discretization errors and high acceleration limits,
        //it can actually cause the robot to hit obstacles. There may be something to be done to fix, but I'll have to 
        //come back to it when I have time. Right now, pulling it out as it'll just make the robot a bit more conservative,
        //but safe.
        /*
        double max_vel_x, max_vel_y, max_vel_th;
        //we want to compute the max allowable speeds to be able to stop
        //to be safe... we'll make sure we can stop some time before we actually hit
        getMaxSpeedToStopInTime(time - stop_time_buffer_ - dt, max_vel_x, max_vel_y, max_vel_th);

        //check if we can stop in time
        if(fabs(vx_samp) < max_vel_x && fabs(vy_samp) < max_vel_y && fabs(vtheta_samp) < max_vel_th){
          ROS_ERROR("v: (%.2f, %.2f, %.2f), m: (%.2f, %.2f, %.2f) t:%.2f, st: %.2f, dt: %.2f", vx_samp, vy_samp, vtheta_samp, max_vel_x, max_vel_y, max_vel_th, time, stop_time_buffer_, dt);
          //if we can stop... we'll just break out of the loop here.. no point in checking future points
          break;
        }
        else{
          traj.cost_ = -1.0;
          return;
        }
        */
      }

      occ_cost = std::max(std::max(occ_cost, footprint_cost), double(costmap_.getCost(cell_x, cell_y)));

      //do we want to follow blindly
      if (simple_attractor_) {
        goal_dist = (x_i - global_plan_[global_plan_.size() -1].pose.position.x) * 
          (x_i - global_plan_[global_plan_.size() -1].pose.position.x) + 
          (y_i - global_plan_[global_plan_.size() -1].pose.position.y) * 
          (y_i - global_plan_[global_plan_.size() -1].pose.position.y);
      } else {

        bool update_path_and_goal_distances = true;

        // with heading scoring, we take into account heading diff, and also only score
        // path and goal distance for one point of the trajectory
        if (heading_scoring_) {
          if (time >= heading_scoring_timestep_ && time < heading_scoring_timestep_ + dt) {
            heading_diff = headingDiff(cell_x, cell_y, x_i, y_i, theta_i);
          } else {
            update_path_and_goal_distances = false;
          }
        }

        if (update_path_and_goal_distances) {
          //update path and goal distances
          path_dist = path_map_(cell_x, cell_y).target_dist;
          goal_dist = goal_map_(cell_x, cell_y).target_dist;

          //if a point on this trajectory has no clear path to goal it is invalid
          if(impossible_cost <= goal_dist || impossible_cost <= path_dist){
//            ROS_DEBUG("No path to goal with goal distance = %f, path_distance = %f and max cost = %f",
//                goal_dist, path_dist, impossible_cost);
            traj.cost_ = -2.0;
            return;
          }
        }
      }


      //the point is legal... add it to the trajectory
      traj.addPoint(x_i, y_i, theta_i);

      //calculate velocities
      vx_i = computeNewVelocity(vx_samp, vx_i, acc_x, dt);
      vy_i = computeNewVelocity(vy_samp, vy_i, acc_y, dt);
      vtheta_i = computeNewVelocity(vtheta_samp, vtheta_i, acc_theta, dt);

      //calculate positions
      x_i = computeNewXPosition(x_i, vx_i, vy_i, theta_i, dt);
      y_i = computeNewYPosition(y_i, vx_i, vy_i, theta_i, dt);
      theta_i = computeNewThetaPosition(theta_i, vtheta_i, dt);

      //increment time
      time += dt;
    } // end for i < numsteps

    //ROS_INFO("OccCost: %f, vx: %.2f, vy: %.2f, vtheta: %.2f", occ_cost, vx_samp, vy_samp, vtheta_samp);
    double cost = -1.0;
    if (!heading_scoring_) {
      cost = pdist_scale_ * path_dist + goal_dist * gdist_scale_ + occdist_scale_ * occ_cost;
    } else {
      cost = occdist_scale_ * occ_cost + pdist_scale_ * path_dist + 0.3 * heading_diff + goal_dist * gdist_scale_;
    }
    traj.cost_ = cost;
  }