/** Merge two DiscreteDBFs as if there we executed sequentially * @remarks This can also be achived on-the-fly using SequentialDBF */ DiscreteDBF DiscreteDBF::sequentialMerge(const DiscreteDBF& dbf1, const DiscreteDBF& dbf2){ DiscreteDBF retval; const TupleList& t1 = dbf1._tuples, t2 = dbf2._tuples; TupleList& tr = retval._tuples; ConstTupleIterator i1 = t1.begin(), i2 = t2.begin(); int max = 0; // While we have stuff to merge from both t1 and t2 while(i1 != t1.end() && i2 != t2.end()){ int time = -1; if(i1->time() <= i2->time()){ if(max < i1->wcet()){ max = i1->wcet(); time = i1->time(); assert(time != -1); } i1++; }else if(i1->time() >= i2->time()){ if(max < i2->wcet()){ max = i2->wcet(); time = i2->time(); assert(time != -1); } i2++; } if(time != -1) tr.push_back(DemandTuple(max, time)); } // Now one of them might contains something... while(i1 != t1.end()){ if(max < i1->wcet()){ max = i1->wcet(); tr.push_back(DemandTuple(max, i1->time())); } i1++; } while(i2 != t2.end()){ if(max < i2->wcet()){ max = i2->wcet(); tr.push_back(DemandTuple(max, i2->time())); } i2++; } return retval; }
TupleList SimpleQueryLinker::make_tuples( const std::vector<std::string>& variables) { TupleList result; std::string first_qvar = *variables.begin(); if(!is_initialized(first_qvar)) { throw QueryLinkerError(); } for(ConditionSet::iterator cit = _qvar_table[first_qvar].begin(); cit != _qvar_table[first_qvar].end(); ++cit) { TupleList tuples = make_tuples(first_qvar, *cit, ++variables.begin(), variables.end()); for(TupleList::iterator tit = tuples.begin(); tit != tuples.end(); ++tit) { result.insert(*tit); } } return result; }
void SimpleQueryLinker::merge_tuples(const ConditionPtr& target_condition, const TupleList& tuples, TupleList& result) { for(TupleList::const_iterator tit = tuples.begin(); tit != tuples.end(); ++tit) { result.insert(ConditionTuplePtr( new SimpleConditionTuple(target_condition, *tit))); } }
void DomUtil::writeTupleListEntry(QDomDocument &doc, const QString &path, const QString &tag, const QStringList &attrList, const TupleList &value) { QDomElement el = createElementByPath(doc, path); TupleList::ConstIterator it; for (it = value.begin(); it != value.end(); ++it) { QDomElement subEl = doc.createElement(tag); int i=0; for(QValueListConstIterator<QString> iter = attrList.begin(); iter != attrList.end(); ++iter) { subEl.setAttribute(*iter,(*it)[i++]); } el.appendChild(subEl); } }
/** Create DiscreteStepIterator */ DiscreteDBF::DiscreteStepIterator::DiscreteStepIterator(const TupleList& tuples){ _next = tuples.begin(); _end = tuples.end(); }
ErrorCode ReadCCMIO::construct_cells(TupleList &face_map, #ifndef TUPLE_LIST SenseList &sense_map, #endif TupleList & /* vert_map */, std::map<int,int> &cell_topo_types, std::vector<EntityHandle> &new_cells) { std::vector<EntityHandle> facehs; std::vector<int> senses; EntityHandle cell; ErrorCode tmp_rval, rval = MB_SUCCESS; EntityType this_type = MBMAXTYPE; bool has_mid_nodes = false; #ifdef TUPLE_LIST unsigned int i = 0; while (i < face_map.n) { // pull out face handles bounding the same cell facehs.clear(); int this_id = face_map.get_int(i); unsigned int inext = i; while (face_map.get_int(inext) == this_id && inext <= face_map.n) { inext++; EntityHandle face = face_map.get_ulong(inext); facehs.push_back(face); senses.push_back(face_map.get_short(inext)); } this_type = MBMAXTYPE; has_mid_nodes = false; #else std::map<int,std::vector<EntityHandle> >::iterator fmit; std::map<int,std::vector<int> >::iterator smit; std::map<int,int>::iterator typeit; for (fmit = face_map.begin(), smit = sense_map.begin(); fmit != face_map.end(); fmit++, smit++) { // pull out face handles bounding the same cell facehs.clear(); int this_id = (*fmit).first; facehs = (*fmit).second; senses.clear(); senses = (*smit).second; typeit = cell_topo_types.find(this_id); if (typeit != cell_topo_types.end()) { rval = ccmio_to_moab_type(typeit->second, this_type, has_mid_nodes); } else { this_type = MBMAXTYPE; has_mid_nodes = false; } #endif tmp_rval = create_cell_from_faces(facehs, senses, this_type, has_mid_nodes, cell); if (MB_SUCCESS != tmp_rval) rval = tmp_rval; else { new_cells.push_back(cell); // tag cell with global id tmp_rval = mbImpl->tag_set_data(mGlobalIdTag, &cell, 1, &this_id); if (MB_SUCCESS != tmp_rval) rval = tmp_rval; } } return rval; } ErrorCode ReadCCMIO::ccmio_to_moab_type(int ccm_type, EntityType &moab_type, bool &has_mid_nodes) { switch (ccm_type) { case 1: moab_type = MBVERTEX; break; case 2: case 28: moab_type = MBEDGE; break; case 29: moab_type = MBMAXTYPE; break; case 3: case 4: moab_type = MBQUAD; break; case 11: case 21: moab_type = MBHEX; break; case 12: case 22: moab_type = MBPRISM; break; case 13: case 23: moab_type = MBTET; break; case 14: case 24: moab_type = MBPYRAMID; break; case 255: moab_type = MBPOLYHEDRON; break; default: moab_type = MBMAXTYPE; } switch (ccm_type) { case 28: case 4: case 21: case 22: case 23: case 24: has_mid_nodes = true; break; default: break; } return MB_SUCCESS; } ErrorCode ReadCCMIO::create_cell_from_faces(std::vector<EntityHandle> &facehs, std::vector<int> &senses, EntityType this_type, bool /* has_mid_nodes */, EntityHandle &cell) { ErrorCode rval; // test up front to see if they're one type EntityType face_type = mbImpl->type_from_handle(facehs[0]); bool same_type = true; for (std::vector<EntityHandle>::iterator vit = facehs.begin(); vit != facehs.end(); vit++) { if (face_type != mbImpl->type_from_handle(*vit)) { same_type = false; break; } } std::vector<EntityHandle> verts; EntityType input_type = this_type; std::vector<EntityHandle> storage; MeshTopoUtil mtu(mbImpl); // preset this to maxtype, so we get an affirmative choice in loop this_type = MBMAXTYPE; if ((MBTET == input_type || MBMAXTYPE == input_type) && same_type && face_type == MBTRI && facehs.size() == 4) { // try to get proper connectivity for tet // get connectivity of first face, and reverse it if sense is forward, since // base face always points into entity rval = mbImpl->get_connectivity(&facehs[0], 1, verts); CHKERR(rval, "Couldn't get connectivity."); if (senses[0] > 0) std::reverse(verts.begin(), verts.end()); // get the 4th vertex through the next tri const EntityHandle *conn; int conn_size; rval = mbImpl->get_connectivity(facehs[1], conn, conn_size, true, &storage); CHKERR(rval, "Couldn't get connectivity."); int i = 0; while (std::find(verts.begin(), verts.end(), conn[i]) != verts.end() && i < conn_size) i++; // if i is not at the end of the verts, found the apex; otherwise fall back to polyhedron if (conn_size != i) { this_type = MBTET; verts.push_back(conn[i]); } } else if ((MBHEX == input_type || MBMAXTYPE == input_type) && same_type && MBQUAD == face_type && facehs.size() == 6) { // build hex from quads // algorithm: // - verts = vertices from 1st quad // - find quad q1 sharing verts[0] and verts[1] // - find quad q2 sharing other 2 verts in q1 // - find v1 = opposite vert from verts[1] in q1 , v2 = opposite from verts[0] // - get i = offset of v1 in verts2 of q2, rotate verts2 by i // - if verts2[i+1%4] != v2, flip verts2 by switching verts2[1] and verts2[3] // - append verts2 to verts // get the other vertices for this hex; need to find the quad with no common vertices Range tmp_faces, tmp_verts; // get connectivity of first face, and reverse it if sense is forward, since // base face always points into entity rval = mbImpl->get_connectivity(&facehs[0], 1, verts); CHKERR(rval, "Couldn't get connectivity."); if (senses[0] > 0) std::reverse(verts.begin(), verts.end()); // get q1, which shares 2 vertices with q0 std::copy(facehs.begin(), facehs.end(), range_inserter(tmp_faces)); rval = mbImpl->get_adjacencies(&verts[0], 2, 2, false, tmp_faces); if (MB_SUCCESS != rval || tmp_faces.size() != 2) CHKERR(MB_FAILURE, "Couldn't get adj face."); tmp_faces.erase(facehs[0]); EntityHandle q1 = *tmp_faces.begin(); // get other 2 verts of q1 rval = mbImpl->get_connectivity(&q1, 1, tmp_verts); CHKERR(rval, "Couldn't get adj verts."); tmp_verts.erase(verts[0]); tmp_verts.erase(verts[1]); // get q2 std::copy(facehs.begin(), facehs.end(), range_inserter(tmp_faces)); rval = mbImpl->get_adjacencies(tmp_verts, 2, false, tmp_faces); if (MB_SUCCESS != rval || tmp_faces.size() != 2) CHKERR(MB_FAILURE, "Couldn't get adj face."); tmp_faces.erase(q1); EntityHandle q2 = *tmp_faces.begin(); // get verts in q2 rval = mbImpl->get_connectivity(&q2, 1, storage); CHKERR(rval, "Couldn't get adj vertices."); // get verts in q1 opposite from v[1] and v[0] in q0 EntityHandle v0 = 0, v1 = 0; rval = mtu.opposite_entity(q1, verts[1], v0); rval = mtu.opposite_entity(q1, verts[0], v1); if (v0 && v1) { // offset of v0 in q2, then rotate and flip unsigned int ioff = std::find(storage.begin(), storage.end(), v0) - storage.begin(); if (4 == ioff) CHKERR(MB_FAILURE, "Trouble finding offset."); if (storage[(ioff+1)%4] != v1) { std::reverse(storage.begin(), storage.end()); ioff = std::find(storage.begin(), storage.end(), v0) - storage.begin(); } if (0 != ioff) std::rotate(storage.begin(), storage.begin()+ioff, storage.end()); // copy into verts, and make hex std::copy(storage.begin(), storage.end(), std::back_inserter(verts)); this_type = MBHEX; } } if (MBMAXTYPE == this_type && facehs.size() == 5) { // some preliminaries std::vector<EntityHandle> tris, quads; for (unsigned int i = 0; i < 5; i++) { if (MBTRI == mbImpl->type_from_handle(facehs[i])) tris.push_back(facehs[i]); else if (MBQUAD == mbImpl->type_from_handle(facehs[i])) quads.push_back(facehs[i]); } // check for prisms if (2 == tris.size() && 3 == quads.size()) { // ok, we have the right number of tris and quads; try to find the proper verts // get connectivity of first tri, and reverse if necessary int index = std::find(facehs.begin(), facehs.end(), tris[0]) - facehs.begin(); rval = mbImpl->get_connectivity(&tris[0], 1, verts); CHKERR(rval, "Couldn't get connectivity."); if (senses[index] > 0) std::reverse(verts.begin(), verts.end()); // now align vertices of other tri, through a quad, similar to how we did hexes // get q1, which shares 2 vertices with t0 Range tmp_faces, tmp_verts; std::copy(facehs.begin(), facehs.end(), range_inserter(tmp_faces)); rval = mbImpl->get_adjacencies(&verts[0], 2, 2, false, tmp_faces); if (MB_SUCCESS != rval || tmp_faces.size() != 2) CHKERR(MB_FAILURE, "Couldn't get adj face."); tmp_faces.erase(tris[0]); EntityHandle q1 = *tmp_faces.begin(); // get verts in q1 rval = mbImpl->get_connectivity(&q1, 1, storage); CHKERR(rval, "Couldn't get adj vertices."); // get verts in q1 opposite from v[1] and v[0] in q0 EntityHandle v0 = 0, v1 = 0; rval = mtu.opposite_entity(q1, verts[1], v0); rval = mtu.opposite_entity(q1, verts[0], v1); if (v0 && v1) { // offset of v0 in t2, then rotate and flip storage.clear(); rval = mbImpl->get_connectivity(&tris[1], 1, storage); CHKERR(rval, "Couldn't get connectivity."); index = std::find(facehs.begin(), facehs.end(), tris[1]) - facehs.begin(); if (senses[index] < 0) std::reverse(storage.begin(), storage.end()); unsigned int ioff = std::find(storage.begin(), storage.end(), v0) - storage.begin(); if (3 == ioff) CHKERR(MB_FAILURE, "Trouble finding offset."); for (unsigned int i = 0; i < 3; i++) verts.push_back(storage[(ioff+i)%3]); this_type = MBPRISM; } } else if (tris.size() == 4 && quads.size() == 1) { // check for pyramid // get connectivity of first tri, and reverse if necessary int index = std::find(facehs.begin(), facehs.end(), quads[0]) - facehs.begin(); rval = mbImpl->get_connectivity(&quads[0], 1, verts); CHKERR(rval, "Couldn't get connectivity."); if (senses[index] > 0) std::reverse(verts.begin(), verts.end()); // get apex node rval = mbImpl->get_connectivity(&tris[0], 1, storage); CHKERR(rval, "Couldn't get connectivity."); for (unsigned int i = 0; i < 3; i++) { if (std::find(verts.begin(), verts.end(), storage[i]) == verts.end()) { verts.push_back(storage[i]); break; } } if (5 == verts.size()) this_type = MBPYRAMID; } else { // dummy else clause to stop in debugger this_type = MBMAXTYPE; } } if (MBMAXTYPE != input_type && input_type != this_type && this_type != MBMAXTYPE) std::cerr << "Warning: types disagree (cell_topo_type = " << CN::EntityTypeName(input_type) << ", faces indicate type " << CN::EntityTypeName(this_type) << std::endl; if (MBMAXTYPE != input_type && this_type == MBMAXTYPE && input_type != MBPOLYHEDRON) std::cerr << "Warning: couldn't find proper connectivity for specified topo_type = " << CN::EntityTypeName(input_type) << std::endl; // now make the element; if we fell back to polyhedron, use faces, otherwise use verts if (MBPOLYHEDRON == this_type || MBMAXTYPE == this_type) rval = mbImpl->create_element(MBPOLYHEDRON, &facehs[0], facehs.size(), cell); else rval = mbImpl->create_element(this_type, &verts[0], verts.size(), cell); CHKERR(rval, "create_element failed."); return MB_SUCCESS; }