Пример #1
0
  /** Build a coordinate transformation based on an origin and orthogonal basis vectors.
   * This can reduce the number of dimensions. For example:
   *
   * - The input position is X=(x,y,z)
   * - The origin is X0=(x0,y0,z0)
   * - The basis vectors are U and V (reducing from 3 to 2D)
   * - The output position u = (X-X0).U = X.U - X0.U = x*Ux + y*Uy + z*Uz + (X0.U)
   * - The output position v = (X-X0).V = X.V - X0.V = x*Vx + y*Vy + z*Vz + (X0.V)
   *
   * And this allows us to create the affine matrix:
   *
   * | Ux  Uy  Uz  X0.U | | x |   | u |
   * | Vx  Vy  Vz  X0.V | | y | = | v |
   * | 0   0   0    1   | | z |   | 1 |
   *                      | 1 |
   *
   * @param origin :: origin (in the inDimension), which corresponds to (0,0,...) in outD
   * @param axes :: a list of basis vectors. There must be outD vectors (one for each output dimension)
   *        and each vector must be of length inD (all coordinates in the input dimension).
   *        The vectors must be properly orthogonal: not coplanar or collinear. This is not checked!
   * @param scaling :: a vector of size outD of the scaling to perform in each of the
   *        OUTPUT dimensions.
   * @throw if inconsistent vector sizes are received, or zero-length
   */
  void CoordTransformAffine::buildOrthogonal(const Mantid::Kernel::VMD & origin, const std::vector< Mantid::Kernel::VMD> & axes,
      const Mantid::Kernel::VMD & scaling)
  {
    if (origin.size() != inD)
      throw std::runtime_error("CoordTransformAffine::buildOrthogonal(): the origin must be in the dimensions of the input workspace (length inD).");
    if (axes.size() != outD)
      throw std::runtime_error("CoordTransformAffine::buildOrthogonal(): you must give as many basis vectors as there are dimensions in the output workspace.");
    if (scaling.size() != outD)
      throw std::runtime_error("CoordTransformAffine::buildOrthogonal(): the size of the scaling vector must be the same as the number of dimensions in the output workspace.");

    // Start with identity
    affineMatrix.identityMatrix();

    for (size_t i=0; i<axes.size(); i++)
    {
      if (axes[i].length() == 0.0)
        throw std::runtime_error("CoordTransformAffine::buildOrthogonal(): one of the basis vector was of zero length.");
      if (axes[i].size() != inD)
        throw std::runtime_error("CoordTransformAffine::buildOrthogonal(): one of the basis vectors had the wrong number of dimensions (must be inD).");
      // Normalize each axis to unity
      VMD basis = axes[i];
      basis.normalize();
      // The row of the affine matrix = the unit vector
      for (size_t j=0; j<basis.size(); j++)
        affineMatrix[i][j] = basis[j] * scaling[i];

      // Now account for the translation
      coord_t transl = 0;
      for (size_t j=0; j<basis.size(); j++)
        transl += origin[j] * basis[j]; // dot product of origin * basis aka ( X0 . U )
      // The last column of the matrix = the translation movement
      affineMatrix[i][inD] = -transl * scaling[i];
    }

    // Copy into the raw matrix (for speed)
    copyRawMatrix();
  }
Пример #2
0
/** Obtain coordinates for a line plot through a MDWorkspace.
 * Cross the workspace from start to end points, recording the signal along the
 *lin at either bin boundaries, or halfway between bin boundaries (which is bin
 *centres if the line is dimension aligned). If recording halfway values then
 *omit points in masked bins.
 *
 * @param start :: coordinates of the start point of the line
 * @param end :: coordinates of the end point of the line
 * @param normalize :: how to normalize the signal
 * @returns :: LinePlot with x as the boundaries of the bins, relative
 * to start of the line, y set to the normalized signal for each bin with
 * Length = length(x) - 1 and e as the error vector for each bin.
 * @param bin_centres :: if true then record points halfway between bin
 *boundaries, otherwise record on bin boundaries
 */
IMDWorkspace::LinePlot MDHistoWorkspace::getLinePoints(
    const Mantid::Kernel::VMD &start, const Mantid::Kernel::VMD &end,
    Mantid::API::MDNormalization normalize, const bool bin_centres) const {
  LinePlot line;

  size_t nd = this->getNumDims();
  if (start.getNumDims() != nd)
    throw std::runtime_error("Start point must have the same number of "
                             "dimensions as the workspace.");
  if (end.getNumDims() != nd)
    throw std::runtime_error(
        "End point must have the same number of dimensions as the workspace.");

  // Unit-vector of the direction
  VMD dir = end - start;
  const auto length = dir.normalize();

// Vector with +1 where direction is positive, -1 where negative
#define sgn(x) ((x < 0) ? -1.0f : ((x > 0.) ? 1.0f : 0.0f))
  VMD dirSign(nd);
  for (size_t d = 0; d < nd; d++) {
    dirSign[d] = sgn(dir[d]);
  }
  const size_t BADINDEX = size_t(-1);

  // Dimensions of the workspace
  boost::scoped_array<size_t> index(new size_t[nd]);
  boost::scoped_array<size_t> numBins(new size_t[nd]);
  for (size_t d = 0; d < nd; d++) {
    IMDDimension_const_sptr dim = this->getDimension(d);
    index[d] = BADINDEX;
    numBins[d] = dim->getNBins();
  }

  const std::set<coord_t> boundaries =
      getBinBoundariesOnLine(start, end, nd, dir, length);

  if (boundaries.empty()) {
    this->makeSinglePointWithNaN(line.x, line.y, line.e);

    // Require x.size() = y.size()+1 if recording bin boundaries
    if (!bin_centres)
      line.x.push_back(length);

    return line;
  } else {
    // Get the first point
    std::set<coord_t>::iterator it;
    it = boundaries.cbegin();

    coord_t lastLinePos = *it;
    VMD lastPos = start + (dir * lastLinePos);
    if (!bin_centres) {
      line.x.push_back(lastLinePos);
    }

    ++it;
    coord_t linePos = 0;
    for (; it != boundaries.cend(); ++it) {
      // This is our current position along the line
      linePos = *it;

      // This is the full position at this boundary
      VMD pos = start + (dir * linePos);

      // Position in the middle of the bin
      VMD middle = (pos + lastPos) * 0.5;

      // Find the signal in this bin
      const auto linearIndex =
          this->getLinearIndexAtCoord(middle.getBareArray());

      if (bin_centres && !this->getIsMaskedAt(linearIndex)) {
        coord_t bin_centrePos =
            static_cast<coord_t>((linePos + lastLinePos) * 0.5);
        line.x.push_back(bin_centrePos);
      } else if (!bin_centres)
        line.x.push_back(linePos);

      if (linearIndex < m_length) {

        auto normalizer = getNormalizationFactor(normalize, linearIndex);
        // And add the normalized signal/error to the list too
        auto signal = this->getSignalAt(linearIndex) * normalizer;
        if (boost::math::isinf(signal)) {
          // The plotting library (qwt) doesn't like infs.
          signal = std::numeric_limits<signal_t>::quiet_NaN();
        }
        if (!bin_centres || !this->getIsMaskedAt(linearIndex)) {
          line.y.push_back(signal);
          line.e.push_back(this->getErrorAt(linearIndex) * normalizer);
        }
        // Save the position for next bin
        lastPos = pos;
      } else {
        // Invalid index. This shouldn't happen
        line.y.push_back(std::numeric_limits<signal_t>::quiet_NaN());
        line.e.push_back(std::numeric_limits<signal_t>::quiet_NaN());
      }

      lastLinePos = linePos;

    } // for each unique boundary

    // If all bins were masked
    if (line.x.size() == 0) {
      this->makeSinglePointWithNaN(line.x, line.y, line.e);
    }
  }
  return line;
}