Пример #1
0
bool
ABISysV_ppc::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan)
{
    unwind_plan.Clear();
    unwind_plan.SetRegisterKind (eRegisterKindDWARF);

    uint32_t lr_reg_num = gcc_dwarf_lr;
    uint32_t sp_reg_num = gcc_dwarf_r1;
    uint32_t pc_reg_num = gcc_dwarf_pc;

    UnwindPlan::RowSP row(new UnwindPlan::Row);

    // Our Call Frame Address is the stack pointer value
    row->GetCFAValue().SetIsRegisterPlusOffset (sp_reg_num, 0);

    // The previous PC is in the LR
    row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
    unwind_plan.AppendRow (row);

    // All other registers are the same.

    unwind_plan.SetSourceName ("ppc at-func-entry default");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);

    return true;
}
Пример #2
0
bool
ABIMacOSX_arm::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan)
{
    uint32_t reg_kind = unwind_plan.GetRegisterKind();
    uint32_t lr_reg_num = LLDB_INVALID_REGNUM;
    uint32_t sp_reg_num = LLDB_INVALID_REGNUM;
    uint32_t pc_reg_num = LLDB_INVALID_REGNUM;
    
    switch (reg_kind)
    {
        case eRegisterKindDWARF:
        case eRegisterKindGCC:
            lr_reg_num = dwarf_lr;
            sp_reg_num = dwarf_sp;
            pc_reg_num = dwarf_pc;
            break;
            
        case eRegisterKindGeneric:
            lr_reg_num = LLDB_REGNUM_GENERIC_RA;
            sp_reg_num = LLDB_REGNUM_GENERIC_SP;
            pc_reg_num = LLDB_REGNUM_GENERIC_PC;
            break;
    }
    
    if (lr_reg_num == LLDB_INVALID_REGNUM ||
        sp_reg_num == LLDB_INVALID_REGNUM ||
        pc_reg_num == LLDB_INVALID_REGNUM)
        return false;

    UnwindPlan::RowSP row(new UnwindPlan::Row);
    
    // Our Call Frame Address is the stack pointer value
    row->SetCFARegister (sp_reg_num);
    
    // The previous PC is in the LR
    row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
    unwind_plan.AppendRow (row);
    
    // All other registers are the same.
    
    unwind_plan.SetSourceName ("arm at-func-entry default");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);

    return true;
}
Пример #3
0
bool
ABISysV_ppc64::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
{
    unwind_plan.Clear();
    unwind_plan.SetRegisterKind (eRegisterKindDWARF);

    uint32_t sp_reg_num = dwarf_r1;
    uint32_t pc_reg_num = dwarf_lr;

    UnwindPlan::RowSP row(new UnwindPlan::Row);

    const int32_t ptr_size = 8;
    row->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num);

    row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 2, true);
    row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
    row->SetRegisterLocationToAtCFAPlusOffset(dwarf_cr, ptr_size, true);

    unwind_plan.AppendRow (row);
    unwind_plan.SetSourceName ("ppc64 default unwind plan");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
    unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    unwind_plan.SetReturnAddressRegister(dwarf_lr);
    return true;
}
Пример #4
0
bool
ABISysV_i386::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan)
{
    unwind_plan.Clear();
    unwind_plan.SetRegisterKind (eRegisterKindDWARF);

    uint32_t sp_reg_num = gcc_dwarf_esp;
    uint32_t pc_reg_num = gcc_dwarf_eip;

    UnwindPlan::RowSP row(new UnwindPlan::Row);
    row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 4);
    row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -4, false);
    row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
    unwind_plan.AppendRow (row);
    unwind_plan.SetSourceName ("i386 at-func-entry default");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
    return true;
}
Пример #5
0
bool ABISysV_s390x::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindDWARF);

  UnwindPlan::RowSP row(new UnwindPlan::Row);

  // Our Call Frame Address is the stack pointer value + 160
  row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_r15_s390x, 160);

  // The previous PC is in r14
  row->SetRegisterLocationToRegister(dwarf_pswa_s390x, dwarf_r14_s390x, true);

  // All other registers are the same.
  unwind_plan.AppendRow(row);
  unwind_plan.SetSourceName("s390x at-func-entry default");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  return true;
}
Пример #6
0
bool
ABISysV_i386::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
{
    unwind_plan.Clear();
    unwind_plan.SetRegisterKind (eRegisterKindDWARF);

    uint32_t fp_reg_num = gcc_dwarf_ebp;
    uint32_t sp_reg_num = gcc_dwarf_esp;
    uint32_t pc_reg_num = gcc_dwarf_eip;

    UnwindPlan::RowSP row(new UnwindPlan::Row);
    const int32_t ptr_size = 4;

    row->GetCFAValue().SetIsRegisterPlusOffset(fp_reg_num, 2 * ptr_size);
    row->SetOffset (0);

    row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
    row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
    row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);

    unwind_plan.AppendRow (row);
    unwind_plan.SetSourceName ("i386 default unwind plan");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
    unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    return true;
}
Пример #7
0
bool
ABIMacOSX_arm::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
{
    uint32_t fp_reg_num = dwarf_r7; // apple uses r7 for all frames. Normal arm uses r11;
    uint32_t pc_reg_num = dwarf_pc;
    
    UnwindPlan::RowSP row(new UnwindPlan::Row);
    const int32_t ptr_size = 4;
    
    unwind_plan.Clear ();
    unwind_plan.SetRegisterKind (eRegisterKindDWARF);
    row->SetCFARegister (fp_reg_num);
    row->SetCFAOffset (2 * ptr_size);
    row->SetOffset (0);
    
    row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
    row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
    
    unwind_plan.AppendRow (row);
    unwind_plan.SetSourceName ("arm-apple-ios default unwind plan");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
    unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);

    return true;
}
Пример #8
0
bool
ABISysV_arm::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
{
    unwind_plan.Clear ();
    unwind_plan.SetRegisterKind (eRegisterKindDWARF);

    //TODO: Handle thumb
    uint32_t fp_reg_num = dwarf_r11;
    uint32_t pc_reg_num = dwarf_pc;
    
    UnwindPlan::RowSP row(new UnwindPlan::Row);
    const int32_t ptr_size = 4;
    
    row->GetCFAValue().SetIsRegisterPlusOffset (fp_reg_num, 2 * ptr_size);
    row->SetOffset (0);
    
    row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
    row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
    
    unwind_plan.AppendRow (row);
    unwind_plan.SetSourceName ("arm default unwind plan");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
    unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);

    return true;
}
Пример #9
0
bool
CompactUnwindInfo::GetUnwindPlan (Target &target, Address addr, UnwindPlan& unwind_plan)
{
    if (!IsValid (target.GetProcessSP()))
    {
        return false;
    }
    FunctionInfo function_info;
    if (GetCompactUnwindInfoForFunction (target, addr, function_info))
    {
        // shortcut return for functions that have no compact unwind
        if (function_info.encoding == 0)
            return false;

        ArchSpec arch;
        if (m_objfile.GetArchitecture (arch))
        {

            Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
            if (log && log->GetVerbose())
            {
                StreamString strm;
                addr.Dump (&strm, NULL, Address::DumpStyle::DumpStyleResolvedDescriptionNoFunctionArguments, Address::DumpStyle::DumpStyleFileAddress, arch.GetAddressByteSize()); 
                log->Printf ("Got compact unwind encoding 0x%x for function %s", function_info.encoding, strm.GetData());
            }

            if (function_info.valid_range_offset_start != 0 && function_info.valid_range_offset_end != 0)
            {
                SectionList *sl = m_objfile.GetSectionList ();
                if (sl)
                {
                    addr_t func_range_start_file_addr = 
                              function_info.valid_range_offset_start + m_objfile.GetHeaderAddress().GetFileAddress();
                    AddressRange func_range (func_range_start_file_addr,
                                      function_info.valid_range_offset_end - function_info.valid_range_offset_start,
                                      sl);
                    unwind_plan.SetPlanValidAddressRange (func_range);
                }
            }

            if (arch.GetTriple().getArch() == llvm::Triple::x86_64)
            {
                return CreateUnwindPlan_x86_64 (target, function_info, unwind_plan, addr);
            }
            if (arch.GetTriple().getArch() == llvm::Triple::x86)
            {
                return CreateUnwindPlan_i386 (target, function_info, unwind_plan, addr);
            }
        }
    }
    return false;
}
Пример #10
0
bool
ABINyuzi::CreateDefaultUnwindPlan ( UnwindPlan &unwind_plan )
{
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindDWARF);
  unwind_plan.SetReturnAddressRegister(30);
  UnwindPlan::RowSP row(new UnwindPlan::Row);

  row->GetCFAValue().SetIsRegisterPlusOffset(29, 0);

  unwind_plan.AppendRow(row);
  unwind_plan.SetSourceName("nyuzi default unwind plan");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
	unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
  return true;
}
bool EmulateInstructionARM64::CreateFunctionEntryUnwind(
    UnwindPlan &unwind_plan) {
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindLLDB);

  UnwindPlan::RowSP row(new UnwindPlan::Row);

  // Our previous Call Frame Address is the stack pointer
  row->GetCFAValue().SetIsRegisterPlusOffset(gpr_sp_arm64, 0);

  unwind_plan.AppendRow(row);
  unwind_plan.SetSourceName("EmulateInstructionARM64");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
  unwind_plan.SetReturnAddressRegister(gpr_lr_arm64);
  return true;
}
Пример #12
0
bool
ABISysV_mips::CreateDefaultUnwindPlan (UnwindPlan &unwind_plan)
{
    unwind_plan.Clear();
    unwind_plan.SetRegisterKind (eRegisterKindDWARF);

    UnwindPlan::RowSP row(new UnwindPlan::Row);

    row->GetCFAValue().SetIsRegisterPlusOffset(gcc_dwarf_r29, 0);

    row->SetRegisterLocationToRegister(gcc_dwarf_pc, gcc_dwarf_r31, true);
	
    unwind_plan.AppendRow (row);
    unwind_plan.SetSourceName ("mips default unwind plan");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
    unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    return true;
}
Пример #13
0
// See lib/Target/Nyuzi/NyuziFrameLowering.cpp, emitPrologue
bool
ABINyuzi::CreateFunctionEntryUnwindPlan ( UnwindPlan &unwind_plan )
{
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindDWARF);
  unwind_plan.SetReturnAddressRegister(30);
  
  UnwindPlan::RowSP row(new UnwindPlan::Row);

  // Our Call Frame Address is the stack pointer value
  row->GetCFAValue().SetIsRegisterPlusOffset(29, 0);

  unwind_plan.AppendRow(row);
  
  unwind_plan.SetSourceName("nyuzi at-func-entry default");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  return true;
}
Пример #14
0
// called when we are on the first instruction of a new function for hexagon
// the return address is in RA (R31)
bool ABISysV_hexagon::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindGeneric);
  unwind_plan.SetReturnAddressRegister(LLDB_REGNUM_GENERIC_RA);

  UnwindPlan::RowSP row(new UnwindPlan::Row);

  // Our Call Frame Address is the stack pointer value
  row->GetCFAValue().SetIsRegisterPlusOffset(LLDB_REGNUM_GENERIC_SP, 4);
  row->SetOffset(0);

  // The previous PC is in the LR
  row->SetRegisterLocationToRegister(LLDB_REGNUM_GENERIC_PC,
                                     LLDB_REGNUM_GENERIC_RA, true);
  unwind_plan.AppendRow(row);

  unwind_plan.SetSourceName("hexagon at-func-entry default");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  return true;
}
Пример #15
0
bool
ABISysV_mips::CreateFunctionEntryUnwindPlan (UnwindPlan &unwind_plan)
{
    unwind_plan.Clear();
    unwind_plan.SetRegisterKind (eRegisterKindDWARF);

    UnwindPlan::RowSP row(new UnwindPlan::Row);

    // Our Call Frame Address is the stack pointer value
    row->GetCFAValue().SetIsRegisterPlusOffset(gcc_dwarf_r29, 0);

    // The previous PC is in the RA
    row->SetRegisterLocationToRegister(gcc_dwarf_pc, gcc_dwarf_r31, true);
    unwind_plan.AppendRow (row);

    // All other registers are the same.

    unwind_plan.SetSourceName ("mips at-func-entry default");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
    unwind_plan.SetReturnAddressRegister(gcc_dwarf_r31);
    return true;
}
Пример #16
0
bool ABISysV_hexagon::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
  unwind_plan.Clear();
  unwind_plan.SetRegisterKind(eRegisterKindGeneric);

  uint32_t fp_reg_num = LLDB_REGNUM_GENERIC_FP;
  uint32_t sp_reg_num = LLDB_REGNUM_GENERIC_SP;
  uint32_t pc_reg_num = LLDB_REGNUM_GENERIC_PC;

  UnwindPlan::RowSP row(new UnwindPlan::Row);

  row->GetCFAValue().SetIsRegisterPlusOffset(LLDB_REGNUM_GENERIC_FP, 8);

  row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, -8, true);
  row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -4, true);
  row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);

  unwind_plan.AppendRow(row);
  unwind_plan.SetSourceName("hexagon default unwind plan");
  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
  unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
  return true;
}
Пример #17
0
bool
EmulateInstructionMIPS::CreateFunctionEntryUnwind (UnwindPlan &unwind_plan)
{
    unwind_plan.Clear();
    unwind_plan.SetRegisterKind (eRegisterKindDWARF);

    UnwindPlan::RowSP row(new UnwindPlan::Row);
    const bool can_replace = false;

    // Our previous Call Frame Address is the stack pointer
    row->GetCFAValue().SetIsRegisterPlusOffset(gcc_dwarf_sp_mips64, 0);

    // Our previous PC is in the RA
    row->SetRegisterLocationToRegister(gcc_dwarf_pc_mips64, gcc_dwarf_ra_mips64, can_replace);

    unwind_plan.AppendRow (row);

    // All other registers are the same.
    unwind_plan.SetSourceName ("EmulateInstructionMIPS");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolNo);
    unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolYes);

    return true;
}
bool
UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly (AddressRange& range, 
                                                                   Thread& thread, 
                                                                   UnwindPlan& unwind_plan)
{
    if (range.GetByteSize() > 0 && 
        range.GetBaseAddress().IsValid() &&
        m_inst_emulator_ap.get())
    {
     
        // The instruction emulation subclass setup the unwind plan for the
        // first instruction.
        m_inst_emulator_ap->CreateFunctionEntryUnwind (unwind_plan);

        // CreateFunctionEntryUnwind should have created the first row. If it
        // doesn't, then we are done.
        if (unwind_plan.GetRowCount() == 0)
            return false;
        
        ExecutionContext exe_ctx;
        thread.CalculateExecutionContext(exe_ctx);
        const bool prefer_file_cache = true;
        DisassemblerSP disasm_sp (Disassembler::DisassembleRange (m_arch,
                                                                  NULL,
                                                                  NULL,
                                                                  exe_ctx,
                                                                  range,
                                                                  prefer_file_cache));
        
        Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));

        if (disasm_sp)
        {
            
            m_range_ptr = ⦥
            m_thread_ptr = &thread;
            m_unwind_plan_ptr = &unwind_plan;

            const uint32_t addr_byte_size = m_arch.GetAddressByteSize();
            const bool show_address = true;
            const bool show_bytes = true;
            m_inst_emulator_ap->GetRegisterInfo (unwind_plan.GetRegisterKind(), 
                                                 unwind_plan.GetInitialCFARegister(), 
                                                 m_cfa_reg_info);
            
            m_fp_is_cfa = false;
            m_register_values.clear();
            m_pushed_regs.clear();

            // Initialize the CFA with a known value. In the 32 bit case
            // it will be 0x80000000, and in the 64 bit case 0x8000000000000000.
            // We use the address byte size to be safe for any future address sizes
            m_initial_sp = (1ull << ((addr_byte_size * 8) - 1));
            RegisterValue cfa_reg_value;
            cfa_reg_value.SetUInt (m_initial_sp, m_cfa_reg_info.byte_size);
            SetRegisterValue (m_cfa_reg_info, cfa_reg_value);

            const InstructionList &inst_list = disasm_sp->GetInstructionList ();
            const size_t num_instructions = inst_list.GetSize();

            if (num_instructions > 0)
            {
                Instruction *inst = inst_list.GetInstructionAtIndex (0).get();
                const addr_t base_addr = inst->GetAddress().GetFileAddress();

                // Make a copy of the current instruction Row and save it in m_curr_row
                // so we can add updates as we process the instructions.  
                UnwindPlan::RowSP last_row = unwind_plan.GetLastRow();
                UnwindPlan::Row *newrow = new UnwindPlan::Row;
                if (last_row.get())
                    *newrow = *last_row.get();
                m_curr_row.reset(newrow);

                // Once we've seen the initial prologue instructions complete, save a
                // copy of the CFI at that point into prologue_completed_row for possible
                // use later.
                int instructions_since_last_prologue_insn = 0;     // # of insns since last CFI was update

                bool reinstate_prologue_next_instruction = false;  // Next iteration, re-install the prologue row of CFI

                bool last_instruction_restored_return_addr_reg = false;  // re-install the prologue row of CFI if the next instruction is a branch immediate

                bool return_address_register_has_been_saved = false; // if we've seen the ra register get saved yet

                UnwindPlan::RowSP prologue_completed_row;          // copy of prologue row of CFI

                // cache the pc register number (in whatever register numbering this UnwindPlan uses) for
                // quick reference during instruction parsing.
                uint32_t pc_reg_num = LLDB_INVALID_REGNUM;
                RegisterInfo pc_reg_info;
                if (m_inst_emulator_ap->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc_reg_info))
                    pc_reg_num = pc_reg_info.kinds[unwind_plan.GetRegisterKind()];
                else
                    pc_reg_num = LLDB_INVALID_REGNUM;

                // cache the return address register number (in whatever register numbering this UnwindPlan uses) for
                // quick reference during instruction parsing.
                uint32_t ra_reg_num = LLDB_INVALID_REGNUM;
                RegisterInfo ra_reg_info;
                if (m_inst_emulator_ap->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, ra_reg_info))
                    ra_reg_num = ra_reg_info.kinds[unwind_plan.GetRegisterKind()];
                else
                    ra_reg_num = LLDB_INVALID_REGNUM;

                for (size_t idx=0; idx<num_instructions; ++idx)
                {
                    m_curr_row_modified = false;
                    m_curr_insn_restored_a_register = false;
                    inst = inst_list.GetInstructionAtIndex (idx).get();
                    if (inst)
                    {
                        if (log && log->GetVerbose ())
                        {
                            StreamString strm;
                            inst->Dump(&strm, inst_list.GetMaxOpcocdeByteSize (), show_address, show_bytes, NULL);
                            log->PutCString (strm.GetData());
                        }

                        m_inst_emulator_ap->SetInstruction (inst->GetOpcode(), 
                                                            inst->GetAddress(), 
                                                            exe_ctx.GetTargetPtr());

                        m_inst_emulator_ap->EvaluateInstruction (eEmulateInstructionOptionIgnoreConditions);

                        // Were there any changes to the CFI while evaluating this instruction?
                        if (m_curr_row_modified)
                        {
                            reinstate_prologue_next_instruction = false;
                            m_curr_row->SetOffset (inst->GetAddress().GetFileAddress() + inst->GetOpcode().GetByteSize() - base_addr);
                            // Append the new row
                            unwind_plan.AppendRow (m_curr_row);

                            // Allocate a new Row for m_curr_row, copy the current state into it
                            UnwindPlan::Row *newrow = new UnwindPlan::Row;
                            *newrow = *m_curr_row.get();
                            m_curr_row.reset(newrow);

                            // If m_curr_insn_restored_a_register == true, we're looking at an epilogue instruction.
                            // Set instructions_since_last_prologue_insn to a very high number so we don't append 
                            // any of these epilogue instructions to our prologue_complete row.
                            if (m_curr_insn_restored_a_register == false && instructions_since_last_prologue_insn < 8)
                              instructions_since_last_prologue_insn = 0;
                            else
                              instructions_since_last_prologue_insn = 99;

                            UnwindPlan::Row::RegisterLocation pc_regloc;
                            UnwindPlan::Row::RegisterLocation ra_regloc;

                            // While parsing the instructions of this function, if we've ever
                            // seen the return address register (aka lr on arm) in a non-IsSame() state,
                            // it has been saved on the stack.  If it's ever back to IsSame(), we've
                            // executed an epilogue.
                            if (ra_reg_num != LLDB_INVALID_REGNUM
                                && m_curr_row->GetRegisterInfo (ra_reg_num, ra_regloc)
                                && !ra_regloc.IsSame())
                            {
                                return_address_register_has_been_saved = true;
                            }

                            // If the caller's pc is "same", we've just executed an epilogue and we return to the caller
                            // after this instruction completes executing.
                            // If there are any instructions past this, there must have been flow control over this
                            // epilogue so we'll reinstate the original prologue setup instructions.
                            if (prologue_completed_row.get()
                                && pc_reg_num != LLDB_INVALID_REGNUM 
                                && m_curr_row->GetRegisterInfo (pc_reg_num, pc_regloc)
                                && pc_regloc.IsSame())
                            {
                                if (log && log->GetVerbose())
                                    log->Printf("UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly -- pc is <same>, restore prologue instructions.");
                                reinstate_prologue_next_instruction = true;
                            }
                            else if (prologue_completed_row.get()
                                     && return_address_register_has_been_saved
                                     && ra_reg_num != LLDB_INVALID_REGNUM
                                     && m_curr_row->GetRegisterInfo (ra_reg_num, ra_regloc)
                                     && ra_regloc.IsSame())
                            {
                                if (log && log->GetVerbose())
                                    log->Printf("UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly -- lr is <same>, restore prologue instruction if the next instruction is a branch immediate.");
                                last_instruction_restored_return_addr_reg = true;
                            }
                        }
                        else
                        {
                            // If the previous instruction was a return-to-caller (epilogue), and we're still executing
                            // instructions in this function, there must be a code path that jumps over that epilogue.
                            // Also detect the case where we epilogue & branch imm to another function (tail-call opt)
                            // instead of a normal pop lr-into-pc exit.
                            // Reinstate the frame setup from the prologue.
                            if (reinstate_prologue_next_instruction
                                || (m_curr_insn_is_branch_immediate && last_instruction_restored_return_addr_reg))
                            {
                                if (log && log->GetVerbose())
                                    log->Printf("UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly -- Reinstating prologue instruction set");
                                UnwindPlan::Row *newrow = new UnwindPlan::Row;
                                *newrow = *prologue_completed_row.get();
                                m_curr_row.reset(newrow);
                                m_curr_row->SetOffset (inst->GetAddress().GetFileAddress() + inst->GetOpcode().GetByteSize() - base_addr);
                                unwind_plan.AppendRow(m_curr_row);

                                newrow = new UnwindPlan::Row;
                                *newrow = *m_curr_row.get();
                                m_curr_row.reset(newrow);

                                reinstate_prologue_next_instruction = false;
                                last_instruction_restored_return_addr_reg = false; 
                                m_curr_insn_is_branch_immediate = false;
                            }

                            // clear both of these if either one wasn't set
                            if (last_instruction_restored_return_addr_reg)
                            {
                                last_instruction_restored_return_addr_reg = false;
                            }
                            if (m_curr_insn_is_branch_immediate)
                            {
                                m_curr_insn_is_branch_immediate = false;
                            }
 
                            // Stop updating the prologue instructions if we've seen 8 non-prologue instructions
                            // in a row.
                            if (instructions_since_last_prologue_insn++ < 8)
                            {
                                UnwindPlan::Row *newrow = new UnwindPlan::Row;
                                *newrow = *m_curr_row.get();
                                prologue_completed_row.reset(newrow);
                                if (log && log->GetVerbose())
                                    log->Printf("UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly -- saving a copy of the current row as the prologue row.");
                            }
                        }
                    }
                }
            }
            // FIXME: The DisassemblerLLVMC has a reference cycle and won't go away if it has any active instructions.
            // I'll fix that but for now, just clear the list and it will go away nicely.
            disasm_sp->GetInstructionList().Clear();
        }
        
        if (log && log->GetVerbose ())
        {
            StreamString strm;
            lldb::addr_t base_addr = range.GetBaseAddress().GetLoadAddress(thread.CalculateTarget().get());
            strm.Printf ("Resulting unwind rows for [0x%" PRIx64 " - 0x%" PRIx64 "):", base_addr, base_addr + range.GetByteSize());
            unwind_plan.Dump(strm, &thread, base_addr);
            log->PutCString (strm.GetData());
        }
        return unwind_plan.GetRowCount() > 0;
    }
    return false;
}
Пример #19
0
bool
EmulateInstruction::CreateFunctionEntryUnwind (UnwindPlan &unwind_plan)
{
    unwind_plan.Clear();
    return false;
}
Пример #20
0
bool
CompactUnwindInfo::CreateUnwindPlan_x86_64 (Target &target, FunctionInfo &function_info, UnwindPlan &unwind_plan, Address pc_or_function_start)
{
    unwind_plan.SetSourceName ("compact unwind info");
    unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
    unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    unwind_plan.SetRegisterKind (eRegisterKindEHFrame);

    unwind_plan.SetLSDAAddress (function_info.lsda_address);
    unwind_plan.SetPersonalityFunctionPtr (function_info.personality_ptr_address);

    UnwindPlan::RowSP row (new UnwindPlan::Row);

    const int wordsize = 8;
    int mode = function_info.encoding & UNWIND_X86_64_MODE_MASK;
    switch (mode)
    {
        case UNWIND_X86_64_MODE_RBP_FRAME:
        {
            row->GetCFAValue().SetIsRegisterPlusOffset (
                    translate_to_eh_frame_regnum_x86_64 (UNWIND_X86_64_REG_RBP),
                    2 * wordsize);
            row->SetOffset (0);
            row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rbp, wordsize * -2, true);
            row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rip, wordsize * -1, true);
            row->SetRegisterLocationToIsCFAPlusOffset (x86_64_eh_regnum::rsp, 0, true);
            
            uint32_t saved_registers_offset = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_RBP_FRAME_OFFSET);

            uint32_t saved_registers_locations = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_RBP_FRAME_REGISTERS);

            saved_registers_offset += 2;

            for (int i = 0; i < 5; i++)
            {
                uint32_t regnum = saved_registers_locations & 0x7;
                switch (regnum)
                {
                    case UNWIND_X86_64_REG_NONE:
                        break;
                    case UNWIND_X86_64_REG_RBX:
                    case UNWIND_X86_64_REG_R12:
                    case UNWIND_X86_64_REG_R13:
                    case UNWIND_X86_64_REG_R14:
                    case UNWIND_X86_64_REG_R15:
                        row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_x86_64 (regnum), wordsize * -saved_registers_offset, true);
                        break;
                }
                saved_registers_offset--;
                saved_registers_locations >>= 3;
            }
            unwind_plan.AppendRow (row);
            return true;
        }
        break;

        case UNWIND_X86_64_MODE_STACK_IND:
        {
            // The clang in Xcode 6 is emitting incorrect compact unwind encodings for this
            // style of unwind.  It was fixed in llvm r217020.  
            // The clang in Xcode 7 has this fixed.
            return false;
        }
        break;

        case UNWIND_X86_64_MODE_STACK_IMMD:
        {
            uint32_t stack_size = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE);
            uint32_t register_count = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT);
            uint32_t permutation = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION);

            if (mode == UNWIND_X86_64_MODE_STACK_IND && function_info.valid_range_offset_start != 0)
            {
                uint32_t stack_adjust = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_ADJUST);

                // offset into the function instructions; 0 == beginning of first instruction
                uint32_t offset_to_subl_insn = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE);

                SectionList *sl = m_objfile.GetSectionList ();
                if (sl)
                {
                    ProcessSP process_sp = target.GetProcessSP();
                    if (process_sp)
                    {
                        Address subl_payload_addr (function_info.valid_range_offset_start, sl);
                        subl_payload_addr.Slide (offset_to_subl_insn);
                        Error error;
                        uint64_t large_stack_size = process_sp->ReadUnsignedIntegerFromMemory (subl_payload_addr.GetLoadAddress (&target),
                                4, 0, error);
                        if (large_stack_size != 0 && error.Success ())
                        {
                            // Got the large stack frame size correctly - use it
                            stack_size = large_stack_size + (stack_adjust * wordsize);
                        }
                        else
                        {
                            return false;
                        }
                    }
                    else
                    {
                        return false;
                    }
                }
                else
                {
                    return false;
                }
            }

            int32_t offset = mode == UNWIND_X86_64_MODE_STACK_IND ? stack_size : stack_size * wordsize;
            row->GetCFAValue().SetIsRegisterPlusOffset (x86_64_eh_regnum::rsp, offset);

            row->SetOffset (0);
            row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rip, wordsize * -1, true);
            row->SetRegisterLocationToIsCFAPlusOffset (x86_64_eh_regnum::rsp, 0, true);

            if (register_count > 0)
            {

                // We need to include (up to) 6 registers in 10 bits.
                // That would be 18 bits if we just used 3 bits per reg to indicate
                // the order they're saved on the stack. 
                //
                // This is done with Lehmer code permutation, e.g. see
                // http://stackoverflow.com/questions/1506078/fast-permutation-number-permutation-mapping-algorithms
                int permunreg[6] = {0, 0, 0, 0, 0, 0};

                // This decodes the variable-base number in the 10 bits
                // and gives us the Lehmer code sequence which can then
                // be decoded.

                switch (register_count) 
                {
                    case 6:
                        permunreg[0] = permutation/120;    // 120 == 5!
                        permutation -= (permunreg[0]*120);
                        permunreg[1] = permutation/24;     // 24 == 4!
                        permutation -= (permunreg[1]*24);
                        permunreg[2] = permutation/6;      // 6 == 3!
                        permutation -= (permunreg[2]*6);
                        permunreg[3] = permutation/2;      // 2 == 2!
                        permutation -= (permunreg[3]*2);
                        permunreg[4] = permutation;        // 1 == 1!
                        permunreg[5] = 0;
                        break;
                    case 5:
                        permunreg[0] = permutation/120;
                        permutation -= (permunreg[0]*120);
                        permunreg[1] = permutation/24;
                        permutation -= (permunreg[1]*24);
                        permunreg[2] = permutation/6;
                        permutation -= (permunreg[2]*6);
                        permunreg[3] = permutation/2;
                        permutation -= (permunreg[3]*2);
                        permunreg[4] = permutation;
                        break;
                    case 4:
                        permunreg[0] = permutation/60;
                        permutation -= (permunreg[0]*60);
                        permunreg[1] = permutation/12;
                        permutation -= (permunreg[1]*12);
                        permunreg[2] = permutation/3;
                        permutation -= (permunreg[2]*3);
                        permunreg[3] = permutation;
                        break;
                    case 3:
                        permunreg[0] = permutation/20;
                        permutation -= (permunreg[0]*20);
                        permunreg[1] = permutation/4;
                        permutation -= (permunreg[1]*4);
                        permunreg[2] = permutation;
                        break;
                    case 2:
                        permunreg[0] = permutation/5;
                        permutation -= (permunreg[0]*5);
                        permunreg[1] = permutation;
                        break;
                    case 1:
                        permunreg[0] = permutation;
                        break;
                }
                
                // Decode the Lehmer code for this permutation of
                // the registers v. http://en.wikipedia.org/wiki/Lehmer_code

                int registers[6] = { UNWIND_X86_64_REG_NONE, UNWIND_X86_64_REG_NONE, UNWIND_X86_64_REG_NONE, UNWIND_X86_64_REG_NONE, UNWIND_X86_64_REG_NONE, UNWIND_X86_64_REG_NONE };
                bool used[7] = { false, false, false, false, false, false, false };
                for (uint32_t i = 0; i < register_count; i++)
                {
                    int renum = 0;
                    for (int j = 1; j < 7; j++)
                    {
                        if (used[j] == false)
                        {
                            if (renum == permunreg[i])
                            {
                                registers[i] = j;
                                used[j] = true;
                                break;
                            }
                            renum++;
                        }
                    }
                }

                uint32_t saved_registers_offset = 1;
                saved_registers_offset++;

                for (int i = (sizeof (registers) / sizeof (int)) - 1; i >= 0; i--)
                {
                    switch (registers[i])
                    {
                        case UNWIND_X86_64_REG_NONE:
                            break;
                        case UNWIND_X86_64_REG_RBX:
                        case UNWIND_X86_64_REG_R12:
                        case UNWIND_X86_64_REG_R13:
                        case UNWIND_X86_64_REG_R14:
                        case UNWIND_X86_64_REG_R15:
                        case UNWIND_X86_64_REG_RBP:
                            row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_x86_64 (registers[i]), wordsize * -saved_registers_offset, true);
                            saved_registers_offset++;
                        break;
                    }
                }
            }
            unwind_plan.AppendRow (row);
            return true;
        }
        break;

        case UNWIND_X86_64_MODE_DWARF:
        {
            return false;
        }
        break;

        case 0:
        {
            return false;
        }
        break;
    }
    return false;
}
Пример #21
0
bool
UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly (AddressRange& range, 
                                                                   Thread& thread, 
                                                                   UnwindPlan& unwind_plan)
{
    if (range.GetByteSize() > 0 && 
        range.GetBaseAddress().IsValid() &&
        m_inst_emulator_ap.get())
    {
     
        // The the instruction emulation subclass setup the unwind plan for the
        // first instruction.
        m_inst_emulator_ap->CreateFunctionEntryUnwind (unwind_plan);

        // CreateFunctionEntryUnwind should have created the first row. If it
        // doesn't, then we are done.
        if (unwind_plan.GetRowCount() == 0)
            return false;
        
        ExecutionContext exe_ctx;
        thread.CalculateExecutionContext(exe_ctx);
        DisassemblerSP disasm_sp (Disassembler::DisassembleRange (m_arch,
                                                                  NULL,
                                                                  exe_ctx,
                                                                  range));
        
        LogSP log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));

        if (disasm_sp)
        {
            
            m_range_ptr = &range;
            m_thread_ptr = &thread;
            m_unwind_plan_ptr = &unwind_plan;

            const uint32_t addr_byte_size = m_arch.GetAddressByteSize();
            const bool show_address = true;
            const bool show_bytes = true;
            const bool raw = false;
            // Initialize the CFA with a known value. In the 32 bit case
            // it will be 0x80000000, and in the 64 bit case 0x8000000000000000.
            // We use the address byte size to be safe for any future addresss sizes
            m_inst_emulator_ap->GetRegisterInfo (unwind_plan.GetRegisterKind(), 
                                                 unwind_plan.GetInitialCFARegister(), 
                                                 m_cfa_reg_info);
            
            m_fp_is_cfa = false;
            m_register_values.clear();
            m_pushed_regs.clear();

            m_initial_sp = (1ull << ((addr_byte_size * 8) - 1));
            RegisterValue cfa_reg_value;
            cfa_reg_value.SetUInt (m_initial_sp, m_cfa_reg_info.byte_size);
            SetRegisterValue (m_cfa_reg_info, cfa_reg_value);
                
            const InstructionList &inst_list = disasm_sp->GetInstructionList ();
            const size_t num_instructions = inst_list.GetSize();
            if (num_instructions > 0)
            {
                Instruction *inst = inst_list.GetInstructionAtIndex (0).get();
                const addr_t base_addr = inst->GetAddress().GetFileAddress();
                // Initialize the current row with the one row that was created
                // from the CreateFunctionEntryUnwind call above...
                m_curr_row = unwind_plan.GetLastRow();

                for (size_t idx=0; idx<num_instructions; ++idx)
                {
                    inst = inst_list.GetInstructionAtIndex (idx).get();
                    if (inst)
                    {

                        if (log && log->GetVerbose ())
                        {
                            StreamString strm;
                            inst->Dump(&strm, inst_list.GetMaxOpcocdeByteSize (), show_address, show_bytes, &exe_ctx, raw);
                            log->PutCString (strm.GetData());
                        }

                        m_inst_emulator_ap->SetInstruction (inst->GetOpcode(), 
                                                            inst->GetAddress(), 
                                                            exe_ctx.GetTargetPtr());

                        m_inst_emulator_ap->EvaluateInstruction (eEmulateInstructionOptionIgnoreConditions);
                        
                        if (unwind_plan.GetLastRow() != m_curr_row)
                        {
                            // Be sure to not edit the offset unless our row has changed
                            // so that the "!=" call above doesn't trigger every time
                            m_curr_row.SetOffset (inst->GetAddress().GetFileAddress() + inst->GetOpcode().GetByteSize() - base_addr);
                            // Append the new row
                            unwind_plan.AppendRow (m_curr_row);
                        }
                    }
                }
            }
        }
        
        if (log && log->GetVerbose ())
        {
            StreamString strm;
            lldb::addr_t base_addr = range.GetBaseAddress().GetLoadAddress(&thread.GetProcess().GetTarget());
            strm.Printf ("Resulting unwind rows for [0x%llx - 0x%llx):", base_addr, base_addr + range.GetByteSize());
            unwind_plan.Dump(strm, &thread, base_addr);
            log->PutCString (strm.GetData());
        }
        return unwind_plan.GetRowCount() > 0;
    }
    return false;
}
Пример #22
0
bool UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly(
    AddressRange &range, uint8_t *opcode_data, size_t opcode_size,
    UnwindPlan &unwind_plan) {
  if (opcode_data == nullptr || opcode_size == 0)
    return false;

  if (range.GetByteSize() > 0 && range.GetBaseAddress().IsValid() &&
      m_inst_emulator_ap.get()) {

    // The instruction emulation subclass setup the unwind plan for the
    // first instruction.
    m_inst_emulator_ap->CreateFunctionEntryUnwind(unwind_plan);

    // CreateFunctionEntryUnwind should have created the first row. If it
    // doesn't, then we are done.
    if (unwind_plan.GetRowCount() == 0)
      return false;

    const bool prefer_file_cache = true;
    DisassemblerSP disasm_sp(Disassembler::DisassembleBytes(
        m_arch, NULL, NULL, range.GetBaseAddress(), opcode_data, opcode_size,
        99999, prefer_file_cache));

    Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));

    if (disasm_sp) {

      m_range_ptr = &range;
      m_unwind_plan_ptr = &unwind_plan;

      const uint32_t addr_byte_size = m_arch.GetAddressByteSize();
      const bool show_address = true;
      const bool show_bytes = true;
      m_inst_emulator_ap->GetRegisterInfo(unwind_plan.GetRegisterKind(),
                                          unwind_plan.GetInitialCFARegister(),
                                          m_cfa_reg_info);

      m_fp_is_cfa = false;
      m_register_values.clear();
      m_pushed_regs.clear();

      // Initialize the CFA with a known value. In the 32 bit case
      // it will be 0x80000000, and in the 64 bit case 0x8000000000000000.
      // We use the address byte size to be safe for any future address sizes
      m_initial_sp = (1ull << ((addr_byte_size * 8) - 1));
      RegisterValue cfa_reg_value;
      cfa_reg_value.SetUInt(m_initial_sp, m_cfa_reg_info.byte_size);
      SetRegisterValue(m_cfa_reg_info, cfa_reg_value);

      const InstructionList &inst_list = disasm_sp->GetInstructionList();
      const size_t num_instructions = inst_list.GetSize();

      if (num_instructions > 0) {
        Instruction *inst = inst_list.GetInstructionAtIndex(0).get();
        const lldb::addr_t base_addr = inst->GetAddress().GetFileAddress();

        // Map for storing the unwind plan row and the value of the registers at
        // a given offset.
        // When we see a forward branch we add a new entry to this map with the
        // actual unwind plan
        // row and register context for the target address of the branch as the
        // current data have
        // to be valid for the target address of the branch too if we are in the
        // same function.
        std::map<lldb::addr_t, std::pair<UnwindPlan::RowSP, RegisterValueMap>>
            saved_unwind_states;

        // Make a copy of the current instruction Row and save it in m_curr_row
        // so we can add updates as we process the instructions.
        UnwindPlan::RowSP last_row = unwind_plan.GetLastRow();
        UnwindPlan::Row *newrow = new UnwindPlan::Row;
        if (last_row.get())
          *newrow = *last_row.get();
        m_curr_row.reset(newrow);

        // Add the initial state to the save list with offset 0.
        saved_unwind_states.insert({0, {last_row, m_register_values}});

        // cache the pc register number (in whatever register numbering this
        // UnwindPlan uses) for
        // quick reference during instruction parsing.
        RegisterInfo pc_reg_info;
        m_inst_emulator_ap->GetRegisterInfo(
            eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc_reg_info);

        // cache the return address register number (in whatever register
        // numbering this UnwindPlan uses) for
        // quick reference during instruction parsing.
        RegisterInfo ra_reg_info;
        m_inst_emulator_ap->GetRegisterInfo(
            eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, ra_reg_info);

        // The architecture dependent condition code of the last processed
        // instruction.
        EmulateInstruction::InstructionCondition last_condition =
            EmulateInstruction::UnconditionalCondition;
        lldb::addr_t condition_block_start_offset = 0;

        for (size_t idx = 0; idx < num_instructions; ++idx) {
          m_curr_row_modified = false;
          m_forward_branch_offset = 0;

          inst = inst_list.GetInstructionAtIndex(idx).get();
          if (inst) {
            lldb::addr_t current_offset =
                inst->GetAddress().GetFileAddress() - base_addr;
            auto it = saved_unwind_states.upper_bound(current_offset);
            assert(it != saved_unwind_states.begin() &&
                   "Unwind row for the function entry missing");
            --it; // Move it to the row corresponding to the current offset

            // If the offset of m_curr_row don't match with the offset we see in
            // saved_unwind_states
            // then we have to update m_curr_row and m_register_values based on
            // the saved values. It
            // is happenning after we processed an epilogue and a return to
            // caller instruction.
            if (it->second.first->GetOffset() != m_curr_row->GetOffset()) {
              UnwindPlan::Row *newrow = new UnwindPlan::Row;
              *newrow = *it->second.first;
              m_curr_row.reset(newrow);
              m_register_values = it->second.second;
            }

            m_inst_emulator_ap->SetInstruction(inst->GetOpcode(),
                                               inst->GetAddress(), nullptr);

            if (last_condition !=
                m_inst_emulator_ap->GetInstructionCondition()) {
              if (m_inst_emulator_ap->GetInstructionCondition() !=
                      EmulateInstruction::UnconditionalCondition &&
                  saved_unwind_states.count(current_offset) == 0) {
                // If we don't have a saved row for the current offset then save
                // our
                // current state because we will have to restore it after the
                // conditional block.
                auto new_row =
                    std::make_shared<UnwindPlan::Row>(*m_curr_row.get());
                saved_unwind_states.insert(
                    {current_offset, {new_row, m_register_values}});
              }

              // If the last instruction was conditional with a different
              // condition
              // then the then current condition then restore the condition.
              if (last_condition !=
                  EmulateInstruction::UnconditionalCondition) {
                const auto &saved_state =
                    saved_unwind_states.at(condition_block_start_offset);
                m_curr_row =
                    std::make_shared<UnwindPlan::Row>(*saved_state.first);
                m_curr_row->SetOffset(current_offset);
                m_register_values = saved_state.second;
                bool replace_existing =
                    true; // The last instruction might already
                          // created a row for this offset and
                          // we want to overwrite it.
                unwind_plan.InsertRow(
                    std::make_shared<UnwindPlan::Row>(*m_curr_row),
                    replace_existing);
              }

              // We are starting a new conditional block at the catual offset
              condition_block_start_offset = current_offset;
            }

            if (log && log->GetVerbose()) {
              StreamString strm;
              lldb_private::FormatEntity::Entry format;
              FormatEntity::Parse("${frame.pc}: ", format);
              inst->Dump(&strm, inst_list.GetMaxOpcocdeByteSize(), show_address,
                         show_bytes, NULL, NULL, NULL, &format, 0);
              log->PutString(strm.GetString());
            }

            last_condition = m_inst_emulator_ap->GetInstructionCondition();

            m_inst_emulator_ap->EvaluateInstruction(
                eEmulateInstructionOptionIgnoreConditions);

            // If the current instruction is a branch forward then save the
            // current CFI information
            // for the offset where we are branching.
            if (m_forward_branch_offset != 0 &&
                range.ContainsFileAddress(inst->GetAddress().GetFileAddress() +
                                          m_forward_branch_offset)) {
              auto newrow =
                  std::make_shared<UnwindPlan::Row>(*m_curr_row.get());
              newrow->SetOffset(current_offset + m_forward_branch_offset);
              saved_unwind_states.insert(
                  {current_offset + m_forward_branch_offset,
                   {newrow, m_register_values}});
              unwind_plan.InsertRow(newrow);
            }

            // Were there any changes to the CFI while evaluating this
            // instruction?
            if (m_curr_row_modified) {
              // Save the modified row if we don't already have a CFI row in the
              // currennt address
              if (saved_unwind_states.count(
                      current_offset + inst->GetOpcode().GetByteSize()) == 0) {
                m_curr_row->SetOffset(current_offset +
                                      inst->GetOpcode().GetByteSize());
                unwind_plan.InsertRow(m_curr_row);
                saved_unwind_states.insert(
                    {current_offset + inst->GetOpcode().GetByteSize(),
                     {m_curr_row, m_register_values}});

                // Allocate a new Row for m_curr_row, copy the current state
                // into it
                UnwindPlan::Row *newrow = new UnwindPlan::Row;
                *newrow = *m_curr_row.get();
                m_curr_row.reset(newrow);
              }
            }
          }
        }
      }
    }

    if (log && log->GetVerbose()) {
      StreamString strm;
      lldb::addr_t base_addr = range.GetBaseAddress().GetFileAddress();
      strm.Printf("Resulting unwind rows for [0x%" PRIx64 " - 0x%" PRIx64 "):",
                  base_addr, base_addr + range.GetByteSize());
      unwind_plan.Dump(strm, nullptr, base_addr);
      log->PutString(strm.GetString());
    }
    return unwind_plan.GetRowCount() > 0;
  }
  return false;
}
bool
DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t dwarf_offset, Address startaddr, UnwindPlan& unwind_plan)
{
    lldb::offset_t offset = dwarf_offset;
    lldb::offset_t current_entry = offset;

    if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
        return false;

    if (m_cfi_data_initialized == false)
        GetCFIData();

    uint32_t length = m_cfi_data.GetU32 (&offset);
    dw_offset_t cie_offset;
    bool is_64bit = (length == UINT32_MAX);
    if (is_64bit) {
        length = m_cfi_data.GetU64 (&offset);
        cie_offset = m_cfi_data.GetU64 (&offset);
    } else {
        cie_offset = m_cfi_data.GetU32 (&offset);
    }

    assert (cie_offset != 0 && cie_offset != UINT32_MAX);

    // Translate the CIE_id from the eh_frame format, which
    // is relative to the FDE offset, into a __eh_frame section
    // offset
    if (m_is_eh_frame)
    {
        unwind_plan.SetSourceName ("eh_frame CFI");
        cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
        unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    }
    else
    {
        unwind_plan.SetSourceName ("DWARF CFI");
        // In theory the debug_frame info should be valid at all call sites
        // ("asynchronous unwind info" as it is sometimes called) but in practice
        // gcc et al all emit call frame info for the prologue and call sites, but
        // not for the epilogue or all the other locations during the function reliably.
        unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    }
    unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);

    const CIE *cie = GetCIE (cie_offset);
    assert (cie != nullptr);

    const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);

    const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
    const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
    const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
    lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
    lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
    AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
    range.SetByteSize (range_len);

    addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;

    if (cie->augmentation[0] == 'z')
    {
        uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
        if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit)
        {
            offset_t saved_offset = offset;
            lsda_data_file_address = m_cfi_data.GetGNUEHPointer(&offset, cie->lsda_addr_encoding, pc_rel_addr, text_addr, data_addr);
            if (offset - saved_offset != aug_data_len)
            {
                // There is more in the augmentation region than we know how to process;
                // don't read anything.
                lsda_data_file_address = LLDB_INVALID_ADDRESS;
            }
            offset = saved_offset;
        }
        offset += aug_data_len;
    }
    Address lsda_data;
    Address personality_function_ptr;

    if (lsda_data_file_address != LLDB_INVALID_ADDRESS && cie->personality_loc != LLDB_INVALID_ADDRESS)
    {
        m_objfile.GetModule()->ResolveFileAddress (lsda_data_file_address, lsda_data);
        m_objfile.GetModule()->ResolveFileAddress (cie->personality_loc, personality_function_ptr);
    }

    if (lsda_data.IsValid() && personality_function_ptr.IsValid())
    {
        unwind_plan.SetLSDAAddress (lsda_data);
        unwind_plan.SetPersonalityFunctionPtr (personality_function_ptr);
    }

    uint32_t code_align = cie->code_align;
    int32_t data_align = cie->data_align;

    unwind_plan.SetPlanValidAddressRange (range);
    UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
    *cie_initial_row = cie->initial_row;
    UnwindPlan::RowSP row(cie_initial_row);

    unwind_plan.SetRegisterKind (m_reg_kind);
    unwind_plan.SetReturnAddressRegister (cie->return_addr_reg_num);

    std::vector<UnwindPlan::RowSP> stack;

    UnwindPlan::Row::RegisterLocation reg_location;
    while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
    {
        uint8_t inst = m_cfi_data.GetU8(&offset);
        uint8_t primary_opcode  = inst & 0xC0;
        uint8_t extended_opcode = inst & 0x3F;

        if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align, offset, *row))
        {
            if (primary_opcode)
            {
                switch (primary_opcode)
                {
                    case DW_CFA_advance_loc :   // (Row Creation Instruction)
                    {   // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
                        // takes a single argument that represents a constant delta. The
                        // required action is to create a new table row with a location
                        // value that is computed by taking the current entry's location
                        // value and adding (delta * code_align). All other
                        // values in the new row are initially identical to the current row.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset(extended_opcode * code_align);
                        break;
                    }

                    case DW_CFA_restore     :
                    {   // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
                        // takes a single argument that represents a register number. The
                        // required action is to change the rule for the indicated register
                        // to the rule assigned it by the initial_instructions in the CIE.
                        uint32_t reg_num = extended_opcode;
                        // We only keep enough register locations around to
                        // unwind what is in our thread, and these are organized
                        // by the register index in that state, so we need to convert our
                        // GCC register number from the EH frame info, to a register index

                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
                            row->SetRegisterInfo (reg_num, reg_location);
                        break;
                    }
                }
            }
            else
            {
                switch (extended_opcode)
                {
                    case DW_CFA_set_loc             : // 0x1 (Row Creation Instruction)
                    {
                        // DW_CFA_set_loc takes a single argument that represents an address.
                        // The required action is to create a new table row using the
                        // specified address as the location. All other values in the new row
                        // are initially identical to the current row. The new location value
                        // should always be greater than the current one.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
                        break;
                    }

                    case DW_CFA_advance_loc1        : // 0x2 (Row Creation Instruction)
                    {
                        // takes a single uword argument that represents a constant delta.
                        // This instruction is identical to DW_CFA_advance_loc except for the
                        // encoding and size of the delta argument.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
                        break;
                    }

                    case DW_CFA_advance_loc2        : // 0x3 (Row Creation Instruction)
                    {
                        // takes a single uword argument that represents a constant delta.
                        // This instruction is identical to DW_CFA_advance_loc except for the
                        // encoding and size of the delta argument.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
                        break;
                    }

                    case DW_CFA_advance_loc4        : // 0x4 (Row Creation Instruction)
                    {
                        // takes a single uword argument that represents a constant delta.
                        // This instruction is identical to DW_CFA_advance_loc except for the
                        // encoding and size of the delta argument.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
                        break;
                    }

                    case DW_CFA_restore_extended    : // 0x6
                    {
                        // takes a single unsigned LEB128 argument that represents a register
                        // number. This instruction is identical to DW_CFA_restore except for
                        // the encoding and size of the register argument.
                        uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
                            row->SetRegisterInfo (reg_num, reg_location);
                        break;
                    }

                    case DW_CFA_remember_state      : // 0xA
                    {
                        // These instructions define a stack of information. Encountering the
                        // DW_CFA_remember_state instruction means to save the rules for every
                        // register on the current row on the stack. Encountering the
                        // DW_CFA_restore_state instruction means to pop the set of rules off
                        // the stack and place them in the current row. (This operation is
                        // useful for compilers that move epilogue code into the body of a
                        // function.)
                        stack.push_back (row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        break;
                    }

                    case DW_CFA_restore_state       : // 0xB
                    {
                        // These instructions define a stack of information. Encountering the
                        // DW_CFA_remember_state instruction means to save the rules for every
                        // register on the current row on the stack. Encountering the
                        // DW_CFA_restore_state instruction means to pop the set of rules off
                        // the stack and place them in the current row. (This operation is
                        // useful for compilers that move epilogue code into the body of a
                        // function.)
                        lldb::addr_t offset = row->GetOffset ();
                        row = stack.back ();
                        stack.pop_back ();
                        row->SetOffset (offset);
                        break;
                    }

                    case DW_CFA_val_offset          :   // 0x14
                    case DW_CFA_val_offset_sf       :   // 0x15
                    default:
                        break;
                }
            }
        }
    }
    unwind_plan.AppendRow(row);

    return true;
}
bool UnwindAssembly_x86::AugmentUnwindPlanFromCallSite(
    AddressRange &func, Thread &thread, UnwindPlan &unwind_plan) {
  bool do_augment_unwindplan = true;

  UnwindPlan::RowSP first_row = unwind_plan.GetRowForFunctionOffset(0);
  UnwindPlan::RowSP last_row = unwind_plan.GetRowForFunctionOffset(-1);

  int wordsize = 8;
  ProcessSP process_sp(thread.GetProcess());
  if (process_sp.get() == nullptr)
    return false;

  wordsize = process_sp->GetTarget().GetArchitecture().GetAddressByteSize();

  RegisterNumber sp_regnum(thread, eRegisterKindGeneric,
                           LLDB_REGNUM_GENERIC_SP);
  RegisterNumber pc_regnum(thread, eRegisterKindGeneric,
                           LLDB_REGNUM_GENERIC_PC);

  // Does this UnwindPlan describe the prologue?  I want to see that the CFA is
  // set in terms of the stack pointer plus an offset, and I want to see that
  // rip is retrieved at the CFA-wordsize. If there is no description of the
  // prologue, don't try to augment this eh_frame unwinder code, fall back to
  // assembly parsing instead.

  if (first_row->GetCFAValue().GetValueType() !=
          UnwindPlan::Row::FAValue::isRegisterPlusOffset ||
      RegisterNumber(thread, unwind_plan.GetRegisterKind(),
                     first_row->GetCFAValue().GetRegisterNumber()) !=
          sp_regnum ||
      first_row->GetCFAValue().GetOffset() != wordsize) {
    return false;
  }
  UnwindPlan::Row::RegisterLocation first_row_pc_loc;
  if (!first_row->GetRegisterInfo(
          pc_regnum.GetAsKind(unwind_plan.GetRegisterKind()),
          first_row_pc_loc) ||
      !first_row_pc_loc.IsAtCFAPlusOffset() ||
      first_row_pc_loc.GetOffset() != -wordsize) {
    return false;
  }

  // It looks like the prologue is described. Is the epilogue described?  If it
  // is, no need to do any augmentation.

  if (first_row != last_row &&
      first_row->GetOffset() != last_row->GetOffset()) {
    // The first & last row have the same CFA register and the same CFA offset
    // value and the CFA register is esp/rsp (the stack pointer).

    // We're checking that both of them have an unwind rule like "CFA=esp+4" or
    // CFA+rsp+8".

    if (first_row->GetCFAValue().GetValueType() ==
            last_row->GetCFAValue().GetValueType() &&
        first_row->GetCFAValue().GetRegisterNumber() ==
            last_row->GetCFAValue().GetRegisterNumber() &&
        first_row->GetCFAValue().GetOffset() ==
            last_row->GetCFAValue().GetOffset()) {
      // Get the register locations for eip/rip from the first & last rows. Are
      // they both CFA plus an offset?  Is it the same offset?

      UnwindPlan::Row::RegisterLocation last_row_pc_loc;
      if (last_row->GetRegisterInfo(
              pc_regnum.GetAsKind(unwind_plan.GetRegisterKind()),
              last_row_pc_loc)) {
        if (last_row_pc_loc.IsAtCFAPlusOffset() &&
            first_row_pc_loc.GetOffset() == last_row_pc_loc.GetOffset()) {

          // One last sanity check:  Is the unwind rule for getting the caller
          // pc value "deref the CFA-4" or "deref the CFA-8"?

          // If so, we have an UnwindPlan that already describes the epilogue
          // and we don't need to modify it at all.

          if (first_row_pc_loc.GetOffset() == -wordsize) {
            do_augment_unwindplan = false;
          }
        }
      }
    }
  }

  if (do_augment_unwindplan) {
    if (!func.GetBaseAddress().IsValid() || func.GetByteSize() == 0)
      return false;
    if (m_assembly_inspection_engine == nullptr)
      return false;
    const bool prefer_file_cache = true;
    std::vector<uint8_t> function_text(func.GetByteSize());
    Status error;
    if (process_sp->GetTarget().ReadMemory(
            func.GetBaseAddress(), prefer_file_cache, function_text.data(),
            func.GetByteSize(), error) == func.GetByteSize()) {
      RegisterContextSP reg_ctx(thread.GetRegisterContext());
      m_assembly_inspection_engine->Initialize(reg_ctx);
      return m_assembly_inspection_engine->AugmentUnwindPlanFromCallSite(
          function_text.data(), func.GetByteSize(), func, unwind_plan, reg_ctx);
    }
  }

  return false;
}
Пример #25
0
bool
DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t offset, Address startaddr, UnwindPlan& unwind_plan)
{
    dw_offset_t current_entry = offset;

    if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
        return false;

    if (m_cfi_data_initialized == false)
        GetCFIData();

    uint32_t length = m_cfi_data.GetU32 (&offset);
    dw_offset_t cie_offset = m_cfi_data.GetU32 (&offset);

    assert (cie_offset != 0 && cie_offset != UINT32_MAX);

    // Translate the CIE_id from the eh_frame format, which
    // is relative to the FDE offset, into a __eh_frame section
    // offset
    if (m_is_eh_frame)
    {
        unwind_plan.SetSourceName ("eh_frame CFI");
        cie_offset = current_entry + 4 - cie_offset;
        unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    }
    else
    {
        unwind_plan.SetSourceName ("DWARF CFI");
        // In theory the debug_frame info should be valid at all call sites
        // ("asynchronous unwind info" as it is sometimes called) but in practice
        // gcc et al all emit call frame info for the prologue and call sites, but
        // not for the epilogue or all the other locations during the function reliably.
        unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
    }
    unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);

    const CIE *cie = GetCIE (cie_offset);
    assert (cie != NULL);

    const dw_offset_t end_offset = current_entry + length + 4;

    const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
    const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
    const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
    lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
    lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
    AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
    range.SetByteSize (range_len);

    if (cie->augmentation[0] == 'z')
    {
        uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
        offset += aug_data_len;
    }

    uint32_t reg_num = 0;
    int32_t op_offset = 0;
    uint32_t code_align = cie->code_align;
    int32_t data_align = cie->data_align;

    unwind_plan.SetPlanValidAddressRange (range);
    UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
    *cie_initial_row = cie->initial_row;
    UnwindPlan::RowSP row(cie_initial_row);

    unwind_plan.SetRegisterKind (m_reg_kind);
    unwind_plan.SetReturnAddressRegister (cie->return_addr_reg_num);

    UnwindPlan::Row::RegisterLocation reg_location;
    while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
    {
        uint8_t inst = m_cfi_data.GetU8(&offset);
        uint8_t primary_opcode  = inst & 0xC0;
        uint8_t extended_opcode = inst & 0x3F;

        if (primary_opcode)
        {
            switch (primary_opcode)
            {
                case DW_CFA_advance_loc :   // (Row Creation Instruction)
                    {   // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
                        // takes a single argument that represents a constant delta. The
                        // required action is to create a new table row with a location
                        // value that is computed by taking the current entry's location
                        // value and adding (delta * code_align). All other
                        // values in the new row are initially identical to the current row.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset(extended_opcode * code_align);
                    }
                    break;

                case DW_CFA_offset      :
                    {   // 0x80 - high 2 bits are 0x2, lower 6 bits are register
                        // takes two arguments: an unsigned LEB128 constant representing a
                        // factored offset and a register number. The required action is to
                        // change the rule for the register indicated by the register number
                        // to be an offset(N) rule with a value of
                        // (N = factored offset * data_align).
                        reg_num = extended_opcode;
                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
                        reg_location.SetAtCFAPlusOffset(op_offset);
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_restore     :
                    {   // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
                        // takes a single argument that represents a register number. The
                        // required action is to change the rule for the indicated register
                        // to the rule assigned it by the initial_instructions in the CIE.
                        reg_num = extended_opcode;
                        // We only keep enough register locations around to
                        // unwind what is in our thread, and these are organized
                        // by the register index in that state, so we need to convert our
                        // GCC register number from the EH frame info, to a register index

                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
                            row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;
            }
        }
        else
        {
            switch (extended_opcode)
            {
                case DW_CFA_nop                 : // 0x0
                    break;

                case DW_CFA_set_loc             : // 0x1 (Row Creation Instruction)
                    {
                        // DW_CFA_set_loc takes a single argument that represents an address.
                        // The required action is to create a new table row using the
                        // specified address as the location. All other values in the new row
                        // are initially identical to the current row. The new location value
                        // should always be greater than the current one.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
                    }
                    break;

                case DW_CFA_advance_loc1        : // 0x2 (Row Creation Instruction)
                    {
                        // takes a single uword argument that represents a constant delta.
                        // This instruction is identical to DW_CFA_advance_loc except for the
                        // encoding and size of the delta argument.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
                    }
                    break;

                case DW_CFA_advance_loc2        : // 0x3 (Row Creation Instruction)
                    {
                        // takes a single uword argument that represents a constant delta.
                        // This instruction is identical to DW_CFA_advance_loc except for the
                        // encoding and size of the delta argument.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
                    }
                    break;

                case DW_CFA_advance_loc4        : // 0x4 (Row Creation Instruction)
                    {
                        // takes a single uword argument that represents a constant delta.
                        // This instruction is identical to DW_CFA_advance_loc except for the
                        // encoding and size of the delta argument.
                        unwind_plan.AppendRow(row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                        row->SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
                    }
                    break;

                case DW_CFA_offset_extended     : // 0x5
                    {
                        // takes two unsigned LEB128 arguments representing a register number
                        // and a factored offset. This instruction is identical to DW_CFA_offset
                        // except for the encoding and size of the register argument.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
                        reg_location.SetAtCFAPlusOffset(op_offset);
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_restore_extended    : // 0x6
                    {
                        // takes a single unsigned LEB128 argument that represents a register
                        // number. This instruction is identical to DW_CFA_restore except for
                        // the encoding and size of the register argument.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
                            row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_undefined           : // 0x7
                    {
                        // takes a single unsigned LEB128 argument that represents a register
                        // number. The required action is to set the rule for the specified
                        // register to undefined.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        reg_location.SetUndefined();
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_same_value          : // 0x8
                    {
                        // takes a single unsigned LEB128 argument that represents a register
                        // number. The required action is to set the rule for the specified
                        // register to same value.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        reg_location.SetSame();
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_register            : // 0x9
                    {
                        // takes two unsigned LEB128 arguments representing register numbers.
                        // The required action is to set the rule for the first register to be
                        // the second register.

                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        reg_location.SetInRegister(other_reg_num);
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_remember_state      : // 0xA
                    {
                        // These instructions define a stack of information. Encountering the
                        // DW_CFA_remember_state instruction means to save the rules for every
                        // register on the current row on the stack. Encountering the
                        // DW_CFA_restore_state instruction means to pop the set of rules off
                        // the stack and place them in the current row. (This operation is
                        // useful for compilers that move epilogue code into the body of a
                        // function.)
                        unwind_plan.AppendRow (row);
                        UnwindPlan::Row *newrow = new UnwindPlan::Row;
                        *newrow = *row.get();
                        row.reset (newrow);
                    }
                    break;

                case DW_CFA_restore_state       : // 0xB
                    // These instructions define a stack of information. Encountering the
                    // DW_CFA_remember_state instruction means to save the rules for every
                    // register on the current row on the stack. Encountering the
                    // DW_CFA_restore_state instruction means to pop the set of rules off
                    // the stack and place them in the current row. (This operation is
                    // useful for compilers that move epilogue code into the body of a
                    // function.)
                    {
                        row = unwind_plan.GetRowAtIndex(unwind_plan.GetRowCount() - 1);
                    }
                    break;

                case DW_CFA_def_cfa             : // 0xC    (CFA Definition Instruction)
                    {
                        // Takes two unsigned LEB128 operands representing a register
                        // number and a (non-factored) offset. The required action
                        // is to define the current CFA rule to use the provided
                        // register and offset.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
                        row->SetCFARegister (reg_num);
                        row->SetCFAOffset (op_offset);
                    }
                    break;

                case DW_CFA_def_cfa_register    : // 0xD    (CFA Definition Instruction)
                    {
                        // takes a single unsigned LEB128 argument representing a register
                        // number. The required action is to define the current CFA rule to
                        // use the provided register (but to keep the old offset).
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        row->SetCFARegister (reg_num);
                    }
                    break;

                case DW_CFA_def_cfa_offset      : // 0xE    (CFA Definition Instruction)
                    {
                        // Takes a single unsigned LEB128 operand representing a
                        // (non-factored) offset. The required action is to define
                        // the current CFA rule to use the provided offset (but
                        // to keep the old register).
                        op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
                        row->SetCFAOffset (op_offset);
                    }
                    break;

                case DW_CFA_def_cfa_expression  : // 0xF    (CFA Definition Instruction)
                    {
                        size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
                        offset += (uint32_t)block_len;
                    }
                    break;

                case DW_CFA_expression          : // 0x10
                    {
                        // Takes two operands: an unsigned LEB128 value representing
                        // a register number, and a DW_FORM_block value representing a DWARF
                        // expression. The required action is to change the rule for the
                        // register indicated by the register number to be an expression(E)
                        // rule where E is the DWARF expression. That is, the DWARF
                        // expression computes the address. The value of the CFA is
                        // pushed on the DWARF evaluation stack prior to execution of
                        // the DWARF expression.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        const uint8_t *block_data = (uint8_t *)m_cfi_data.GetData(&offset, block_len);

                        reg_location.SetAtDWARFExpression(block_data, block_len);
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_offset_extended_sf  : // 0x11
                    {
                        // takes two operands: an unsigned LEB128 value representing a
                        // register number and a signed LEB128 factored offset. This
                        // instruction is identical to DW_CFA_offset_extended except
                        //that the second operand is signed and factored.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
                        reg_location.SetAtCFAPlusOffset(op_offset);
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_def_cfa_sf          : // 0x12   (CFA Definition Instruction)
                    {
                        // Takes two operands: an unsigned LEB128 value representing
                        // a register number and a signed LEB128 factored offset.
                        // This instruction is identical to DW_CFA_def_cfa except
                        // that the second operand is signed and factored.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
                        row->SetCFARegister (reg_num);
                        row->SetCFAOffset (op_offset);
                    }
                    break;

                case DW_CFA_def_cfa_offset_sf   : // 0x13   (CFA Definition Instruction)
                    {
                        // takes a signed LEB128 operand representing a factored
                        // offset. This instruction is identical to  DW_CFA_def_cfa_offset
                        // except that the operand is signed and factored.
                        op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
                        row->SetCFAOffset (op_offset);
                    }
                    break;

                case DW_CFA_val_expression      :   // 0x16
                    {
                        // takes two operands: an unsigned LEB128 value representing a register
                        // number, and a DW_FORM_block value representing a DWARF expression.
                        // The required action is to change the rule for the register indicated
                        // by the register number to be a val_expression(E) rule where E is the
                        // DWARF expression. That is, the DWARF expression computes the value of
                        // the given register. The value of the CFA is pushed on the DWARF
                        // evaluation stack prior to execution of the DWARF expression.
                        reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
                        const uint8_t* block_data = (uint8_t*)m_cfi_data.GetData(&offset, block_len);
//#if defined(__i386__) || defined(__x86_64__)
//                      // The EH frame info for EIP and RIP contains code that looks for traps to
//                      // be a specific type and increments the PC.
//                      // For i386:
//                      // DW_CFA_val_expression where:
//                      // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34),
//                      //       DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref,
//                      //       DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
//                      //       DW_OP_and, DW_OP_plus
//                      // This basically does a:
//                      // eip = ucontenxt.mcontext32->gpr.eip;
//                      // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4)
//                      //   eip++;
//                      //
//                      // For x86_64:
//                      // DW_CFA_val_expression where:
//                      // rip =  DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref,
//                      //          DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
//                      //          DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus
//                      // This basically does a:
//                      // rip = ucontenxt.mcontext64->gpr.rip;
//                      // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4)
//                      //   rip++;
//                      // The trap comparisons and increments are not needed as it hoses up the unwound PC which
//                      // is expected to point at least past the instruction that causes the fault/trap. So we
//                      // take it out by trimming the expression right at the first "DW_OP_swap" opcodes
//                      if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num)
//                      {
//                          if (thread->Is64Bit())
//                          {
//                              if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst)
//                                  block_len = 8;
//                          }
//                          else
//                          {
//                              if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst)
//                                  block_len = 7;
//                          }
//                      }
//#endif
                        reg_location.SetIsDWARFExpression(block_data, block_len);
                        row->SetRegisterInfo (reg_num, reg_location);
                    }
                    break;

                case DW_CFA_val_offset          :   // 0x14
                case DW_CFA_val_offset_sf       :   // 0x15
                default:
                    break;
            }
        }
    }
    unwind_plan.AppendRow(row);

    return true;
}
Пример #26
0
bool
UnwindAssemblyInstEmulation::GetNonCallSiteUnwindPlanFromAssembly (AddressRange& range, 
                                                                   Thread& thread, 
                                                                   UnwindPlan& unwind_plan)
{
    if (range.GetByteSize() > 0 && 
        range.GetBaseAddress().IsValid() &&
        m_inst_emulator_ap.get())
    {
     
        // The instruction emulation subclass setup the unwind plan for the
        // first instruction.
        m_inst_emulator_ap->CreateFunctionEntryUnwind (unwind_plan);

        // CreateFunctionEntryUnwind should have created the first row. If it
        // doesn't, then we are done.
        if (unwind_plan.GetRowCount() == 0)
            return false;
        
        ExecutionContext exe_ctx;
        thread.CalculateExecutionContext(exe_ctx);
        const bool prefer_file_cache = true;
        DisassemblerSP disasm_sp (Disassembler::DisassembleRange (m_arch,
                                                                  NULL,
                                                                  NULL,
                                                                  exe_ctx,
                                                                  range,
                                                                  prefer_file_cache));
        
        Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));

        if (disasm_sp)
        {
            
            m_range_ptr = &range;
            m_thread_ptr = &thread;
            m_unwind_plan_ptr = &unwind_plan;

            const uint32_t addr_byte_size = m_arch.GetAddressByteSize();
            const bool show_address = true;
            const bool show_bytes = true;
            m_inst_emulator_ap->GetRegisterInfo (unwind_plan.GetRegisterKind(), 
                                                 unwind_plan.GetInitialCFARegister(), 
                                                 m_cfa_reg_info);
            
            m_fp_is_cfa = false;
            m_register_values.clear();
            m_pushed_regs.clear();

            // Initialize the CFA with a known value. In the 32 bit case
            // it will be 0x80000000, and in the 64 bit case 0x8000000000000000.
            // We use the address byte size to be safe for any future address sizes
            m_initial_sp = (1ull << ((addr_byte_size * 8) - 1));
            RegisterValue cfa_reg_value;
            cfa_reg_value.SetUInt (m_initial_sp, m_cfa_reg_info.byte_size);
            SetRegisterValue (m_cfa_reg_info, cfa_reg_value);

            const InstructionList &inst_list = disasm_sp->GetInstructionList ();
            const size_t num_instructions = inst_list.GetSize();

            if (num_instructions > 0)
            {
                Instruction *inst = inst_list.GetInstructionAtIndex (0).get();
                const lldb::addr_t base_addr = inst->GetAddress().GetFileAddress();

                // Map for storing the unwind plan row and the value of the registers at a given offset.
                // When we see a forward branch we add a new entry to this map with the actual unwind plan
                // row and register context for the target address of the branch as the current data have
                // to be valid for the target address of the branch too if we are in the same function.
                std::map<lldb::addr_t, std::pair<UnwindPlan::RowSP, RegisterValueMap>> saved_unwind_states;

                // Make a copy of the current instruction Row and save it in m_curr_row
                // so we can add updates as we process the instructions.  
                UnwindPlan::RowSP last_row = unwind_plan.GetLastRow();
                UnwindPlan::Row *newrow = new UnwindPlan::Row;
                if (last_row.get())
                    *newrow = *last_row.get();
                m_curr_row.reset(newrow);

                // Add the initial state to the save list with offset 0.
                saved_unwind_states.insert({0, {last_row, m_register_values}});

                // cache the pc register number (in whatever register numbering this UnwindPlan uses) for
                // quick reference during instruction parsing.
                uint32_t pc_reg_num = LLDB_INVALID_REGNUM;
                RegisterInfo pc_reg_info;
                if (m_inst_emulator_ap->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc_reg_info))
                    pc_reg_num = pc_reg_info.kinds[unwind_plan.GetRegisterKind()];
                else
                    pc_reg_num = LLDB_INVALID_REGNUM;

                // cache the return address register number (in whatever register numbering this UnwindPlan uses) for
                // quick reference during instruction parsing.
                uint32_t ra_reg_num = LLDB_INVALID_REGNUM;
                RegisterInfo ra_reg_info;
                if (m_inst_emulator_ap->GetRegisterInfo (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA, ra_reg_info))
                    ra_reg_num = ra_reg_info.kinds[unwind_plan.GetRegisterKind()];
                else
                    ra_reg_num = LLDB_INVALID_REGNUM;

                for (size_t idx=0; idx<num_instructions; ++idx)
                {
                    m_curr_row_modified = false;
                    m_forward_branch_offset = 0;

                    inst = inst_list.GetInstructionAtIndex (idx).get();
                    if (inst)
                    {
                        lldb::addr_t current_offset = inst->GetAddress().GetFileAddress() - base_addr;
                        auto it = saved_unwind_states.upper_bound(current_offset);
                        assert(it != saved_unwind_states.begin() && "Unwind row for the function entry missing");
                        --it; // Move it to the row corresponding to the current offset

                        // If the offset of m_curr_row don't match with the offset we see in saved_unwind_states
                        // then we have to update m_curr_row and m_register_values based on the saved values. It
                        // is happenning after we processed an epilogue and a return to caller instruction.
                        if (it->second.first->GetOffset() != m_curr_row->GetOffset())
                        {
                            UnwindPlan::Row *newrow = new UnwindPlan::Row;
                            *newrow = *it->second.first;
                            m_curr_row.reset(newrow);
                            m_register_values = it->second.second;;
                        }

                        if (log && log->GetVerbose ())
                        {
                            StreamString strm;
                            lldb_private::FormatEntity::Entry format;
                            FormatEntity::Parse("${frame.pc}: ", format);
                            inst->Dump(&strm, inst_list.GetMaxOpcocdeByteSize (), show_address, show_bytes, NULL, NULL, NULL, &format, 0);
                            log->PutCString (strm.GetData());
                        }

                        m_inst_emulator_ap->SetInstruction (inst->GetOpcode(), 
                                                            inst->GetAddress(), 
                                                            exe_ctx.GetTargetPtr());

                        m_inst_emulator_ap->EvaluateInstruction (eEmulateInstructionOptionIgnoreConditions);

                        // If the current instruction is a branch forward then save the current CFI information
                        // for the offset where we are branching.
                        if (m_forward_branch_offset != 0 && range.ContainsFileAddress(inst->GetAddress().GetFileAddress() + m_forward_branch_offset))
                        {
                            auto newrow = std::make_shared<UnwindPlan::Row>(*m_curr_row.get());
                            newrow->SetOffset(current_offset + m_forward_branch_offset);
                            saved_unwind_states.insert({current_offset + m_forward_branch_offset, {newrow, m_register_values}});
                            unwind_plan.InsertRow(newrow);
                        }

                        // Were there any changes to the CFI while evaluating this instruction?
                        if (m_curr_row_modified)
                        {
                            // Save the modified row if we don't already have a CFI row in the currennt address
                            if (saved_unwind_states.count(current_offset + inst->GetOpcode().GetByteSize()) == 0)
                            {
                                m_curr_row->SetOffset (current_offset + inst->GetOpcode().GetByteSize());
                                unwind_plan.InsertRow (m_curr_row);
                                saved_unwind_states.insert({current_offset + inst->GetOpcode().GetByteSize(), {m_curr_row, m_register_values}});

                                // Allocate a new Row for m_curr_row, copy the current state into it
                                UnwindPlan::Row *newrow = new UnwindPlan::Row;
                                *newrow = *m_curr_row.get();
                                m_curr_row.reset(newrow);
                            }
                        }
                    }
                }
            }
            // FIXME: The DisassemblerLLVMC has a reference cycle and won't go away if it has any active instructions.
            // I'll fix that but for now, just clear the list and it will go away nicely.
            disasm_sp->GetInstructionList().Clear();
        }
        
        if (log && log->GetVerbose ())
        {
            StreamString strm;
            lldb::addr_t base_addr = range.GetBaseAddress().GetLoadAddress(thread.CalculateTarget().get());
            strm.Printf ("Resulting unwind rows for [0x%" PRIx64 " - 0x%" PRIx64 "):", base_addr, base_addr + range.GetByteSize());
            unwind_plan.Dump(strm, &thread, base_addr);
            log->PutCString (strm.GetData());
        }
        return unwind_plan.GetRowCount() > 0;
    }
    return false;
}