bool ShaderManagerVulkan::LoadCache(FILE *f) { VulkanCacheHeader header{}; bool success = fread(&header, sizeof(header), 1, f) == 1; if (!success || header.magic != CACHE_HEADER_MAGIC) return false; if (header.version != CACHE_VERSION) return false; if (header.featureFlags != gstate_c.featureFlags) return false; for (int i = 0; i < header.numVertexShaders; i++) { VShaderID id; if (fread(&id, sizeof(id), 1, f) != 1) { ERROR_LOG(G3D, "Vulkan shader cache truncated"); break; } bool useHWTransform = id.Bit(VS_BIT_USE_HW_TRANSFORM); GenerateVulkanGLSLVertexShader(id, codeBuffer_); VulkanVertexShader *vs = new VulkanVertexShader(vulkan_, id, codeBuffer_, useHWTransform); vsCache_.Insert(id, vs); } for (int i = 0; i < header.numFragmentShaders; i++) { FShaderID id; if (fread(&id, sizeof(id), 1, f) != 1) { ERROR_LOG(G3D, "Vulkan shader cache truncated"); break; } GenerateVulkanGLSLFragmentShader(id, codeBuffer_); VulkanFragmentShader *fs = new VulkanFragmentShader(vulkan_, id, codeBuffer_); fsCache_.Insert(id, fs); } NOTICE_LOG(G3D, "Loaded %d vertex and %d fragment shaders", header.numVertexShaders, header.numFragmentShaders); return true; }
void ShaderManagerVulkan::GetShaders(int prim, u32 vertType, VulkanVertexShader **vshader, VulkanFragmentShader **fshader, bool useHWTransform) { VShaderID VSID; if (gstate_c.IsDirty(DIRTY_VERTEXSHADER_STATE)) { gstate_c.Clean(DIRTY_VERTEXSHADER_STATE); ComputeVertexShaderID(&VSID, vertType, useHWTransform); } else { VSID = lastVSID_; } FShaderID FSID; if (gstate_c.IsDirty(DIRTY_FRAGMENTSHADER_STATE)) { gstate_c.Clean(DIRTY_FRAGMENTSHADER_STATE); ComputeFragmentShaderID(&FSID); } else { FSID = lastFSID_; } _dbg_assert_(G3D, FSID.Bit(FS_BIT_LMODE) == VSID.Bit(VS_BIT_LMODE)); _dbg_assert_(G3D, FSID.Bit(FS_BIT_DO_TEXTURE) == VSID.Bit(VS_BIT_DO_TEXTURE)); _dbg_assert_(G3D, FSID.Bit(FS_BIT_ENABLE_FOG) == VSID.Bit(VS_BIT_ENABLE_FOG)); _dbg_assert_(G3D, FSID.Bit(FS_BIT_FLATSHADE) == VSID.Bit(VS_BIT_FLATSHADE)); // Just update uniforms if this is the same shader as last time. if (lastVShader_ != nullptr && lastFShader_ != nullptr && VSID == lastVSID_ && FSID == lastFSID_) { *vshader = lastVShader_; *fshader = lastFShader_; _dbg_assert_msg_(G3D, (*vshader)->UseHWTransform() == useHWTransform, "Bad vshader was cached"); // Already all set, no need to look up in shader maps. return; } VulkanVertexShader *vs = vsCache_.Get(VSID); if (!vs) { // Vertex shader not in cache. Let's compile it. bool usesLighting; GenerateVulkanGLSLVertexShader(VSID, codeBuffer_, &usesLighting); vs = new VulkanVertexShader(vulkan_, VSID, codeBuffer_, vertType, useHWTransform, usesLighting); vsCache_.Insert(VSID, vs); } lastVSID_ = VSID; VulkanFragmentShader *fs = fsCache_.Get(FSID); if (!fs) { // Fragment shader not in cache. Let's compile it. GenerateVulkanGLSLFragmentShader(FSID, codeBuffer_); fs = new VulkanFragmentShader(vulkan_, FSID, codeBuffer_, useHWTransform); fsCache_.Insert(FSID, fs); } lastFSID_ = FSID; lastVShader_ = vs; lastFShader_ = fs; *vshader = vs; *fshader = fs; _dbg_assert_msg_(G3D, (*vshader)->UseHWTransform() == useHWTransform, "Bad vshader was computed"); }
bool GenerateVulkanGLSLVertexShader(const VShaderID &id, char *buffer) { char *p = buffer; WRITE(p, "%s", vulkan_glsl_preamble); bool highpFog = false; bool highpTexcoord = false; bool isModeThrough = id.Bit(VS_BIT_IS_THROUGH); bool lmode = id.Bit(VS_BIT_LMODE); bool doTexture = id.Bit(VS_BIT_DO_TEXTURE); bool doTextureTransform = id.Bit(VS_BIT_DO_TEXTURE_TRANSFORM); GETexMapMode uvGenMode = static_cast<GETexMapMode>(id.Bits(VS_BIT_UVGEN_MODE, 2)); // this is only valid for some settings of uvGenMode GETexProjMapMode uvProjMode = static_cast<GETexProjMapMode>(id.Bits(VS_BIT_UVPROJ_MODE, 2)); bool doShadeMapping = uvGenMode == GE_TEXMAP_ENVIRONMENT_MAP; bool doFlatShading = id.Bit(VS_BIT_FLATSHADE); bool useHWTransform = id.Bit(VS_BIT_USE_HW_TRANSFORM); bool hasColor = id.Bit(VS_BIT_HAS_COLOR) || !useHWTransform; bool hasNormal = id.Bit(VS_BIT_HAS_NORMAL) && useHWTransform; bool hasTexcoord = id.Bit(VS_BIT_HAS_TEXCOORD) || !useHWTransform; bool enableFog = id.Bit(VS_BIT_ENABLE_FOG); bool flipNormal = id.Bit(VS_BIT_NORM_REVERSE); int ls0 = id.Bits(VS_BIT_LS0, 2); int ls1 = id.Bits(VS_BIT_LS1, 2); bool enableBones = id.Bit(VS_BIT_ENABLE_BONES); bool enableLighting = id.Bit(VS_BIT_LIGHTING_ENABLE); int matUpdate = id.Bits(VS_BIT_MATERIAL_UPDATE, 3); bool doBezier = id.Bit(VS_BIT_BEZIER); bool doSpline = id.Bit(VS_BIT_SPLINE); bool hasColorTess = id.Bit(VS_BIT_HAS_COLOR_TESS); bool hasTexcoordTess = id.Bit(VS_BIT_HAS_TEXCOORD_TESS); bool hasNormalTess = id.Bit(VS_BIT_HAS_NORMAL_TESS); bool flipNormalTess = id.Bit(VS_BIT_NORM_REVERSE_TESS); WRITE(p, "\n"); WRITE(p, "layout (std140, set = 0, binding = 3) uniform baseVars {\n%s} base;\n", ub_baseStr); if (enableLighting || doShadeMapping) WRITE(p, "layout (std140, set = 0, binding = 4) uniform lightVars {\n%s} light;\n", ub_vs_lightsStr); if (enableBones) WRITE(p, "layout (std140, set = 0, binding = 5) uniform boneVars {\n%s} bone;\n", ub_vs_bonesStr); const char *shading = doFlatShading ? "flat " : ""; DoLightComputation doLight[4] = { LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF }; if (useHWTransform) { int shadeLight0 = doShadeMapping ? ls0 : -1; int shadeLight1 = doShadeMapping ? ls1 : -1; for (int i = 0; i < 4; i++) { if (i == shadeLight0 || i == shadeLight1) doLight[i] = LIGHT_SHADE; if (id.Bit(VS_BIT_LIGHTING_ENABLE) && id.Bit(VS_BIT_LIGHT0_ENABLE + i)) doLight[i] = LIGHT_FULL; } } int numBoneWeights = 0; int boneWeightScale = id.Bits(VS_BIT_WEIGHT_FMTSCALE, 2); if (enableBones) { numBoneWeights = 1 + id.Bits(VS_BIT_BONES, 3); WRITE(p, "%s", boneWeightDecl[numBoneWeights]); } if (useHWTransform) WRITE(p, "layout (location = %d) in vec3 position;\n", (int)PspAttributeLocation::POSITION); else // we pass the fog coord in w WRITE(p, "layout (location = %d) in vec4 position;\n", (int)PspAttributeLocation::POSITION); if (useHWTransform && hasNormal) WRITE(p, "layout (location = %d) in vec3 normal;\n", (int)PspAttributeLocation::NORMAL); bool texcoordInVec3 = false; if (doTexture && hasTexcoord) { if (!useHWTransform && doTextureTransform && !isModeThrough) { WRITE(p, "layout (location = %d) in vec3 texcoord;\n", (int)PspAttributeLocation::TEXCOORD); texcoordInVec3 = true; } else WRITE(p, "layout (location = %d) in vec2 texcoord;\n", (int)PspAttributeLocation::TEXCOORD); } if (hasColor) { WRITE(p, "layout (location = %d) in vec4 color0;\n", (int)PspAttributeLocation::COLOR0); if (lmode && !useHWTransform) // only software transform supplies color1 as vertex data WRITE(p, "layout (location = %d) in vec3 color1;\n", (int)PspAttributeLocation::COLOR1); } WRITE(p, "layout (location = 1) %sout vec4 v_color0;\n", shading); if (lmode) { WRITE(p, "layout (location = 2) %sout vec3 v_color1;\n", shading); } if (doTexture) { WRITE(p, "layout (location = 0) out vec3 v_texcoord;\n"); } if (enableFog) { // See the fragment shader generator WRITE(p, "layout (location = 3) out float v_fogdepth;\n"); } // See comment above this function (GenerateVertexShader). if (!isModeThrough && gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { // Apply the projection and viewport to get the Z buffer value, floor to integer, undo the viewport and projection. WRITE(p, "\nvec4 depthRoundZVP(vec4 v) {\n"); WRITE(p, " float z = v.z / v.w;\n"); WRITE(p, " z = z * base.depthRange.x + base.depthRange.y;\n"); WRITE(p, " z = floor(z);\n"); WRITE(p, " z = (z - base.depthRange.z) * base.depthRange.w;\n"); WRITE(p, " return vec4(v.x, v.y, z * v.w, v.w);\n"); WRITE(p, "}\n\n"); } WRITE(p, "out gl_PerVertex { vec4 gl_Position; };\n"); if (doBezier || doSpline) { WRITE(p, "struct TessData {\n"); WRITE(p, " vec4 pos;\n"); WRITE(p, " vec4 uv;\n"); WRITE(p, " vec4 color;\n"); WRITE(p, "};\n"); WRITE(p, "layout (std430, set = 0, binding = 6) readonly buffer s_tess_data {\n"); WRITE(p, " TessData data[];\n"); WRITE(p, "} tess_data;\n"); WRITE(p, "layout (std430) struct TessWeight {\n"); WRITE(p, " vec4 basis;\n"); WRITE(p, " vec4 deriv;\n"); WRITE(p, "};\n"); WRITE(p, "layout (std430, set = 0, binding = 7) readonly buffer s_tess_weights_u {\n"); WRITE(p, " TessWeight data[];\n"); WRITE(p, "} tess_weights_u;\n"); WRITE(p, "layout (std430, set = 0, binding = 8) readonly buffer s_tess_weights_v {\n"); WRITE(p, " TessWeight data[];\n"); WRITE(p, "} tess_weights_v;\n"); for (int i = 2; i <= 4; i++) { // Define 3 types vec2, vec3, vec4 WRITE(p, "vec%d tess_sample(in vec%d points[16], mat4 weights) {\n", i, i); WRITE(p, " vec%d pos = vec%d(0.0);\n", i, i); for (int v = 0; v < 4; ++v) { for (int u = 0; u < 4; ++u) { WRITE(p, " pos += weights[%i][%i] * points[%i];\n", v, u, v * 4 + u); } } WRITE(p, " return pos;\n"); WRITE(p, "}\n"); } WRITE(p, "struct Tess {\n"); WRITE(p, " vec3 pos;\n"); if (doTexture) WRITE(p, " vec2 tex;\n"); WRITE(p, " vec4 col;\n"); if (hasNormalTess) WRITE(p, " vec3 nrm;\n"); WRITE(p, "};\n"); WRITE(p, "void tessellate(out Tess tess) {\n"); WRITE(p, " ivec2 point_pos = ivec2(position.z, normal.z)%s;\n", doBezier ? " * 3" : ""); WRITE(p, " ivec2 weight_idx = ivec2(position.xy);\n"); // Load 4x4 control points WRITE(p, " vec3 _pos[16];\n"); WRITE(p, " vec2 _tex[16];\n"); WRITE(p, " vec4 _col[16];\n"); WRITE(p, " int index;\n"); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { WRITE(p, " index = (%i + point_pos.y) * int(base.spline_counts) + (%i + point_pos.x);\n", i, j); WRITE(p, " _pos[%i] = tess_data.data[index].pos.xyz;\n", i * 4 + j); if (doTexture && hasTexcoordTess) WRITE(p, " _tex[%i] = tess_data.data[index].uv.xy;\n", i * 4 + j); if (hasColorTess) WRITE(p, " _col[%i] = tess_data.data[index].color;\n", i * 4 + j); } } // Basis polynomials as weight coefficients WRITE(p, " vec4 basis_u = tess_weights_u.data[weight_idx.x].basis;\n"); WRITE(p, " vec4 basis_v = tess_weights_v.data[weight_idx.y].basis;\n"); WRITE(p, " mat4 basis = outerProduct(basis_u, basis_v);\n"); // Tessellate WRITE(p, " tess.pos = tess_sample(_pos, basis);\n"); if (doTexture) { if (hasTexcoordTess) WRITE(p, " tess.tex = tess_sample(_tex, basis);\n"); else WRITE(p, " tess.tex = normal.xy;\n"); } if (hasColorTess) WRITE(p, " tess.col = tess_sample(_col, basis);\n"); else WRITE(p, " tess.col = base.matambientalpha;\n"); if (hasNormalTess) { // Derivatives as weight coefficients WRITE(p, " vec4 deriv_u = tess_weights_u.data[weight_idx.x].deriv;\n"); WRITE(p, " vec4 deriv_v = tess_weights_v.data[weight_idx.y].deriv;\n"); WRITE(p, " vec3 du = tess_sample(_pos, outerProduct(deriv_u, basis_v));\n"); WRITE(p, " vec3 dv = tess_sample(_pos, outerProduct(basis_u, deriv_v));\n"); WRITE(p, " tess.nrm = normalize(cross(du, dv));\n"); } WRITE(p, "}\n"); } WRITE(p, "void main() {\n"); if (!useHWTransform) { // Simple pass-through of vertex data to fragment shader if (doTexture) { if (texcoordInVec3) { WRITE(p, " v_texcoord = texcoord;\n"); } else { WRITE(p, " v_texcoord = vec3(texcoord, 1.0);\n"); } } if (hasColor) { WRITE(p, " v_color0 = color0;\n"); if (lmode) WRITE(p, " v_color1 = color1;\n"); } else { WRITE(p, " v_color0 = base.matambientalpha;\n"); if (lmode) WRITE(p, " v_color1 = vec3(0.0);\n"); } if (enableFog) { WRITE(p, " v_fogdepth = position.w;\n"); } if (isModeThrough) { WRITE(p, " vec4 outPos = base.proj_through_mtx * vec4(position.xyz, 1.0);\n"); } else { // The viewport is used in this case, so need to compensate for that. if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { WRITE(p, " vec4 outPos = depthRoundZVP(base.proj_mtx * vec4(position.xyz, 1.0));\n"); } else { WRITE(p, " vec4 outPos = base.proj_mtx * vec4(position.xyz, 1.0);\n"); } } } else { // Step 1: World Transform / Skinning if (!enableBones) { if (doBezier || doSpline) { // Hardware tessellation WRITE(p, " Tess tess;\n"); WRITE(p, " tessellate(tess);\n"); WRITE(p, " vec3 worldpos = vec4(tess.pos.xyz, 1.0) * base.world_mtx;\n"); if (hasNormalTess) { WRITE(p, " mediump vec3 worldnormal = normalize(vec4(%stess.nrm, 0.0) * base.world_mtx);\n", flipNormalTess ? "-" : ""); } else { WRITE(p, " mediump vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n"); } } else { // No skinning, just standard T&L. WRITE(p, " vec3 worldpos = vec4(position.xyz, 1.0) * base.world_mtx;\n"); if (hasNormal) WRITE(p, " mediump vec3 worldnormal = normalize(vec4(%snormal, 0.0) * base.world_mtx);\n", flipNormal ? "-" : ""); else WRITE(p, " mediump vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n"); } } else { static const char *rescale[4] = { "", " * 1.9921875", " * 1.999969482421875", "" }; // 2*127.5f/128.f, 2*32767.5f/32768.f, 1.0f}; const char *factor = rescale[boneWeightScale]; static const char * const boneWeightAttr[8] = { "w1.x", "w1.y", "w1.z", "w1.w", "w2.x", "w2.y", "w2.z", "w2.w", }; WRITE(p, " mat3x4 skinMatrix = w1.x * bone.m[0];\n"); if (numBoneWeights > 1) { for (int i = 1; i < numBoneWeights; i++) { WRITE(p, " skinMatrix += %s * bone.m[%i];\n", boneWeightAttr[i], i); } } WRITE(p, ";\n"); // Trying to simplify this results in bugs in LBP... WRITE(p, " vec3 skinnedpos = (vec4(position, 1.0) * skinMatrix) %s;\n", factor); WRITE(p, " vec3 worldpos = vec4(skinnedpos, 1.0) * base.world_mtx;\n"); if (hasNormal) { WRITE(p, " mediump vec3 skinnednormal = vec4(%snormal, 0.0) * skinMatrix %s;\n", flipNormal ? "-" : "", factor); } else { WRITE(p, " mediump vec3 skinnednormal = vec4(0.0, 0.0, %s1.0, 0.0) * skinMatrix %s;\n", flipNormal ? "-" : "", factor); } WRITE(p, " mediump vec3 worldnormal = normalize(vec4(skinnednormal, 0.0) * base.world_mtx);\n"); } WRITE(p, " vec4 viewPos = vec4(vec4(worldpos, 1.0) * base.view_mtx, 1.0);\n"); // Final view and projection transforms. if (gstate_c.Supports(GPU_ROUND_DEPTH_TO_16BIT)) { WRITE(p, " vec4 outPos = depthRoundZVP(base.proj_mtx * viewPos);\n"); } else { WRITE(p, " vec4 outPos = base.proj_mtx * viewPos;\n"); } // TODO: Declare variables for dots for shade mapping if needed. const char *ambientStr = ((matUpdate & 1) && hasColor) ? "color0" : "base.matambientalpha"; const char *diffuseStr = ((matUpdate & 2) && hasColor) ? "color0.rgb" : "light.matdiffuse"; const char *specularStr = ((matUpdate & 4) && hasColor) ? "color0.rgb" : "light.matspecular.rgb"; if (doBezier || doSpline) { // TODO: Probably, should use hasColorTess but FF4 has a problem with drawing the background. ambientStr = (matUpdate & 1) && hasColor ? "tess.col" : "base.matambientalpha"; diffuseStr = (matUpdate & 2) && hasColor ? "tess.col.rgb" : "light.matdiffuse"; specularStr = (matUpdate & 4) && hasColor ? "tess.col.rgb" : "light.matspecular.rgb"; } bool diffuseIsZero = true; bool specularIsZero = true; bool distanceNeeded = false; if (enableLighting) { WRITE(p, " vec4 lightSum0 = light.u_ambient * %s + vec4(light.matemissive, 0.0);\n", ambientStr); for (int i = 0; i < 4; i++) { GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (doLight[i] != LIGHT_FULL) continue; diffuseIsZero = false; if (comp == GE_LIGHTCOMP_BOTH) specularIsZero = false; if (type != GE_LIGHTTYPE_DIRECTIONAL) distanceNeeded = true; } if (!specularIsZero) { WRITE(p, " vec3 lightSum1 = vec3(0.0);\n"); } if (!diffuseIsZero) { WRITE(p, " vec3 toLight;\n"); WRITE(p, " vec3 diffuse;\n"); } if (distanceNeeded) { WRITE(p, " float distance;\n"); WRITE(p, " float lightScale;\n"); } } // Calculate lights if needed. If shade mapping is enabled, lights may need to be // at least partially calculated. for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_FULL) continue; GELightType type = static_cast<GELightType>(id.Bits(VS_BIT_LIGHT0_TYPE + 4 * i, 2)); GELightComputation comp = static_cast<GELightComputation>(id.Bits(VS_BIT_LIGHT0_COMP + 4 * i, 2)); if (type == GE_LIGHTTYPE_DIRECTIONAL) { // We prenormalize light positions for directional lights. WRITE(p, " toLight = light.pos[%i];\n", i); } else { WRITE(p, " toLight = light.pos[%i] - worldpos;\n", i); WRITE(p, " distance = length(toLight);\n"); WRITE(p, " toLight /= distance;\n"); } bool doSpecular = comp == GE_LIGHTCOMP_BOTH; bool poweredDiffuse = comp == GE_LIGHTCOMP_ONLYPOWDIFFUSE; WRITE(p, " mediump float dot%i = dot(toLight, worldnormal);\n", i); if (poweredDiffuse) { // pow(0.0, 0.0) may be undefined, but the PSP seems to treat it as 1.0. // Seen in Tales of the World: Radiant Mythology (#2424.) WRITE(p, " if (light.matspecular.a == 0.0) {\n"); WRITE(p, " dot%i = 1.0;\n", i); WRITE(p, " } else {\n"); WRITE(p, " dot%i = pow(max(dot%i, 0.0), light.matspecular.a);\n", i, i); WRITE(p, " }\n"); } const char *timesLightScale = " * lightScale"; // Attenuation switch (type) { case GE_LIGHTTYPE_DIRECTIONAL: timesLightScale = ""; break; case GE_LIGHTTYPE_POINT: WRITE(p, " lightScale = clamp(1.0 / dot(light.att[%i], vec3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i); break; case GE_LIGHTTYPE_SPOT: case GE_LIGHTTYPE_UNKNOWN: WRITE(p, " float angle%i = length(light.dir[%i]) == 0.0 ? 0.0 : dot(normalize(light.dir[%i]), toLight);\n", i, i, i); WRITE(p, " if (angle%i >= light.angle_spotCoef[%i].x) {\n", i, i); WRITE(p, " lightScale = clamp(1.0 / dot(light.att[%i], vec3(1.0, distance, distance*distance)), 0.0, 1.0) * (light.angle_spotCoef[%i].y == 0.0 ? 1.0 : pow(angle%i, light.angle_spotCoef[%i].y));\n", i, i, i, i); WRITE(p, " } else {\n"); WRITE(p, " lightScale = 0.0;\n"); WRITE(p, " }\n"); break; default: // ILLEGAL break; } WRITE(p, " diffuse = (light.diffuse[%i] * %s) * max(dot%i, 0.0);\n", i, diffuseStr, i); if (doSpecular) { WRITE(p, " if (dot%i >= 0.0) {\n", i); WRITE(p, " dot%i = dot(normalize(toLight + vec3(0.0, 0.0, 1.0)), worldnormal);\n", i); WRITE(p, " if (light.matspecular.a == 0.0) {\n"); WRITE(p, " dot%i = 1.0;\n", i); WRITE(p, " } else {\n"); WRITE(p, " dot%i = pow(max(dot%i, 0.0), light.matspecular.a);\n", i, i); WRITE(p, " }\n"); WRITE(p, " if (dot%i > 0.0)\n", i); WRITE(p, " lightSum1 += light.specular[%i] * %s * dot%i %s;\n", i, specularStr, i, timesLightScale); WRITE(p, " }\n"); } WRITE(p, " lightSum0.rgb += (light.ambient[%i] * %s.rgb + diffuse)%s;\n", i, ambientStr, timesLightScale); } if (enableLighting) { // Sum up ambient, emissive here. if (lmode) { WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); // v_color1 only exists when lmode = 1. if (specularIsZero) { WRITE(p, " v_color1 = vec3(0.0);\n"); } else { WRITE(p, " v_color1 = clamp(lightSum1, 0.0, 1.0);\n"); } } else { if (specularIsZero) { WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); } else { WRITE(p, " v_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + vec4(lightSum1, 0.0), 0.0, 1.0);\n"); } } } else { // Lighting doesn't affect color. if (hasColor) { if (doBezier || doSpline) WRITE(p, " v_color0 = tess.col;\n"); else WRITE(p, " v_color0 = color0;\n"); } else { WRITE(p, " v_color0 = base.matambientalpha;\n"); } if (lmode) { WRITE(p, " v_color1 = vec3(0.0);\n"); } } bool scaleUV = !isModeThrough && (uvGenMode == GE_TEXMAP_TEXTURE_COORDS || uvGenMode == GE_TEXMAP_UNKNOWN); // Step 3: UV generation if (doTexture) { switch (uvGenMode) { case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy. case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works. if (scaleUV) { if (hasTexcoord) { if (doBezier || doSpline) WRITE(p, " v_texcoord = vec3(tess.tex.xy * base.uvscaleoffset.xy + base.uvscaleoffset.zw, 0.0);\n"); else WRITE(p, " v_texcoord = vec3(texcoord.xy * base.uvscaleoffset.xy, 0.0);\n"); } else { WRITE(p, " v_texcoord = vec3(0.0);\n"); } } else { if (hasTexcoord) { WRITE(p, " v_texcoord = vec3(texcoord.xy * base.uvscaleoffset.xy + base.uvscaleoffset.zw, 0.0);\n"); } else { WRITE(p, " v_texcoord = vec3(base.uvscaleoffset.zw, 0.0);\n"); } } break; case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping. { std::string temp_tc; switch (uvProjMode) { case GE_PROJMAP_POSITION: // Use model space XYZ as source temp_tc = "vec4(position.xyz, 1.0)"; break; case GE_PROJMAP_UV: // Use unscaled UV as source { // scaleUV is false here. if (hasTexcoord) { temp_tc = "vec4(texcoord.xy, 0.0, 1.0)"; } else { temp_tc = "vec4(0.0, 0.0, 0.0, 1.0)"; } } break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "vec4(normalize(-normal), 1.0)" : "vec4(normalize(normal), 1.0)"; else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "vec4(-normal, 1.0)" : "vec4(normal, 1.0)"; else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; } // Transform by texture matrix. XYZ as we are doing projection mapping. WRITE(p, " v_texcoord = (%s * base.tex_mtx).xyz * vec3(base.uvscaleoffset.xy, 1.0);\n", temp_tc.c_str()); } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources. { std::string lightFactor0 = StringFromFormat("(length(light.pos[%i]) == 0.0 ? worldnormal.z : dot(normalize(light.pos[%i]), worldnormal))", ls0, ls0); std::string lightFactor1 = StringFromFormat("(length(light.pos[%i]) == 0.0 ? worldnormal.z : dot(normalize(light.pos[%i]), worldnormal))", ls1, ls1); WRITE(p, " v_texcoord = vec3(base.uvscaleoffset.xy * vec2(1.0 + %s, 1.0 + %s) * 0.5, 1.0);\n", lightFactor0.c_str(), lightFactor1.c_str()); } break; default: // ILLEGAL break; } } // Compute fogdepth if (enableFog) WRITE(p, " v_fogdepth = (viewPos.z + base.fogcoef.x) * base.fogcoef.y;\n"); } if (!isModeThrough && gstate_c.Supports(GPU_SUPPORTS_VS_RANGE_CULLING)) { WRITE(p, " vec3 projPos = outPos.xyz / outPos.w;\n"); // Vertex range culling doesn't happen when depth is clamped, so only do this if in range. WRITE(p, " if (base.cullRangeMin.w <= 0.0 || (projPos.z >= base.cullRangeMin.z && projPos.z <= base.cullRangeMax.z)) {\n"); const char *outMin = "projPos.x < base.cullRangeMin.x || projPos.y < base.cullRangeMin.y || projPos.z < base.cullRangeMin.z"; const char *outMax = "projPos.x > base.cullRangeMax.x || projPos.y > base.cullRangeMax.y || projPos.z > base.cullRangeMax.z"; WRITE(p, " if (%s || %s) {\n", outMin, outMax); WRITE(p, " outPos.w = base.cullRangeMax.w;\n"); WRITE(p, " }\n"); WRITE(p, " }\n"); } WRITE(p, " gl_Position = outPos;\n"); WRITE(p, "}\n"); return true; }