bool LinearTermTests::testLinearTermEvaluation() { bool success = true; double eps = .1; FunctionPtr one = Function::constant(1.0); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define a couple LinearTerms LinearTermPtr vVecLT = Teuchos::rcp(new LinearTerm); LinearTermPtr tauVecLT = Teuchos::rcp(new LinearTerm); vVecLT->addTerm(sqrt(eps)*v->grad()); tauVecLT->addTerm((1/sqrt(eps))*tau); //////////////////// evaluate LinearTerms ///////////////// map<int,FunctionPtr> errRepMap; errRepMap[v->ID()] = one; errRepMap[tau->ID()] = one*e1+one*e2; // vector valued fxn (1,1) FunctionPtr errTau = tauVecLT->evaluate(errRepMap,false); FunctionPtr errV = vVecLT->evaluate(errRepMap,false); try { bool xTauZero = errTau->x()->isZero(); bool yTauZero = errTau->y()->isZero(); bool xVZero = errV->dx()->isZero(); bool yVZero = errV->dy()->isZero(); } catch (...) { cout << "testLinearTermEvaluation: Caught exception.\n"; success = false; } /* FunctionPtr xErr = (errTau->x())*(errTau->x()) + (errV->dx())*(errV->dx()); FunctionPtr yErr = (errTau->y())*(errTau->y()) + (errV->dy())*(errV->dy()); double xErrVal = xErr->integrate(mesh,15,true); */ // if we don't crash, return success return success; }
void PoissonExactSolution::setUseSinglePointBCForPHI(bool useSinglePointBCForPhi, IndexType vertexIndexForZeroValue) { FunctionPtr phi_exact = phi(); VarFactoryPtr vf = _bf->varFactory(); VarPtr psi_hat_n = vf->fluxVar(PoissonBilinearForm::S_PSI_HAT_N); VarPtr q = vf->testVar(PoissonBilinearForm::S_Q, HGRAD); VarPtr phi = vf->fieldVar(PoissonBilinearForm::S_PHI); SpatialFilterPtr wholeBoundary = SpatialFilter::allSpace(); FunctionPtr n = Function::normal(); FunctionPtr psi_n_exact = phi_exact->grad() * n; _bc = BC::bc(); _bc->addDirichlet(psi_hat_n, wholeBoundary, psi_n_exact); if (!useSinglePointBCForPhi) { _bc->addZeroMeanConstraint(phi); } else { std::vector<double> point = getPointForBCImposition(); double value = Function::evaluate(phi_exact, point[0], point[1]); // cout << "PoissonExactSolution: imposing phi = " << value << " at (" << point[0] << ", " << point[1] << ")\n"; _bc->addSpatialPointBC(phi->ID(), value, point); } }
void writePatchValues(double xMin, double xMax, double yMin, double yMax, SolutionPtr solution, VarPtr u1, string filename, int numPoints=100) { FieldContainer<double> points = pointGrid(xMin,xMax,yMin,yMax,numPoints); FieldContainer<double> values(numPoints*numPoints); solution->solutionValues(values, u1->ID(), points); ofstream fout(filename.c_str()); fout << setprecision(15); fout << "X = zeros(" << numPoints << ",1);\n"; // fout << "Y = zeros(numPoints);\n"; fout << "U = zeros(" << numPoints << "," << numPoints << ");\n"; for (int i=0; i<numPoints; i++) { fout << "X(" << i+1 << ")=" << points(i,0) << ";\n"; } for (int i=0; i<numPoints; i++) { fout << "Y(" << i+1 << ")=" << points(i,1) << ";\n"; } for (int i=0; i<numPoints; i++) { for (int j=0; j<numPoints; j++) { int pointIndex = i*numPoints + j; fout << "U("<<i+1<<","<<j+1<<")=" << values(pointIndex) << ";" << endl; } } fout.close(); }
map<int, FunctionPtr > PreviousSolutionFunction::functionMap( vector< VarPtr > varPtrs, SolutionPtr soln) { map<int, FunctionPtr > functionMap; for (vector< VarPtr >::iterator varIt = varPtrs.begin(); varIt != varPtrs.end(); varIt++) { VarPtr var = *varIt; functionMap[var->ID()] = Teuchos::rcp( new PreviousSolutionFunction(soln, var)); } return functionMap; }
double integralOverMesh(LinearTermPtr testTerm, VarPtr testVar, FunctionPtr fxnToSubstitute) { map<int, FunctionPtr > varAsFunction; varAsFunction[testVar->ID()] = fxnToSubstitute; FunctionPtr substituteOnBoundary = testTerm->evaluate(varAsFunction, true); FunctionPtr substituteOnInterior = testTerm->evaluate(varAsFunction, false); double integral = substituteOnBoundary->integrate(mesh); integral += substituteOnInterior->integrate(mesh); return integral; }
FieldContainer<double> solutionData(FieldContainer<double> &points, SolutionPtr solution, VarPtr u1) { int numPoints = points.dimension(0); FieldContainer<double> values(numPoints); solution->solutionValues(values, u1->ID(), points); FieldContainer<double> xyzData(numPoints, 3); for (int ptIndex=0; ptIndex<numPoints; ptIndex++) { xyzData(ptIndex,0) = points(ptIndex,0); xyzData(ptIndex,1) = points(ptIndex,1); xyzData(ptIndex,2) = values(ptIndex); } return xyzData; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); choice::MpiArgs args( argc, argv ); #else choice::Args args( argc, argv ); #endif int rank = Teuchos::GlobalMPISession::getRank(); int numProcs = Teuchos::GlobalMPISession::getNProc(); int nCells = args.Input<int>("--nCells", "num cells",2); int numSteps = args.Input<int>("--numSteps", "num NR steps",20); int polyOrder = 0; // define our manufactured solution or problem bilinear form: bool useTriangles = false; int pToAdd = 1; args.Process(); int H1Order = polyOrder + 1; //////////////////////////////////////////////////////////////////// // DEFINE VARIABLES //////////////////////////////////////////////////////////////////// // new-style bilinear form definition VarFactory varFactory; VarPtr fn = varFactory.fluxVar("\\widehat{\\beta_n_u}"); VarPtr u = varFactory.fieldVar("u"); VarPtr v = varFactory.testVar("v",HGRAD); BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // initialize bilinear form //////////////////////////////////////////////////////////////////// // CREATE MESH //////////////////////////////////////////////////////////////////// // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells , bf, H1Order, H1Order+pToAdd); //////////////////////////////////////////////////////////////////// // INITIALIZE BACKGROUND FLOW FUNCTIONS //////////////////////////////////////////////////////////////////// BCPtr nullBC = Teuchos::rcp((BC*)NULL); RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL); IPPtr nullIP = Teuchos::rcp((IP*)NULL); SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); SolutionPtr solnPerturbation = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); vector<double> e1(2),e2(2); e1[0] = 1; e2[1] = 1; FunctionPtr u_prev = Teuchos::rcp( new PreviousSolutionFunction(backgroundFlow, u) ); FunctionPtr beta = e1 * u_prev + Teuchos::rcp( new ConstantVectorFunction( e2 ) ); //////////////////////////////////////////////////////////////////// // DEFINE BILINEAR FORM //////////////////////////////////////////////////////////////////// // v: bf->addTerm( -u, beta * v->grad()); bf->addTerm( fn, v); //////////////////////////////////////////////////////////////////// // DEFINE RHS //////////////////////////////////////////////////////////////////// Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); FunctionPtr u_prev_squared_div2 = 0.5 * u_prev * u_prev; rhs->addTerm((e1 * u_prev_squared_div2 + e2 * u_prev) * v->grad()); // ==================== SET INITIAL GUESS ========================== mesh->registerSolution(backgroundFlow); FunctionPtr zero = Function::constant(0.0); FunctionPtr u0 = Teuchos::rcp( new U0 ); FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); // FunctionPtr parity = Teuchos::rcp(new SideParityFunction); FunctionPtr u0_squared_div_2 = 0.5 * u0 * u0; map<int, Teuchos::RCP<Function> > functionMap; functionMap[u->ID()] = u0; // functionMap[fn->ID()] = -(e1 * u0_squared_div_2 + e2 * u0) * n * parity; backgroundFlow->projectOntoMesh(functionMap); // ==================== END SET INITIAL GUESS ========================== //////////////////////////////////////////////////////////////////// // DEFINE INNER PRODUCT //////////////////////////////////////////////////////////////////// IPPtr ip = Teuchos::rcp( new IP ); ip->addTerm( v ); ip->addTerm(v->grad()); // ip->addTerm( beta * v->grad() ); // omitting term to make IP non-dependent on u //////////////////////////////////////////////////////////////////// // DEFINE DIRICHLET BC //////////////////////////////////////////////////////////////////// SpatialFilterPtr outflowBoundary = Teuchos::rcp( new TopBoundary); SpatialFilterPtr inflowBoundary = Teuchos::rcp( new NegatedSpatialFilter(outflowBoundary) ); Teuchos::RCP<BCEasy> inflowBC = Teuchos::rcp( new BCEasy ); inflowBC->addDirichlet(fn,inflowBoundary, ( e1 * u0_squared_div_2 + e2 * u0) * n ); //////////////////////////////////////////////////////////////////// // CREATE SOLUTION OBJECT //////////////////////////////////////////////////////////////////// Teuchos::RCP<Solution> solution = Teuchos::rcp(new Solution(mesh, inflowBC, rhs, ip)); mesh->registerSolution(solution); solution->setCubatureEnrichmentDegree(10); //////////////////////////////////////////////////////////////////// // HESSIAN BIT + CHECKS ON GRADIENT + HESSIAN //////////////////////////////////////////////////////////////////// VarFactory hessianVars = varFactory.getBubnovFactory(VarFactory::BUBNOV_TRIAL); VarPtr du = hessianVars.test(u->ID()); // BFPtr hessianBF = Teuchos::rcp( new BF(hessianVars) ); // initialize bilinear form FunctionPtr du_current = Teuchos::rcp( new PreviousSolutionFunction(solution, u) ); FunctionPtr fnhat = Teuchos::rcp(new PreviousSolutionFunction(solution,fn)); LinearTermPtr residual = Teuchos::rcp(new LinearTerm);// residual residual->addTerm(fnhat*v,true); residual->addTerm( - (e1 * (u_prev_squared_div2) + e2 * (u_prev)) * v->grad(),true); LinearTermPtr Bdu = Teuchos::rcp(new LinearTerm);// residual Bdu->addTerm( - du_current*(beta*v->grad())); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ip, residual)); Teuchos::RCP<RieszRep> duRiesz = Teuchos::rcp(new RieszRep(mesh, ip, Bdu)); riesz->computeRieszRep(); FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,riesz)); e_v->writeValuesToMATLABFile(mesh, "e_v.m"); FunctionPtr posErrPart = Teuchos::rcp(new PositivePart(e_v->dx())); // hessianBF->addTerm(e_v->dx()*u,du); // hessianBF->addTerm(posErrPart*u,du); // Teuchos::RCP<NullFilter> nullFilter = Teuchos::rcp(new NullFilter); // Teuchos::RCP<HessianFilter> hessianFilter = Teuchos::rcp(new HessianFilter(hessianBF)); Teuchos::RCP< LineSearchStep > LS_Step = Teuchos::rcp(new LineSearchStep(riesz)); double NL_residual = 9e99; for (int i = 0;i<numSteps;i++){ // write matrix to file and then resollve without hessian /* solution->setFilter(hessianFilter); stringstream oss; oss << "hessianMatrix" << i << ".dat"; solution->setWriteMatrixToFile(true,oss.str()); solution->solve(false); solution->setFilter(nullFilter); oss.str(""); // clear oss << "stiffnessMatrix" << i << ".dat"; solution->setWriteMatrixToFile(false,oss.str()); */ solution->solve(false); // do one solve to initialize things... double stepLength = 1.0; stepLength = LS_Step->stepSize(backgroundFlow,solution, NL_residual); // solution->setWriteMatrixToFile(true,"stiffness.dat"); backgroundFlow->addSolution(solution,stepLength); NL_residual = LS_Step->getNLResidual(); if (rank==0){ cout << "NL residual after adding = " << NL_residual << " with step size " << stepLength << endl; } double fd_gradient; for (int dofIndex = 0;dofIndex<mesh->numGlobalDofs();dofIndex++){ TestingUtilities::initializeSolnCoeffs(solnPerturbation); TestingUtilities::setSolnCoeffForGlobalDofIndex(solnPerturbation,1.0,dofIndex); fd_gradient = FiniteDifferenceUtilities::finiteDifferenceGradient(mesh, riesz, backgroundFlow, dofIndex); // CHECK GRADIENT LinearTermPtr b_u = bf->testFunctional(solnPerturbation); map<int,FunctionPtr> NL_err_rep_map; NL_err_rep_map[v->ID()] = Teuchos::rcp(new RepFunction(v,riesz)); FunctionPtr gradient = b_u->evaluate(NL_err_rep_map, TestingUtilities::isFluxOrTraceDof(mesh,dofIndex)); // use boundary part only if flux or trace double grad; if (TestingUtilities::isFluxOrTraceDof(mesh,dofIndex)){ grad = gradient->integralOfJump(mesh,10); }else{ grad = gradient->integrate(mesh,10); } double fdgrad = fd_gradient; double diff = grad-fdgrad; if (abs(diff)>1e-6 && i>0){ cout << "Found difference of " << diff << ", " << " with fd val = " << fdgrad << " and gradient = " << grad << " in dof " << dofIndex << ", isTraceDof = " << TestingUtilities::isFluxOrTraceDof(mesh,dofIndex) << endl; } } } VTKExporter exporter(solution, mesh, varFactory); if (rank==0){ exporter.exportSolution("qopt"); cout << endl; } return 0; }
int main(int argc, char *argv[]) { int rank = 0; #ifdef HAVE_MPI // TODO: figure out the right thing to do here... // may want to modify argc and argv before we make the following call: Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); rank=mpiSession.getRank(); #else #endif bool useLineSearch = false; int pToAdd = 2; // for optimal test function approximation int pToAddForStreamFunction = 2; double nonlinearStepSize = 1.0; double dt = 0.5; double nonlinearRelativeEnergyTolerance = 0.015; // used to determine convergence of the nonlinear solution // double nonlinearRelativeEnergyTolerance = 0.15; // used to determine convergence of the nonlinear solution double eps = 1.0/64.0; // width of ramp up to 1.0 for top BC; eps == 0 ==> soln not in H1 // epsilon above is chosen to match our initial 16x16 mesh, to avoid quadrature errors. // double eps = 0.0; // John Evans's problem: not in H^1 bool enforceLocalConservation = false; bool enforceOneIrregularity = true; bool reportPerCellErrors = true; bool useMumps = true; int horizontalCells, verticalCells; int maxIters = 50; // for nonlinear steps vector<double> ReValues; // usage: polyOrder [numRefinements] // parse args: if (argc < 6) { cout << "Usage: NavierStokesCavityFlowContinuationFixedMesh fieldPolyOrder hCells vCells energyErrorGoal Re0 [Re1 ...]\n"; return -1; } int polyOrder = atoi(argv[1]); horizontalCells = atoi(argv[2]); verticalCells = atoi(argv[3]); double energyErrorGoal = atof(argv[4]); for (int i=5; i<argc; i++) { ReValues.push_back(atof(argv[i])); } if (rank == 0) { cout << "L^2 order: " << polyOrder << endl; cout << "initial mesh size: " << horizontalCells << " x " << verticalCells << endl; cout << "energy error goal: " << energyErrorGoal << endl; cout << "Reynolds number values for continuation:\n"; for (int i=0; i<ReValues.size(); i++) { cout << ReValues[i] << ", "; } cout << endl; } FieldContainer<double> quadPoints(4,2); quadPoints(0,0) = 0.0; // x1 quadPoints(0,1) = 0.0; // y1 quadPoints(1,0) = 1.0; quadPoints(1,1) = 0.0; quadPoints(2,0) = 1.0; quadPoints(2,1) = 1.0; quadPoints(3,0) = 0.0; quadPoints(3,1) = 1.0; // define meshes: int H1Order = polyOrder + 1; bool useTriangles = false; bool meshHasTriangles = useTriangles; double minL2Increment = 1e-8; // get variable definitions: VarFactory varFactory = VGPStokesFormulation::vgpVarFactory(); u1 = varFactory.fieldVar(VGP_U1_S); u2 = varFactory.fieldVar(VGP_U2_S); sigma11 = varFactory.fieldVar(VGP_SIGMA11_S); sigma12 = varFactory.fieldVar(VGP_SIGMA12_S); sigma21 = varFactory.fieldVar(VGP_SIGMA21_S); sigma22 = varFactory.fieldVar(VGP_SIGMA22_S); p = varFactory.fieldVar(VGP_P_S); u1hat = varFactory.traceVar(VGP_U1HAT_S); u2hat = varFactory.traceVar(VGP_U2HAT_S); t1n = varFactory.fluxVar(VGP_T1HAT_S); t2n = varFactory.fluxVar(VGP_T2HAT_S); v1 = varFactory.testVar(VGP_V1_S, HGRAD); v2 = varFactory.testVar(VGP_V2_S, HGRAD); tau1 = varFactory.testVar(VGP_TAU1_S, HDIV); tau2 = varFactory.testVar(VGP_TAU2_S, HDIV); q = varFactory.testVar(VGP_Q_S, HGRAD); FunctionPtr u1_0 = Teuchos::rcp( new U1_0(eps) ); FunctionPtr u2_0 = Teuchos::rcp( new U2_0 ); FunctionPtr zero = Function::zero(); ParameterFunctionPtr Re_param = ParameterFunction::parameterFunction(1); VGPNavierStokesProblem problem = VGPNavierStokesProblem(Re_param,quadPoints, horizontalCells,verticalCells, H1Order, pToAdd, u1_0, u2_0, // BC for u zero, zero); // zero forcing function SolutionPtr solution = problem.backgroundFlow(); SolutionPtr solnIncrement = problem.solutionIncrement(); Teuchos::RCP<Mesh> mesh = problem.mesh(); mesh->registerSolution(solution); mesh->registerSolution(solnIncrement); /////////////////////////////////////////////////////////////////////////// // define bilinear form for stream function: VarFactory streamVarFactory; VarPtr phi_hat = streamVarFactory.traceVar("\\widehat{\\phi}"); VarPtr psin_hat = streamVarFactory.fluxVar("\\widehat{\\psi}_n"); VarPtr psi_1 = streamVarFactory.fieldVar("\\psi_1"); VarPtr psi_2 = streamVarFactory.fieldVar("\\psi_2"); VarPtr phi = streamVarFactory.fieldVar("\\phi"); VarPtr q_s = streamVarFactory.testVar("q_s", HGRAD); VarPtr v_s = streamVarFactory.testVar("v_s", HDIV); BFPtr streamBF = Teuchos::rcp( new BF(streamVarFactory) ); streamBF->addTerm(psi_1, q_s->dx()); streamBF->addTerm(psi_2, q_s->dy()); streamBF->addTerm(-psin_hat, q_s); streamBF->addTerm(psi_1, v_s->x()); streamBF->addTerm(psi_2, v_s->y()); streamBF->addTerm(phi, v_s->div()); streamBF->addTerm(-phi_hat, v_s->dot_normal()); Teuchos::RCP<Mesh> streamMesh, overkillMesh; streamMesh = MeshFactory::buildQuadMesh(quadPoints, horizontalCells, verticalCells, streamBF, H1Order+pToAddForStreamFunction, H1Order+pToAdd+pToAddForStreamFunction, useTriangles); mesh->registerObserver(streamMesh); // will refine streamMesh in the same way as mesh. map<int, double> dofsToL2error; // key: numGlobalDofs, value: total L2error compared with overkill vector< VarPtr > fields; fields.push_back(u1); fields.push_back(u2); fields.push_back(sigma11); fields.push_back(sigma12); fields.push_back(sigma21); fields.push_back(sigma22); fields.push_back(p); if (rank == 0) { cout << "Starting mesh has " << horizontalCells << " x " << verticalCells << " elements and "; cout << mesh->numGlobalDofs() << " total dofs.\n"; cout << "polyOrder = " << polyOrder << endl; cout << "pToAdd = " << pToAdd << endl; cout << "eps for top BC = " << eps << endl; if (useTriangles) { cout << "Using triangles.\n"; } if (enforceLocalConservation) { cout << "Enforcing local conservation.\n"; } else { cout << "NOT enforcing local conservation.\n"; } if (enforceOneIrregularity) { cout << "Enforcing 1-irregularity.\n"; } else { cout << "NOT enforcing 1-irregularity.\n"; } } //////////////////// CREATE BCs /////////////////////// SpatialFilterPtr entireBoundary = Teuchos::rcp( new SpatialFilterUnfiltered ); FunctionPtr u1_prev = Function::solution(u1,solution); FunctionPtr u2_prev = Function::solution(u2,solution); FunctionPtr u1hat_prev = Function::solution(u1hat,solution); FunctionPtr u2hat_prev = Function::solution(u2hat,solution); //////////////////// SOLVE & REFINE /////////////////////// FunctionPtr vorticity = Teuchos::rcp( new PreviousSolutionFunction(solution, - u1->dy() + u2->dx() ) ); // FunctionPtr vorticity = Teuchos::rcp( new PreviousSolutionFunction(solution,sigma12 - sigma21) ); RHSPtr streamRHS = RHS::rhs(); streamRHS->addTerm(vorticity * q_s); ((PreviousSolutionFunction*) vorticity.get())->setOverrideMeshCheck(true); ((PreviousSolutionFunction*) u1_prev.get())->setOverrideMeshCheck(true); ((PreviousSolutionFunction*) u2_prev.get())->setOverrideMeshCheck(true); BCPtr streamBC = BC::bc(); // streamBC->addDirichlet(psin_hat, entireBoundary, u0_cross_n); streamBC->addDirichlet(phi_hat, entireBoundary, zero); // streamBC->addZeroMeanConstraint(phi); IPPtr streamIP = Teuchos::rcp( new IP ); streamIP->addTerm(q_s); streamIP->addTerm(q_s->grad()); streamIP->addTerm(v_s); streamIP->addTerm(v_s->div()); SolutionPtr streamSolution = Teuchos::rcp( new Solution( streamMesh, streamBC, streamRHS, streamIP ) ); if (enforceLocalConservation) { FunctionPtr zero = Function::zero(); solution->lagrangeConstraints()->addConstraint(u1hat->times_normal_x() + u2hat->times_normal_y()==zero); solnIncrement->lagrangeConstraints()->addConstraint(u1hat->times_normal_x() + u2hat->times_normal_y()==zero); } if (true) { FunctionPtr u1_incr = Function::solution(u1, solnIncrement); FunctionPtr u2_incr = Function::solution(u2, solnIncrement); FunctionPtr sigma11_incr = Function::solution(sigma11, solnIncrement); FunctionPtr sigma12_incr = Function::solution(sigma12, solnIncrement); FunctionPtr sigma21_incr = Function::solution(sigma21, solnIncrement); FunctionPtr sigma22_incr = Function::solution(sigma22, solnIncrement); FunctionPtr p_incr = Function::solution(p, solnIncrement); FunctionPtr l2_incr = u1_incr * u1_incr + u2_incr * u2_incr + p_incr * p_incr + sigma11_incr * sigma11_incr + sigma12_incr * sigma12_incr + sigma21_incr * sigma21_incr + sigma22_incr * sigma22_incr; double energyThreshold = 0.20; Teuchos::RCP< RefinementStrategy > refinementStrategy = Teuchos::rcp( new RefinementStrategy( solnIncrement, energyThreshold )); for (int i=0; i<ReValues.size(); i++) { double Re = ReValues[i]; Re_param->setValue(Re); if (rank==0) cout << "Solving with Re = " << Re << ":\n"; double energyErrorTotal; do { double incr_norm; do { problem.iterate(useLineSearch); incr_norm = sqrt(l2_incr->integrate(problem.mesh())); if (rank==0) { cout << "\x1B[2K"; // Erase the entire current line. cout << "\x1B[0E"; // Move to the beginning of the current line. cout << "Iteration: " << problem.iterationCount() << "; L^2(incr) = " << incr_norm; flush(cout); } } while ((incr_norm > minL2Increment ) && (problem.iterationCount() < maxIters)); if (rank==0) cout << endl; problem.setIterationCount(1); // 1 means reuse background flow (which we must, given that we want continuation in Re...) energyErrorTotal = solnIncrement->energyErrorTotal(); //solution->energyErrorTotal(); if (energyErrorTotal > energyErrorGoal) { refinementStrategy->refine(false); } if (rank==0) { cout << "Energy error: " << energyErrorTotal << endl; } } while (energyErrorTotal > energyErrorGoal); } } double energyErrorTotal = solution->energyErrorTotal(); double incrementalEnergyErrorTotal = solnIncrement->energyErrorTotal(); if (rank == 0) { cout << "final mesh has " << mesh->numActiveElements() << " elements and " << mesh->numGlobalDofs() << " dofs.\n"; cout << "energy error: " << energyErrorTotal << endl; cout << " (Incremental solution's energy error is " << incrementalEnergyErrorTotal << ".)\n"; } FunctionPtr u1_sq = u1_prev * u1_prev; FunctionPtr u_dot_u = u1_sq + (u2_prev * u2_prev); FunctionPtr u_mag = Teuchos::rcp( new SqrtFunction( u_dot_u ) ); FunctionPtr u_div = Teuchos::rcp( new PreviousSolutionFunction(solution, u1->dx() + u2->dy() ) ); FunctionPtr massFlux = Teuchos::rcp( new PreviousSolutionFunction(solution, u1hat->times_normal_x() + u2hat->times_normal_y()) ); // check that the zero mean pressure is being correctly imposed: FunctionPtr p_prev = Teuchos::rcp( new PreviousSolutionFunction(solution,p) ); double p_avg = p_prev->integrate(mesh); if (rank==0) cout << "Integral of pressure: " << p_avg << endl; // integrate massFlux over each element (a test): // fake a new bilinear form so we can integrate against 1 VarPtr testOne = varFactory.testVar("1",CONSTANT_SCALAR); BFPtr fakeBF = Teuchos::rcp( new BF(varFactory) ); LinearTermPtr massFluxTerm = massFlux * testOne; CellTopoPtrLegacy quadTopoPtr = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() )); DofOrderingFactory dofOrderingFactory(fakeBF); int fakeTestOrder = H1Order; DofOrderingPtr testOrdering = dofOrderingFactory.testOrdering(fakeTestOrder, *quadTopoPtr); int testOneIndex = testOrdering->getDofIndex(testOne->ID(),0); vector< ElementTypePtr > elemTypes = mesh->elementTypes(); // global element types map<int, double> massFluxIntegral; // cellID -> integral double maxMassFluxIntegral = 0.0; double totalMassFlux = 0.0; double totalAbsMassFlux = 0.0; double maxCellMeasure = 0; double minCellMeasure = 1; for (vector< ElementTypePtr >::iterator elemTypeIt = elemTypes.begin(); elemTypeIt != elemTypes.end(); elemTypeIt++) { ElementTypePtr elemType = *elemTypeIt; vector< ElementPtr > elems = mesh->elementsOfTypeGlobal(elemType); vector<GlobalIndexType> cellIDs; for (int i=0; i<elems.size(); i++) { cellIDs.push_back(elems[i]->cellID()); } FieldContainer<double> physicalCellNodes = mesh->physicalCellNodesGlobal(elemType); BasisCachePtr basisCache = Teuchos::rcp( new BasisCache(elemType,mesh,polyOrder) ); // enrich by trial space order basisCache->setPhysicalCellNodes(physicalCellNodes,cellIDs,true); // true: create side caches FieldContainer<double> cellMeasures = basisCache->getCellMeasures(); FieldContainer<double> fakeRHSIntegrals(elems.size(),testOrdering->totalDofs()); massFluxTerm->integrate(fakeRHSIntegrals,testOrdering,basisCache,true); // true: force side evaluation // cout << "fakeRHSIntegrals:\n" << fakeRHSIntegrals; for (int i=0; i<elems.size(); i++) { int cellID = cellIDs[i]; // pick out the ones for testOne: massFluxIntegral[cellID] = fakeRHSIntegrals(i,testOneIndex); } // find the largest: for (int i=0; i<elems.size(); i++) { int cellID = cellIDs[i]; maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral); } for (int i=0; i<elems.size(); i++) { int cellID = cellIDs[i]; maxCellMeasure = max(maxCellMeasure,cellMeasures(i)); minCellMeasure = min(minCellMeasure,cellMeasures(i)); maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral); totalMassFlux += massFluxIntegral[cellID]; totalAbsMassFlux += abs( massFluxIntegral[cellID] ); } } if (rank==0) { cout << "largest mass flux: " << maxMassFluxIntegral << endl; cout << "total mass flux: " << totalMassFlux << endl; cout << "sum of mass flux absolute value: " << totalAbsMassFlux << endl; cout << "largest h: " << sqrt(maxCellMeasure) << endl; cout << "smallest h: " << sqrt(minCellMeasure) << endl; cout << "ratio of largest / smallest h: " << sqrt(maxCellMeasure) / sqrt(minCellMeasure) << endl; } if (rank == 0) { cout << "phi ID: " << phi->ID() << endl; cout << "psi1 ID: " << psi_1->ID() << endl; cout << "psi2 ID: " << psi_2->ID() << endl; cout << "streamMesh has " << streamMesh->numActiveElements() << " elements.\n"; cout << "solving for approximate stream function...\n"; } streamSolution->solve(useMumps); energyErrorTotal = streamSolution->energyErrorTotal(); if (rank == 0) { cout << "...solved.\n"; cout << "Stream mesh has energy error: " << energyErrorTotal << endl; } if (rank==0) { solution->writeToVTK("nsCavitySoln.vtk"); if (! meshHasTriangles ) { massFlux->writeBoundaryValuesToMATLABFile(solution->mesh(), "massFlux.dat"); u_mag->writeValuesToMATLABFile(solution->mesh(), "u_mag.m"); u_div->writeValuesToMATLABFile(solution->mesh(), "u_div.m"); solution->writeFieldsToFile(u1->ID(), "u1.m"); solution->writeFluxesToFile(u1hat->ID(), "u1_hat.dat"); solution->writeFieldsToFile(u2->ID(), "u2.m"); solution->writeFluxesToFile(u2hat->ID(), "u2_hat.dat"); solution->writeFieldsToFile(p->ID(), "p.m"); streamSolution->writeFieldsToFile(phi->ID(), "phi.m"); streamSolution->writeFluxesToFile(phi_hat->ID(), "phi_hat.dat"); streamSolution->writeFieldsToFile(psi_1->ID(), "psi1.m"); streamSolution->writeFieldsToFile(psi_2->ID(), "psi2.m"); vorticity->writeValuesToMATLABFile(streamMesh, "vorticity.m"); FunctionPtr ten = Teuchos::rcp( new ConstantScalarFunction(10) ); ten->writeBoundaryValuesToMATLABFile(solution->mesh(), "skeleton.dat"); cout << "wrote files: u_mag.m, u_div.m, u1.m, u1_hat.dat, u2.m, u2_hat.dat, p.m, phi.m, vorticity.m.\n"; } else { solution->writeToFile(u1->ID(), "u1.dat"); solution->writeToFile(u2->ID(), "u2.dat"); solution->writeToFile(u2->ID(), "p.dat"); cout << "wrote files: u1.dat, u2.dat, p.dat\n"; } FieldContainer<double> points = pointGrid(0, 1, 0, 1, 100); FieldContainer<double> pointData = solutionData(points, streamSolution, phi); GnuPlotUtil::writeXYPoints("phi_patch_navierStokes_cavity.dat", pointData); set<double> patchContourLevels = diagonalContourLevels(pointData,1); vector<string> patchDataPath; patchDataPath.push_back("phi_patch_navierStokes_cavity.dat"); GnuPlotUtil::writeContourPlotScript(patchContourLevels, patchDataPath, "lidCavityNavierStokes.p"); GnuPlotUtil::writeExactMeshSkeleton("lid_navierStokes_continuation_adaptive", mesh, 2); writePatchValues(0, 1, 0, 1, streamSolution, phi, "phi_patch.m"); writePatchValues(0, .1, 0, .1, streamSolution, phi, "phi_patch_detail.m"); writePatchValues(0, .01, 0, .01, streamSolution, phi, "phi_patch_minute_detail.m"); writePatchValues(0, .001, 0, .001, streamSolution, phi, "phi_patch_minute_minute_detail.m"); } return 0; }
int main(int argc, char *argv[]) { // Process command line arguments if (argc > 1) numRefs = atof(argv[1]); #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); int rank=mpiSession.getRank(); int numProcs=mpiSession.getNProc(); #else int rank = 0; int numProcs = 1; #endif FunctionPtr beta = Teuchos::rcp(new Beta()); //////////////////////////////////////////////////////////////////// // DEFINE VARIABLES //////////////////////////////////////////////////////////////////// // test variables VarFactory varFactory; VarPtr tau = varFactory.testVar("\\tau", HDIV); VarPtr v = varFactory.testVar("v", HGRAD); // trial variables VarPtr uhat = varFactory.traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory.fieldVar("u"); VarPtr sigma1 = varFactory.fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory.fieldVar("\\sigma_2"); //////////////////////////////////////////////////////////////////// // CREATE MESH //////////////////////////////////////////////////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); FieldContainer<double> meshBoundary(4,2); meshBoundary(0,0) = 0.0; // x1 meshBoundary(0,1) = -2.0; // y1 meshBoundary(1,0) = 4.0; meshBoundary(1,1) = -2.0; meshBoundary(2,0) = 4.0; meshBoundary(2,1) = 2.0; meshBoundary(3,0) = 0.0; meshBoundary(3,1) = 2.0; int horizontalCells = 4, verticalCells = 4; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(meshBoundary, horizontalCells, verticalCells, confusionBF, H1Order, H1Order+pToAdd, false); //////////////////////////////////////////////////////////////////// // INITIALIZE BACKGROUND FLOW FUNCTIONS //////////////////////////////////////////////////////////////////// BCPtr nullBC = Teuchos::rcp((BC*)NULL); RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL); IPPtr nullIP = Teuchos::rcp((IP*)NULL); SolutionPtr prevTimeFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); SolutionPtr flowResidual = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); FunctionPtr u_prev_time = Teuchos::rcp( new PreviousSolutionFunction(prevTimeFlow, u) ); // ==================== SET INITIAL GUESS ========================== double u_free = 0.0; double sigma1_free = 0.0; double sigma2_free = 0.0; map<int, Teuchos::RCP<Function> > functionMap; functionMap[u->ID()] = Teuchos::rcp( new ConstantScalarFunction(u_free) ); functionMap[sigma1->ID()] = Teuchos::rcp( new ConstantScalarFunction(sigma1_free) ); functionMap[sigma2->ID()] = Teuchos::rcp( new ConstantScalarFunction(sigma2_free) ); prevTimeFlow->projectOntoMesh(functionMap); // ==================== END SET INITIAL GUESS ========================== //////////////////////////////////////////////////////////////////// // DEFINE BILINEAR FORM //////////////////////////////////////////////////////////////////// // tau terms: confusionBF->addTerm(sigma1 / epsilon, tau->x()); confusionBF->addTerm(sigma2 / epsilon, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(-uhat, tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( beta * u, - v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////////////////////////////////////////////////////// // TIMESTEPPING TERMS //////////////////////////////////////////////////////////////////// Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); double dt = 0.25; FunctionPtr invDt = Teuchos::rcp(new ScalarParamFunction(1.0/dt)); if (rank==0){ cout << "Timestep dt = " << dt << endl; } if (transient) { confusionBF->addTerm( u, invDt*v ); rhs->addTerm( u_prev_time * invDt * v ); } //////////////////////////////////////////////////////////////////// // DEFINE INNER PRODUCT //////////////////////////////////////////////////////////////////// // mathematician's norm IPPtr mathIP = Teuchos::rcp(new IP()); mathIP->addTerm(tau); mathIP->addTerm(tau->div()); mathIP->addTerm(v); mathIP->addTerm(v->grad()); // quasi-optimal norm IPPtr qoptIP = Teuchos::rcp(new IP); qoptIP->addTerm( v ); qoptIP->addTerm( tau / epsilon + v->grad() ); qoptIP->addTerm( beta * v->grad() - tau->div() ); // robust test norm IPPtr robIP = Teuchos::rcp(new IP); FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); if (!enforceLocalConservation) { robIP->addTerm( ip_scaling * v ); if (transient) robIP->addTerm( invDt * v ); } robIP->addTerm( sqrt(epsilon) * v->grad() ); // Weight these two terms for inflow FunctionPtr ip_weight = Teuchos::rcp( new IPWeight() ); robIP->addTerm( ip_weight * beta * v->grad() ); robIP->addTerm( ip_weight * tau->div() ); robIP->addTerm( ip_scaling/sqrt(epsilon) * tau ); if (enforceLocalConservation) robIP->addZeroMeanTerm( v ); //////////////////////////////////////////////////////////////////// // DEFINE RHS //////////////////////////////////////////////////////////////////// FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) ); rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////////////////////////////////////////////////////// // DEFINE BC //////////////////////////////////////////////////////////////////// Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy ); // Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints ); SpatialFilterPtr lBoundary = Teuchos::rcp( new LeftBoundary ); SpatialFilterPtr tbBoundary = Teuchos::rcp( new TopBottomBoundary ); SpatialFilterPtr rBoundary = Teuchos::rcp( new RightBoundary ); FunctionPtr u0 = Teuchos::rcp( new ZeroBC ); FunctionPtr u_inlet = Teuchos::rcp( new InletBC ); // FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); bc->addDirichlet(beta_n_u_minus_sigma_n, lBoundary, u_inlet); bc->addDirichlet(beta_n_u_minus_sigma_n, tbBoundary, u0); bc->addDirichlet(uhat, rBoundary, u0); // pc->addConstraint(beta_n_u_minus_sigma_n - uhat == u0, rBoundary); //////////////////////////////////////////////////////////////////// // CREATE SOLUTION OBJECT //////////////////////////////////////////////////////////////////// Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) ); // solution->setFilter(pc); // ==================== Enforce Local Conservation ================== if (enforceLocalConservation) { if (transient) { FunctionPtr conserved_rhs = u_prev_time * invDt; LinearTermPtr conserved_quantity = invDt * u; LinearTermPtr flux_part = Teuchos::rcp(new LinearTerm(-1.0, beta_n_u_minus_sigma_n)); conserved_quantity->addTerm(flux_part, true); // conserved_quantity = conserved_quantity - beta_n_u_minus_sigma_n; solution->lagrangeConstraints()->addConstraint(conserved_quantity == conserved_rhs); } else { FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero); } } // ==================== Register Solutions ========================== mesh->registerSolution(solution); mesh->registerSolution(prevTimeFlow); // u_t(i-1) mesh->registerSolution(flowResidual); // u_t(i-1) double energyThreshold = 0.25; // for mesh refinements Teuchos::RCP<RefinementStrategy> refinementStrategy; refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold)); //////////////////////////////////////////////////////////////////// // PSEUDO-TIME SOLVE STRATEGY //////////////////////////////////////////////////////////////////// double time_tol = 1e-8; for (int refIndex=0; refIndex<=numRefs; refIndex++) { double L2_time_residual = 1e7; int timestepCount = 0; if (!transient) numTimeSteps = 1; while((L2_time_residual > time_tol) && (timestepCount < numTimeSteps)) { solution->solve(false); // subtract solutions to get residual flowResidual->setSolution(solution); // reset previous time solution to current time sol flowResidual->addSolution(prevTimeFlow, -1.0); double L2u = flowResidual->L2NormOfSolutionGlobal(u->ID()); double L2sigma1 = flowResidual->L2NormOfSolutionGlobal(sigma1->ID()); double L2sigma2 = flowResidual->L2NormOfSolutionGlobal(sigma2->ID()); L2_time_residual = sqrt(L2u*L2u + L2sigma1*L2sigma1 + L2sigma2*L2sigma2); cout << endl << "Timestep: " << timestepCount << ", dt = " << dt << ", Time residual = " << L2_time_residual << endl; if (rank == 0) { stringstream outfile; if (transient) outfile << "TransientConfusion_" << refIndex << "_" << timestepCount; else outfile << "TransientConfusion_" << refIndex; solution->writeToVTK(outfile.str(), 5); } ////////////////////////////////////////////////////////////////////////// // Check conservation by testing against one ////////////////////////////////////////////////////////////////////////// VarPtr testOne = varFactory.testVar("1", CONSTANT_SCALAR); // Create a fake bilinear form for the testing BFPtr fakeBF = Teuchos::rcp( new BF(varFactory) ); // Define our mass flux FunctionPtr flux_current_time = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) ); FunctionPtr delta_u = Teuchos::rcp( new PreviousSolutionFunction(flowResidual, u) ); LinearTermPtr surfaceFlux = -1.0 * flux_current_time * testOne; LinearTermPtr volumeChange = invDt * delta_u * testOne; LinearTermPtr massFluxTerm; if (transient) { massFluxTerm = volumeChange; // massFluxTerm->addTerm(surfaceFlux); } else { massFluxTerm = surfaceFlux; } // cout << "surface case = " << surfaceFlux->summands()[0].first->boundaryValueOnly() << " volume case = " << volumeChange->summands()[0].first->boundaryValueOnly() << endl; // FunctionPtr massFlux= Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) ); // LinearTermPtr massFluxTerm = massFlux * testOne; Teuchos::RCP<shards::CellTopology> quadTopoPtr = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() )); DofOrderingFactory dofOrderingFactory(fakeBF); int fakeTestOrder = H1Order; DofOrderingPtr testOrdering = dofOrderingFactory.testOrdering(fakeTestOrder, *quadTopoPtr); int testOneIndex = testOrdering->getDofIndex(testOne->ID(),0); vector< ElementTypePtr > elemTypes = mesh->elementTypes(); // global element types map<int, double> massFluxIntegral; // cellID -> integral double maxMassFluxIntegral = 0.0; double totalMassFlux = 0.0; double totalAbsMassFlux = 0.0; for (vector< ElementTypePtr >::iterator elemTypeIt = elemTypes.begin(); elemTypeIt != elemTypes.end(); elemTypeIt++) { ElementTypePtr elemType = *elemTypeIt; vector< ElementPtr > elems = mesh->elementsOfTypeGlobal(elemType); vector<int> cellIDs; for (int i=0; i<elems.size(); i++) { cellIDs.push_back(elems[i]->cellID()); } FieldContainer<double> physicalCellNodes = mesh->physicalCellNodesGlobal(elemType); BasisCachePtr basisCache = Teuchos::rcp( new BasisCache(elemType,mesh) ); basisCache->setPhysicalCellNodes(physicalCellNodes,cellIDs,true); // true: create side caches FieldContainer<double> cellMeasures = basisCache->getCellMeasures(); FieldContainer<double> fakeRHSIntegrals(elems.size(),testOrdering->totalDofs()); massFluxTerm->integrate(fakeRHSIntegrals,testOrdering,basisCache,true); // true: force side evaluation for (int i=0; i<elems.size(); i++) { int cellID = cellIDs[i]; // pick out the ones for testOne: massFluxIntegral[cellID] = fakeRHSIntegrals(i,testOneIndex); } // find the largest: for (int i=0; i<elems.size(); i++) { int cellID = cellIDs[i]; maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral); } for (int i=0; i<elems.size(); i++) { int cellID = cellIDs[i]; maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral); totalMassFlux += massFluxIntegral[cellID]; totalAbsMassFlux += abs( massFluxIntegral[cellID] ); } } // Print results from processor with rank 0 if (rank == 0) { cout << "largest mass flux: " << maxMassFluxIntegral << endl; cout << "total mass flux: " << totalMassFlux << endl; cout << "sum of mass flux absolute value: " << totalAbsMassFlux << endl; } prevTimeFlow->setSolution(solution); // reset previous time solution to current time sol timestepCount++; } if (refIndex < numRefs){ if (rank==0){ cout << "Performing refinement number " << refIndex << endl; } refinementStrategy->refine(rank==0); // RESET solution every refinement - make sure discretization error doesn't creep in // prevTimeFlow->projectOntoMesh(functionMap); } } return 0; }
bool LobattoBasisTests::testSimpleStiffnessMatrix() { bool success = true; int rank = Teuchos::GlobalMPISession::getRank(); VarFactory varFactory; VarPtr u = varFactory.fieldVar("u"); VarPtr un = varFactory.fluxVar("un_hat"); VarPtr v = varFactory.testVar("v", HGRAD); BFPtr bf = Teuchos::rcp( new BF(varFactory) ); vector<double> beta; beta.push_back(1); beta.push_back(1); bf->addTerm(beta * u, v->grad()); bf->addTerm(un, v); DofOrderingPtr trialSpace = Teuchos::rcp( new DofOrdering ); DofOrderingPtr testSpace = Teuchos::rcp( new DofOrdering ); const int numSides = 4; const int spaceDim = 2; int fieldOrder = 3; int testOrder = fieldOrder+2; BasisPtr fieldBasis = Camellia::intrepidQuadHGRAD(fieldOrder); BasisPtr fluxBasis = Camellia::intrepidLineHGRAD(fieldOrder); trialSpace->addEntry(u->ID(), fieldBasis, fieldBasis->rangeRank()); for (int i=0; i<numSides; i++) { trialSpace->addEntry(un->ID(), fluxBasis, fluxBasis->rangeRank(), i); } BasisPtr testBasis = Camellia::lobattoQuadHGRAD(testOrder+1,false); // +1 because it lives in HGRAD testSpace->addEntry(v->ID(), testBasis, testBasis->rangeRank()); int numTrialDofs = trialSpace->totalDofs(); int numTestDofs = testSpace->totalDofs(); int numCells = 1; FieldContainer<double> cellNodes(numCells,numSides,spaceDim); cellNodes(0,0,0) = 0; cellNodes(0,0,1) = 0; cellNodes(0,1,0) = 1; cellNodes(0,1,1) = 0; cellNodes(0,2,0) = 1; cellNodes(0,2,1) = 1; cellNodes(0,3,0) = 0; cellNodes(0,3,1) = 1; FieldContainer<double> stiffness(numCells,numTestDofs,numTrialDofs); FieldContainer<double> cellSideParities(numCells,numSides); cellSideParities.initialize(1.0); Teuchos::RCP<shards::CellTopology> quad_4 = Teuchos::rcp( new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() ) ); Teuchos::RCP<ElementType> elemType = Teuchos::rcp( new ElementType(trialSpace, testSpace, quad_4)); BasisCachePtr basisCache = Teuchos::rcp( new BasisCache(elemType) ); vector<GlobalIndexType> cellIDs; cellIDs.push_back(0); basisCache->setPhysicalCellNodes(cellNodes, cellIDs, true); bf->stiffnessMatrix(stiffness, elemType, cellSideParities, basisCache); // TODO: finish this test // cout << stiffness; if (rank==0) cout << "Warning: testSimpleStiffnessMatrix() unfinished.\n"; return success; }
// tests to make sure that the rieszNorm computed via matrices is the same as the one computed thru direct integration bool ScratchPadTests::testRieszIntegration() { double tol = 1e-11; bool success = true; int nCells = 2; double eps = .25; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); // just H1 projection ip->addTerm(v->grad()); ip->addTerm(v); ip->addTerm(tau); ip->addTerm(tau->div()); //////////////////// SPECIFY RHS AND HELPFUL FUNCTIONS /////////////////////// FunctionPtr n = Function::normal(); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); FunctionPtr one = Function::constant(1.0); FunctionPtr zero = Function::constant(0.0); RHSPtr rhs = RHS::rhs(); FunctionPtr f = one; rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// CREATE BCs /////////////////////// BCPtr bc = BC::bc(); SpatialFilterPtr squareBoundary = Teuchos::rcp( new SquareBoundary ); bc->addDirichlet(uhat, squareBoundary, zero); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int order = 2; int H1Order = order+1; int pToAdd = 2; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); //////////////////// SOLVE & REFINE /////////////////////// LinearTermPtr lt = Teuchos::rcp(new LinearTerm); FunctionPtr fxn = Function::xn(1); // fxn = x lt->addTerm(fxn*v + fxn->grad()*v->grad()); lt->addTerm(fxn*tau->x() + fxn*tau->y() + (fxn->dx() + fxn->dy())*tau->div()); Teuchos::RCP<RieszRep> rieszLT = Teuchos::rcp(new RieszRep(mesh, ip, lt)); rieszLT->computeRieszRep(); double rieszNorm = rieszLT->getNorm(); FunctionPtr e_v = RieszRep::repFunction(v,rieszLT); FunctionPtr e_tau = RieszRep::repFunction(tau,rieszLT); map<int,FunctionPtr> repFxns; repFxns[v->ID()] = e_v; repFxns[tau->ID()] = e_tau; double integratedNorm = sqrt((lt->evaluate(repFxns,false))->integrate(mesh,5,true)); success = abs(rieszNorm-integratedNorm)<tol; if (success==false) { cout << "Failed testRieszIntegration; riesz norm is computed to be = " << rieszNorm << ", while using integration it's computed to be " << integratedNorm << endl; return success; } return success; }
bool ScratchPadTests::testGalerkinOrthogonality() { double tol = 1e-11; bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr v = varFactory->testVar("v", HGRAD); vector<double> beta; beta.push_back(1.0); beta.push_back(1.0); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); ip->addTerm(v); ip->addTerm(beta*v->grad()); // define trial variables VarPtr beta_n_u = varFactory->fluxVar("\\widehat{\\beta \\cdot n }"); VarPtr u = varFactory->fieldVar("u"); //////////////////// BUILD MESH /////////////////////// BFPtr convectionBF = Teuchos::rcp( new BF(varFactory) ); FunctionPtr n = Function::normal(); // v terms: convectionBF->addTerm( -u, beta * v->grad() ); convectionBF->addTerm( beta_n_u, v); // define nodes for mesh int order = 2; int H1Order = order+1; int pToAdd = 1; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(4, convectionBF, H1Order, H1Order+pToAdd); //////////////////// SOLVE /////////////////////// RHSPtr rhs = RHS::rhs(); BCPtr bc = BC::bc(); SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary ); SpatialFilterPtr outflowBoundary = Teuchos::rcp( new NegatedSpatialFilter(inflowBoundary) ); FunctionPtr uIn; uIn = Teuchos::rcp(new Uinflow); // uses a discontinuous piecewise-constant basis function on left and bottom sides of square bc->addDirichlet(beta_n_u, inflowBoundary, beta*n*uIn); Teuchos::RCP<Solution> solution; solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); solution->solve(false); FunctionPtr uFxn = Function::solution(u, solution); FunctionPtr fnhatFxn = Function::solution(beta_n_u,solution); // make residual for riesz representation function LinearTermPtr residual = Teuchos::rcp(new LinearTerm);// residual FunctionPtr parity = Function::sideParity(); residual->addTerm(-fnhatFxn*v + (beta*uFxn)*v->grad()); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ip, residual)); riesz->computeRieszRep(); map<int,FunctionPtr> err_rep_map; err_rep_map[v->ID()] = RieszRep::repFunction(v,riesz); //////////////////// GET BOUNDARY CONDITION DATA /////////////////////// FieldContainer<GlobalIndexType> bcGlobalIndices; FieldContainer<double> bcGlobalValues; mesh->boundary().bcsToImpose(bcGlobalIndices,bcGlobalValues,*(solution->bc()), NULL); set<int> bcInds; for (int i=0; i<bcGlobalIndices.dimension(0); i++) { bcInds.insert(bcGlobalIndices(i)); } //////////////////// CHECK GALERKIN ORTHOGONALITY /////////////////////// BCPtr nullBC; RHSPtr nullRHS; IPPtr nullIP; SolutionPtr solnPerturbation = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); map< int, vector<DofInfo> > infoMap = constructGlobalDofToLocalDofInfoMap(mesh); for (map< int, vector<DofInfo> >::iterator mapIt = infoMap.begin(); mapIt != infoMap.end(); mapIt++) { int dofIndex = mapIt->first; vector< DofInfo > dofInfoVector = mapIt->second; // all the local dofs that map to dofIndex // create perturbation in direction du solnPerturbation->clear(); // clear all solns // set each corresponding local dof to 1.0 for (vector< DofInfo >::iterator dofInfoIt = dofInfoVector.begin(); dofInfoIt != dofInfoVector.end(); dofInfoIt++) { DofInfo info = *dofInfoIt; FieldContainer<double> solnCoeffs(info.basisCardinality); solnCoeffs(info.basisOrdinal) = 1.0; solnPerturbation->setSolnCoeffsForCellID(solnCoeffs, info.cellID, info.trialID, info.sideIndex); } // solnPerturbation->setSolnCoeffForGlobalDofIndex(1.0,dofIndex); LinearTermPtr b_du = convectionBF->testFunctional(solnPerturbation); FunctionPtr gradient = b_du->evaluate(err_rep_map, TestingUtilities::isFluxOrTraceDof(mesh,dofIndex)); // use boundary part only if flux double grad = gradient->integrate(mesh,10); if (!TestingUtilities::isFluxOrTraceDof(mesh,dofIndex) && abs(grad)>tol) // if we're not single-precision zero FOR FIELDS { // int cellID = mesh->getGlobalToLocalMap()[dofIndex].first; cout << "Failed testGalerkinOrthogonality() for fields with diff " << abs(grad) << " at dof " << dofIndex << "; info:" << endl; cout << dofInfoString(infoMap[dofIndex]); success = false; } } FieldContainer<double> errorJumps(mesh->numGlobalDofs()); //initialized to zero // just test fluxes ON INTERNAL SKELETON here set<GlobalIndexType> activeCellIDs = mesh->getActiveCellIDsGlobal(); for (GlobalIndexType activeCellID : activeCellIDs) { ElementPtr elem = mesh->getElement(activeCellID); for (int sideIndex = 0; sideIndex < 4; sideIndex++) { ElementTypePtr elemType = elem->elementType(); vector<int> localDofIndices = elemType->trialOrderPtr->getDofIndices(beta_n_u->ID(), sideIndex); for (int i = 0; i<localDofIndices.size(); i++) { int globalDofIndex = mesh->globalDofIndex(elem->cellID(), localDofIndices[i]); vector< DofInfo > dofInfoVector = infoMap[globalDofIndex]; solnPerturbation->clear(); TestingUtilities::setSolnCoeffForGlobalDofIndex(solnPerturbation,1.0,globalDofIndex); // also add in BCs for (int i = 0; i<bcGlobalIndices.dimension(0); i++) { TestingUtilities::setSolnCoeffForGlobalDofIndex(solnPerturbation,bcGlobalValues(i),bcGlobalIndices(i)); } LinearTermPtr b_du = convectionBF->testFunctional(solnPerturbation); FunctionPtr gradient = b_du->evaluate(err_rep_map, TestingUtilities::isFluxOrTraceDof(mesh,globalDofIndex)); // use boundary part only if flux double jump = gradient->integrate(mesh,10); errorJumps(globalDofIndex) += jump; } } } for (int i = 0; i<mesh->numGlobalDofs(); i++) { if (abs(errorJumps(i))>tol) { cout << "Failing Galerkin orthogonality test for fluxes with diff " << errorJumps(i) << " at dof " << i << endl; cout << dofInfoString(infoMap[i]); success = false; } } return success; }
// tests whether a mixed type LT bool ScratchPadTests::testIntegrateDiscontinuousFunction() { bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr v = varFactory->testVar("v", HGRAD); vector<double> beta; beta.push_back(1.0); beta.push_back(1.0); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); ip->addTerm(v); ip->addTerm(beta*v->grad()); // for projections IPPtr ipL2 = Teuchos::rcp(new IP); ipL2->addTerm(v); // define trial variables VarPtr beta_n_u = varFactory->fluxVar("\\widehat{\\beta \\cdot n }"); VarPtr u = varFactory->fieldVar("u"); //////////////////// BUILD MESH /////////////////////// BFPtr convectionBF = Teuchos::rcp( new BF(varFactory) ); // v terms: convectionBF->addTerm( -u, beta * v->grad() ); convectionBF->addTerm( beta_n_u, v); // define nodes for mesh int order = 1; int H1Order = order+1; int pToAdd = 1; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(2, 1, convectionBF, H1Order, H1Order+pToAdd); //////////////////// integrate discontinuous function - cellIDFunction /////////////////////// // FunctionPtr cellIDFxn = Teuchos::rcp(new CellIDFunction); // should be 0 on cellID 0, 1 on cellID 1 set<int> cellIDs; cellIDs.insert(1); // 0 on cell 0, 1 on cell 1 FunctionPtr indicator = Teuchos::rcp(new IndicatorFunction(cellIDs)); // should be 0 on cellID 0, 1 on cellID 1 double jumpWeight = 13.3; // some random number FunctionPtr edgeRestrictionFxn = Teuchos::rcp(new EdgeFunction); FunctionPtr X = Function::xn(1); LinearTermPtr integrandLT = Function::constant(1.0)*v + Function::constant(jumpWeight)*X*edgeRestrictionFxn*v; // make riesz representation function to more closely emulate the error rep LinearTermPtr indicatorLT = Teuchos::rcp(new LinearTerm);// residual indicatorLT->addTerm(indicator*v); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ipL2, indicatorLT)); riesz->computeRieszRep(); map<int,FunctionPtr> vmap; vmap[v->ID()] = RieszRep::repFunction(v,riesz); // SHOULD BE L2 projection = same thing!!! FunctionPtr volumeIntegrand = integrandLT->evaluate(vmap,false); FunctionPtr edgeRestrictedIntegrand = integrandLT->evaluate(vmap,true); double edgeRestrictedValue = volumeIntegrand->integrate(mesh,10) + edgeRestrictedIntegrand->integrate(mesh,10); double expectedValue = .5 + .5*jumpWeight; double diff = abs(expectedValue-edgeRestrictedValue); if (abs(diff)>1e-11) { success = false; cout << "Failed testIntegrateDiscontinuousFunction() with expectedValue = " << expectedValue << " and actual value = " << edgeRestrictedValue << endl; } return success; }
// tests whether a mixed type LT bool ScratchPadTests::testLinearTermEvaluationConsistency() { bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr v = varFactory->testVar("v", HGRAD); vector<double> beta; beta.push_back(1.0); beta.push_back(1.0); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); ip->addTerm(v); ip->addTerm(beta*v->grad()); // define trial variables VarPtr beta_n_u = varFactory->fluxVar("\\widehat{\\beta \\cdot n }"); VarPtr u = varFactory->fieldVar("u"); //////////////////// BUILD MESH /////////////////////// BFPtr convectionBF = Teuchos::rcp( new BF(varFactory) ); // v terms: convectionBF->addTerm( -u, beta * v->grad() ); convectionBF->addTerm( beta_n_u, v); // define nodes for mesh int order = 1; int H1Order = order+1; int pToAdd = 1; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(1, convectionBF, H1Order, H1Order+pToAdd); //////////////////// get fake residual /////////////////////// LinearTermPtr lt = Teuchos::rcp(new LinearTerm); FunctionPtr edgeFxn = Teuchos::rcp(new EdgeFunction); FunctionPtr Xsq = Function::xn(2); FunctionPtr Ysq = Function::yn(2); FunctionPtr XYsq = Xsq*Ysq; lt->addTerm(edgeFxn*v + (beta*XYsq)*v->grad()); Teuchos::RCP<RieszRep> ltRiesz = Teuchos::rcp(new RieszRep(mesh, ip, lt)); ltRiesz->computeRieszRep(); FunctionPtr repFxn = RieszRep::repFunction(v,ltRiesz); map<int,FunctionPtr> rep_map; rep_map[v->ID()] = repFxn; FunctionPtr edgeLt = lt->evaluate(rep_map, true) ; FunctionPtr elemLt = lt->evaluate(rep_map, false); double edgeVal = edgeLt->integrate(mesh,10); double elemVal = elemLt->integrate(mesh,10); LinearTermPtr edgeOnlyLt = Teuchos::rcp(new LinearTerm);// residual edgeOnlyLt->addTerm(edgeFxn*v); FunctionPtr edgeOnly = edgeOnlyLt->evaluate(rep_map,true); double edgeOnlyVal = edgeOnly->integrate(mesh,10); double diff = edgeOnlyVal-edgeVal; if (abs(diff)>1e-11) { success = false; cout << "Failed testLinearTermEvaluationConsistency() with diff = " << diff << endl; } return success; }
// tests to make sure the energy error calculated thru direct integration works for vector valued test functions too bool ScratchPadTests::testLTResidual() { double tol = 1e-11; int rank = Teuchos::GlobalMPISession::getRank(); bool success = true; int nCells = 2; double eps = .1; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr tau = varFactory->testVar("\\tau", HDIV); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory->traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); VarPtr sigma1 = varFactory->fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory->fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); // choose the mesh-independent norm even though it may have boundary layers ip->addTerm(v->grad()); ip->addTerm(v); ip->addTerm(tau); ip->addTerm(tau->div()); //////////////////// SPECIFY RHS AND HELPFUL FUNCTIONS /////////////////////// FunctionPtr n = Function::normal(); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); FunctionPtr one = Function::constant(1.0); FunctionPtr zero = Function::constant(0.0); RHSPtr rhs = RHS::rhs(); FunctionPtr f = one; // if this is set to zero instead, we pass the test (a clue?) rhs->addTerm( f * v ); //////////////////// CREATE BCs /////////////////////// BCPtr bc = BC::bc(); SpatialFilterPtr squareBoundary = Teuchos::rcp( new SquareBoundary ); bc->addDirichlet(uhat, squareBoundary, one); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int order = 2; int H1Order = order+1; int pToAdd = 2; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); //////////////////// SOLVE & REFINE /////////////////////// Teuchos::RCP<Solution> solution; solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); solution->solve(false); double energyError = solution->energyErrorTotal(); LinearTermPtr residual = rhs->linearTermCopy(); residual->addTerm(-confusionBF->testFunctional(solution),true); // FunctionPtr uh = Function::solution(uhat,solution); // FunctionPtr fn = Function::solution(beta_n_u_minus_sigma_n,solution); // FunctionPtr uF = Function::solution(u,solution); // FunctionPtr sigma = e1*Function::solution(sigma1,solution)+e2*Function::solution(sigma2,solution); // residual->addTerm(- (fn*v - uh*tau->dot_normal())); // residual->addTerm(- (uF*(tau->div() - beta*v->grad()) + sigma*((1/eps)*tau + v->grad()))); // residual->addTerm(-(fn*v - uF*beta*v->grad() + sigma*v->grad())); // just v portion // residual->addTerm(uh*tau->dot_normal() - uF*tau->div() - sigma*((1/eps)*tau)); // just tau portion Teuchos::RCP<RieszRep> rieszResidual = Teuchos::rcp(new RieszRep(mesh, ip, residual)); rieszResidual->computeRieszRep(); double energyErrorLT = rieszResidual->getNorm(); int cubEnrich = 0; bool testVsTest = true; FunctionPtr e_v = RieszRep::repFunction(v,rieszResidual); FunctionPtr e_tau = RieszRep::repFunction(tau,rieszResidual); // experiment by Nate: manually specify the error (this appears to produce identical results, as it should) // FunctionPtr err = e_v * e_v + e_tau * e_tau + e_v->grad() * e_v->grad() + e_tau->div() * e_tau->div(); map<int,FunctionPtr> errFxns; errFxns[v->ID()] = e_v; errFxns[tau->ID()] = e_tau; LinearTermPtr ipAtErrFxns = ip->evaluate(errFxns); FunctionPtr err = ip->evaluate(errFxns)->evaluate(errFxns); double energyErrorIntegrated = sqrt(err->integrate(mesh,cubEnrich,testVsTest)); // check that energy error computed thru Solution and through rieszRep are the same bool success1 = abs(energyError-energyErrorLT)<tol; // checks that matrix-computed and integrated errors are the same bool success2 = abs(energyErrorLT-energyErrorIntegrated)<tol; success = success1==true && success2==true; if (!success) { if (rank==0) cout << "Failed testLTResidual; energy error = " << energyError << ", while linearTerm error is computed to be " << energyErrorLT << ", and when computing through integration of the Riesz rep function, error = " << energyErrorIntegrated << endl; } // VTKExporter exporter(solution, mesh, varFactory); // exporter.exportSolution("testLTRes"); // cout << endl; return success; }
// tests residual computation on simple convection bool ScratchPadTests::testLTResidualSimple() { double tol = 1e-11; int rank = Teuchos::GlobalMPISession::getRank(); bool success = true; int nCells = 2; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr beta_n_u = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory->fieldVar("u"); vector<double> beta; beta.push_back(1.0); beta.push_back(1.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // v terms: confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = Teuchos::rcp(new IP); // choose the mesh-independent norm even though it may have BLs ip->addTerm(v->grad()); ip->addTerm(v); //////////////////// SPECIFY RHS AND HELPFUL FUNCTIONS /////////////////////// FunctionPtr n = Function::normal(); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); FunctionPtr one = Function::constant(1.0); FunctionPtr zero = Function::constant(0.0); RHSPtr rhs = RHS::rhs(); FunctionPtr f = one; rhs->addTerm( f * v ); //////////////////// CREATE BCs /////////////////////// BCPtr bc = BC::bc(); SpatialFilterPtr boundary = Teuchos::rcp( new InflowSquareBoundary ); FunctionPtr u_in = Teuchos::rcp(new Uinflow); bc->addDirichlet(beta_n_u, boundary, beta*n*u_in); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int order = 2; int H1Order = order+1; int pToAdd = 2; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); //////////////////// SOLVE & REFINE /////////////////////// int cubEnrich = 0; Teuchos::RCP<Solution> solution; solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); solution->solve(false); double energyError = solution->energyErrorTotal(); LinearTermPtr residual = rhs->linearTermCopy(); residual->addTerm(-confusionBF->testFunctional(solution),true); Teuchos::RCP<RieszRep> rieszResidual = Teuchos::rcp(new RieszRep(mesh, ip, residual)); rieszResidual->computeRieszRep(cubEnrich); double energyErrorLT = rieszResidual->getNorm(); bool testVsTest = true; FunctionPtr e_v = RieszRep::repFunction(v,rieszResidual); map<int,FunctionPtr> errFxns; errFxns[v->ID()] = e_v; FunctionPtr err = (ip->evaluate(errFxns,false))->evaluate(errFxns,false); // don't need boundary terms unless they're in IP double energyErrorIntegrated = sqrt(err->integrate(mesh,cubEnrich,testVsTest)); // check that energy error computed thru Solution and through rieszRep are the same success = abs(energyError-energyErrorLT) < tol; if (success==false) { if (rank==0) cout << "Failed testLTResidualSimple; energy error = " << energyError << ", while linearTerm error is computed to be " << energyErrorLT << endl; return success; } // checks that matrix-computed and integrated errors are the same success = abs(energyErrorLT-energyErrorIntegrated)<tol; if (success==false) { if (rank==0) cout << "Failed testLTResidualSimple; energy error = " << energyError << ", while error computed via integration is " << energyErrorIntegrated << endl; return success; } return success; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); choice::MpiArgs args( argc, argv ); #else choice::Args args( argc, argv ); #endif int commRank = Teuchos::GlobalMPISession::getRank(); int numProcs = Teuchos::GlobalMPISession::getNProc(); // Required arguments int numRefs = args.Input<int>("--numRefs", "number of refinement steps"); int norm = args.Input<int>("--norm", "0 = graph\n 1 = robust\n 2 = coupled robust"); // Optional arguments (have defaults) int uniformRefinements = args.Input("--uniformRefinements", "number of uniform refinements", 0); bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation", false); double radius = args.Input("--r", "cylinder radius", 0.6); int Re = args.Input("--Re", "Reynolds number", 1); int maxNewtonIterations = args.Input("--maxIterations", "maximum number of Newton iterations", 1); int polyOrder = args.Input("--polyOrder", "polynomial order for field variables", 2); int deltaP = args.Input("--deltaP", "how much to enrich test space", 2); // string saveFile = args.Input<string>("--meshSaveFile", "file to which to save refinement history", ""); // string replayFile = args.Input<string>("--meshLoadFile", "file with refinement history to replay", ""); args.Process(); //////////////////// PROBLEM DEFINITIONS /////////////////////// int H1Order = polyOrder+1; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactory varFactory; VarPtr tau1 = varFactory.testVar("tau1", HDIV); VarPtr tau2 = varFactory.testVar("tau2", HDIV); VarPtr v1 = varFactory.testVar("v1", HGRAD); VarPtr v2 = varFactory.testVar("v2", HGRAD); VarPtr vc = varFactory.testVar("vc", HGRAD); // define trial variables VarPtr u1 = varFactory.fieldVar("u1"); VarPtr u2 = varFactory.fieldVar("u2"); VarPtr p = varFactory.fieldVar("p"); VarPtr u1hat = varFactory.traceVar("u1hat"); VarPtr u2hat = varFactory.traceVar("u2hat"); VarPtr t1hat = varFactory.fluxVar("t1hat"); VarPtr t2hat = varFactory.fluxVar("t2hat"); VarPtr sigma1 = varFactory.fieldVar("sigma1", VECTOR_L2); VarPtr sigma2 = varFactory.fieldVar("sigma2", VECTOR_L2); //////////////////// BUILD MESH /////////////////////// BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshFactory::shiftedHemkerMesh(-1, 3, 2, radius, bf, H1Order, deltaP); //////////////////////////////////////////////////////////////////// // INITIALIZE BACKGROUND FLOW FUNCTIONS //////////////////////////////////////////////////////////////////// BCPtr nullBC = Teuchos::rcp((BC*)NULL); RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL); IPPtr nullIP = Teuchos::rcp((IP*)NULL); SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); vector<double> e1(2); // (1,0) e1[0] = 1; vector<double> e2(2); // (0,1) e2[1] = 1; FunctionPtr u1_prev = Function::solution(u1, backgroundFlow); FunctionPtr u2_prev = Function::solution(u2, backgroundFlow); FunctionPtr sigma1_prev = Function::solution(sigma1, backgroundFlow); FunctionPtr sigma2_prev = Function::solution(sigma2, backgroundFlow); FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); FunctionPtr one = Teuchos::rcp( new ConstantScalarFunction(1.0) ); FunctionPtr beta = e1 * u1_prev + e2 * u2_prev; // ==================== SET INITIAL GUESS ========================== map<int, Teuchos::RCP<Function> > functionMap; functionMap[u1->ID()] = one; functionMap[u2->ID()] = zero; functionMap[sigma1->ID()] = Function::vectorize(zero,zero); functionMap[sigma2->ID()] = Function::vectorize(zero,zero); functionMap[p->ID()] = zero; backgroundFlow->projectOntoMesh(functionMap); //////////////////// DEFINE BILINEAR FORM /////////////////////// // // stress equation bf->addTerm( sigma1, tau1 ); bf->addTerm( sigma2, tau2 ); bf->addTerm( u1, tau1->div() ); bf->addTerm( u2, tau2->div() ); bf->addTerm( -u1hat, tau1->dot_normal() ); bf->addTerm( -u2hat, tau2->dot_normal() ); // momentum equation // bf->addTerm( Function::xPart(sigma1_prev)*u1, v1 ); // bf->addTerm( Function::yPart(sigma1_prev)*u2, v1 ); // bf->addTerm( Function::xPart(sigma2_prev)*u1, v2 ); // bf->addTerm( Function::yPart(sigma2_prev)*u2, v2 ); // bf->addTerm( beta*sigma1, v1); // bf->addTerm( beta*sigma2, v2); bf->addTerm( 1./Re*sigma1, v1->grad() ); bf->addTerm( 1./Re*sigma2, v2->grad() ); bf->addTerm( t1hat, v1); bf->addTerm( t2hat, v2); bf->addTerm( -p, v1->dx() ); bf->addTerm( -p, v2->dy() ); // continuity equation bf->addTerm( -u1, vc->dx() ); bf->addTerm( -u2, vc->dy() ); bf->addTerm( u1hat, vc->times_normal_x() ); bf->addTerm( u2hat, vc->times_normal_y() ); //////////////////// SPECIFY RHS /////////////////////// Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); // stress equation rhs->addTerm( -sigma1_prev * tau1 ); rhs->addTerm( -sigma2_prev * tau2 ); rhs->addTerm( -u1_prev * tau1->div() ); rhs->addTerm( -u2_prev * tau2->div() ); // momentum equation // rhs->addTerm( -beta*sigma1_prev * v1 ); // rhs->addTerm( -beta*sigma2_prev * v2 ); rhs->addTerm( -1./Re*sigma1_prev * v1->grad() ); rhs->addTerm( -1./Re*sigma2_prev * v2->grad() ); // continuity equation rhs->addTerm( u1_prev * vc->dx() ); rhs->addTerm( u2_prev * vc->dy() ); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// IPPtr ip = Teuchos::rcp(new IP); if (norm == 0) { ip = bf->graphNorm(); } else if (norm == 1) { // ip = bf->l2Norm(); } //////////////////// CREATE BCs /////////////////////// Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy ); SpatialFilterPtr left = Teuchos::rcp( new ConstantXBoundary(-1) ); SpatialFilterPtr right = Teuchos::rcp( new ConstantXBoundary(3) ); SpatialFilterPtr top = Teuchos::rcp( new ConstantYBoundary(1) ); SpatialFilterPtr bottom = Teuchos::rcp( new ConstantYBoundary(-1) ); SpatialFilterPtr circle = Teuchos::rcp( new CircleBoundary(radius) ); FunctionPtr boundaryU1 = Teuchos::rcp( new BoundaryU1 ); bc->addDirichlet(u1hat, left, boundaryU1); bc->addDirichlet(u2hat, left, zero); bc->addDirichlet(u1hat, right, boundaryU1); bc->addDirichlet(u2hat, right, zero); bc->addDirichlet(u1hat, top, zero); bc->addDirichlet(u2hat, top, zero); bc->addDirichlet(u1hat, bottom, zero); bc->addDirichlet(u2hat, bottom, zero); bc->addDirichlet(u1hat, circle, zero); bc->addDirichlet(u2hat, circle, zero); // zero mean constraint on pressure bc->addZeroMeanConstraint(p); Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); if (enforceLocalConservation) { solution->lagrangeConstraints()->addConstraint(u1hat->times_normal_x() + u2hat->times_normal_y() == zero); } // ==================== Register Solutions ========================== mesh->registerSolution(solution); mesh->registerSolution(backgroundFlow); // Teuchos::RCP< RefinementHistory > refHistory = Teuchos::rcp( new RefinementHistory ); // mesh->registerObserver(refHistory); //////////////////// SOLVE & REFINE /////////////////////// double energyThreshold = 0.2; // for mesh refinements RefinementStrategy refinementStrategy( solution, energyThreshold ); VTKExporter exporter(backgroundFlow, mesh, varFactory); ofstream errOut; ofstream fluxOut; if (commRank == 0) { errOut.open("stokeshemker_err.txt"); fluxOut.open("stokeshemker_flux.txt"); } errOut.precision(15); fluxOut.precision(15); // Cell IDs for flux calculations vector< pair<ElementPtr, int> > cellFace0; vector< pair<ElementPtr, int> > cellFace1; vector< pair<ElementPtr, int> > cellFace2; vector< pair<ElementPtr, int> > cellFace3; vector< pair<ElementPtr, int> > cellFace4; cellFace0.push_back(make_pair(mesh->getElement(12), 3)); cellFace0.push_back(make_pair(mesh->getElement(13), 3)); cellFace0.push_back(make_pair(mesh->getElement(14), 3)); cellFace0.push_back(make_pair(mesh->getElement(15), 3)); cellFace1.push_back(make_pair(mesh->getElement(12), 1)); cellFace1.push_back(make_pair(mesh->getElement(13), 1)); cellFace1.push_back(make_pair(mesh->getElement(14), 1)); cellFace1.push_back(make_pair(mesh->getElement(15), 1)); cellFace2.push_back(make_pair(mesh->getElement(11), 1)); cellFace2.push_back(make_pair(mesh->getElement(2 ), 0)); cellFace2.push_back(make_pair(mesh->getElement(5 ), 2)); cellFace2.push_back(make_pair(mesh->getElement(16), 1)); cellFace3.push_back(make_pair(mesh->getElement(9 ), 3)); cellFace3.push_back(make_pair(mesh->getElement(8 ), 3)); cellFace3.push_back(make_pair(mesh->getElement(19), 3)); cellFace3.push_back(make_pair(mesh->getElement(18), 3)); cellFace4.push_back(make_pair(mesh->getElement(9 ), 1)); cellFace4.push_back(make_pair(mesh->getElement(8 ), 1)); cellFace4.push_back(make_pair(mesh->getElement(19), 1)); cellFace4.push_back(make_pair(mesh->getElement(18), 1)); // // for loading refinement history // if (replayFile.length() > 0) { // RefinementHistory refHistory; // replayFile = replayFile; // refHistory.loadFromFile(replayFile); // refHistory.playback(mesh); // int numElems = mesh->numActiveElements(); // if (commRank==0){ // double minSideLength = meshInfo.getMinCellSideLength() ; // cout << "after replay, num elems = " << numElems << " and min side length = " << minSideLength << endl; // } // } for (int i = 0; i < uniformRefinements; i++) refinementStrategy.hRefineUniformly(mesh); double nonlinearRelativeEnergyTolerance = 1e-5; // used to determine convergence of the nonlinear solution for (int refIndex=0; refIndex<=numRefs; refIndex++) { double L2Update = 1e10; int iterCount = 0; while (L2Update > nonlinearRelativeEnergyTolerance && iterCount < maxNewtonIterations) { solution->solve(false); double u1L2Update = solution->L2NormOfSolutionGlobal(u1->ID()); double u2L2Update = solution->L2NormOfSolutionGlobal(u2->ID()); L2Update = sqrt(u1L2Update*u1L2Update + u2L2Update*u2L2Update); double energy_error = solution->energyErrorTotal(); // Check local conservation if (commRank == 0) { FunctionPtr n = Function::normal(); FunctionPtr u1_prev = Function::solution(u1hat, solution); FunctionPtr u2_prev = Function::solution(u2hat, solution); FunctionPtr flux = u1_prev*n->x() + u2_prev*n->y(); Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, mesh); // cout << "Mass flux: Largest Local = " << fluxImbalances[0] // << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl; errOut << mesh->numGlobalDofs() << " " << energy_error << " " << fluxImbalances[0] << " " << fluxImbalances[1] << " " << fluxImbalances[2] << endl; double massFlux0 = computeFluxOverElementSides(u1_prev, mesh, cellFace0); double massFlux1 = computeFluxOverElementSides(u1_prev, mesh, cellFace1); double massFlux2 = computeFluxOverElementSides(u1_prev, mesh, cellFace2); double massFlux3 = computeFluxOverElementSides(u1_prev, mesh, cellFace3); double massFlux4 = computeFluxOverElementSides(u1_prev, mesh, cellFace4); fluxOut << massFlux0 << " " << massFlux1 << " " << massFlux2 << " " << massFlux3 << " " << massFlux4 << " " << endl; cout << "Total mass flux = " << massFlux0 << " " << massFlux1 << " " << massFlux2 << " " << massFlux3 << " " << massFlux4 << " " << endl; // if (saveFile.length() > 0) { // std::ostringstream oss; // oss << string(saveFile) << refIndex ; // cout << "on refinement " << refIndex << " saving mesh file to " << oss.str() << endl; // refHistory->saveToFile(oss.str()); // } } // line search algorithm double alpha = 1.0; // bool useLineSearch = false; // int posEnrich = 5; // amount of enriching of grid points on which to ensure positivity // if (useLineSearch){ // to enforce positivity of density rho // double lineSearchFactor = .5; double eps = .001; // arbitrary // FunctionPtr rhoTemp = Function::solution(rho,backgroundFlow) + alpha*Function::solution(rho,solution) - Function::constant(eps); // FunctionPtr eTemp = Function::solution(e,backgroundFlow) + alpha*Function::solution(e,solution) - Function::constant(eps); // bool rhoIsPositive = rhoTemp->isPositive(mesh,posEnrich); // bool eIsPositive = eTemp->isPositive(mesh,posEnrich); // int iter = 0; int maxIter = 20; // while (!(rhoIsPositive && eIsPositive) && iter < maxIter){ // alpha = alpha*lineSearchFactor; // rhoTemp = Function::solution(rho,backgroundFlow) + alpha*Function::solution(rho,solution); // eTemp = Function::solution(e,backgroundFlow) + alpha*Function::solution(e,solution); // rhoIsPositive = rhoTemp->isPositive(mesh,posEnrich); // eIsPositive = eTemp->isPositive(mesh,posEnrich); // iter++; // } // if (commRank==0 && alpha < 1.0){ // cout << "line search factor alpha = " << alpha << endl; // } // } backgroundFlow->addSolution(solution, alpha, false, true); iterCount++; // if (commRank == 0) // cout << "L2 Norm of Update = " << L2Update << endl; } if (commRank == 0) cout << endl; if (commRank == 0) { stringstream outfile; outfile << "stokeshemker" << uniformRefinements << "_" << refIndex; exporter.exportSolution(outfile.str()); } if (refIndex < numRefs) refinementStrategy.refine(commRank==0); // print to console on commRank 0 } if (commRank == 0) { errOut.close(); fluxOut.close(); } return 0; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); int rank=mpiSession.getRank(); int numProcs=mpiSession.getNProc(); #else int rank = 0; int numProcs = 1; #endif //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactory varFactory; VarPtr tau = varFactory.testVar("\\tau", HDIV); VarPtr v = varFactory.testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory.traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory.fieldVar("u"); VarPtr sigma1 = varFactory.fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory.fieldVar("\\sigma_2"); vector<double> beta_const; double c = sqrt(1.25); beta_const.push_back(1.0/c); beta_const.push_back(.5/c); // FunctionPtr beta = Teuchos::rcp(new Beta()); double eps = 1e-3; //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(-uhat, tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( beta_const * u, - v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // quasi-optimal norm IPPtr qoptIP = Teuchos::rcp(new IP); qoptIP->addTerm( v ); qoptIP->addTerm( tau / eps + v->grad() ); qoptIP->addTerm( beta_const * v->grad() - tau->div() ); // robust test norm IPPtr robIP = Teuchos::rcp(new IP); FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(eps) ); if (enforceLocalConservation) { robIP->addZeroMeanTerm( v ); } else { robIP->addTerm( ip_scaling * v ); } robIP->addTerm( sqrt(eps) * v->grad() ); bool useNewBC = false; FunctionPtr weight = Teuchos::rcp( new SqrtWeight(eps) ); if (useNewBC) { robIP->addTerm( beta_const * v->grad() ); robIP->addTerm( tau->div() ); robIP->addTerm( ip_scaling/sqrt(eps) * tau ); } else { robIP->addTerm( weight * beta_const * v->grad() ); robIP->addTerm( weight * tau->div() ); robIP->addTerm( weight * ip_scaling/sqrt(eps) * tau ); } //////////////////// SPECIFY RHS /////////////////////// FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); FunctionPtr f = zero; rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// CREATE BCs /////////////////////// Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy ); SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary ); SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary ); FunctionPtr u0 = Teuchos::rcp( new U0 ); FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); bc->addDirichlet(uhat, outflowBoundary, zero); if (useNewBC) { bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, beta_const*n*u0); } else { SpatialFilterPtr inflowBot = Teuchos::rcp( new InflowSquareBot ); SpatialFilterPtr inflowLeft = Teuchos::rcp( new InflowSquareLeft ); bc->addDirichlet(beta_n_u_minus_sigma_n, inflowLeft, beta_const*n*u0); bc->addDirichlet(uhat, inflowBot, u0); } // Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp(new PenaltyConstraints); // pc->addConstraint(uhat==u0,inflowBoundary); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int H1Order = 2, pToAdd = 2; FieldContainer<double> quadPoints(4,2); quadPoints(0,0) = 0.0; // x1 quadPoints(0,1) = 0.0; // y1 quadPoints(1,0) = 1.0; quadPoints(1,1) = 0.0; quadPoints(2,0) = 1.0; quadPoints(2,1) = 1.0; quadPoints(3,0) = 0.0; quadPoints(3,1) = 1.0; int nCells = 2; int horizontalCells = nCells, verticalCells = nCells; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(quadPoints, horizontalCells, verticalCells, confusionBF, H1Order, H1Order+pToAdd); //////////////////// SOLVE & REFINE /////////////////////// Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) ); // solution->setFilter(pc); if (enforceLocalConservation) { FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero); } double energyThreshold = 0.2; // for mesh refinements RefinementStrategy refinementStrategy( solution, energyThreshold ); int numRefs = 9; for (int refIndex=0; refIndex<numRefs; refIndex++) { solution->solve(false); refinementStrategy.refine(rank==0); // print to console on rank 0 } // one more solve on the final refined mesh: solution->solve(false); if (rank==0) { solution->writeToVTK("Hughes.vtu",min(H1Order+1,4)); solution->writeFluxesToFile(uhat->ID(), "uhat.dat"); cout << "wrote files: u.m, uhat.dat\n"; } return 0; }
void Projector::projectFunctionOntoBasis(FieldContainer<double> &basisCoefficients, FunctionPtr fxn, BasisPtr basis, BasisCachePtr basisCache, IPPtr ip, VarPtr v, set<int> fieldIndicesToSkip) { CellTopoPtr cellTopo = basis->domainTopology(); DofOrderingPtr dofOrderPtr = Teuchos::rcp(new DofOrdering()); if (! fxn.get()) { TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument, "fxn cannot be null!"); } int cardinality = basis->getCardinality(); int numCells = basisCache->getPhysicalCubaturePoints().dimension(0); int numDofs = cardinality - fieldIndicesToSkip.size(); if (numDofs==0) { // we're skipping all the fields, so just initialize basisCoefficients to 0 and return basisCoefficients.resize(numCells,cardinality); basisCoefficients.initialize(0); return; } FieldContainer<double> gramMatrix(numCells,cardinality,cardinality); FieldContainer<double> ipVector(numCells,cardinality); // fake a DofOrdering DofOrderingPtr dofOrdering = Teuchos::rcp( new DofOrdering ); if (! basisCache->isSideCache()) { dofOrdering->addEntry(v->ID(), basis, v->rank()); } else { dofOrdering->addEntry(v->ID(), basis, v->rank(), basisCache->getSideIndex()); } ip->computeInnerProductMatrix(gramMatrix, dofOrdering, basisCache); ip->computeInnerProductVector(ipVector, v, fxn, dofOrdering, basisCache); // cout << "physical points for projection:\n" << basisCache->getPhysicalCubaturePoints(); // cout << "gramMatrix:\n" << gramMatrix; // cout << "ipVector:\n" << ipVector; map<int,int> oldToNewIndices; if (fieldIndicesToSkip.size() > 0) { // the code to do with fieldIndicesToSkip might not be terribly efficient... // (but it's not likely to be called too frequently) int i_indices_skipped = 0; for (int i=0; i<cardinality; i++) { int new_index; if (fieldIndicesToSkip.find(i) != fieldIndicesToSkip.end()) { i_indices_skipped++; new_index = -1; } else { new_index = i - i_indices_skipped; } oldToNewIndices[i] = new_index; } FieldContainer<double> gramMatrixFiltered(numCells,numDofs,numDofs); FieldContainer<double> ipVectorFiltered(numCells,numDofs); // now filter out the values that we're to skip for (int cellIndex=0; cellIndex<numCells; cellIndex++) { for (int i=0; i<cardinality; i++) { int i_filtered = oldToNewIndices[i]; if (i_filtered == -1) { continue; } ipVectorFiltered(cellIndex,i_filtered) = ipVector(cellIndex,i); for (int j=0; j<cardinality; j++) { int j_filtered = oldToNewIndices[j]; if (j_filtered == -1) { continue; } gramMatrixFiltered(cellIndex,i_filtered,j_filtered) = gramMatrix(cellIndex,i,j); } } } // cout << "gramMatrixFiltered:\n" << gramMatrixFiltered; // cout << "ipVectorFiltered:\n" << ipVectorFiltered; gramMatrix = gramMatrixFiltered; ipVector = ipVectorFiltered; } for (int cellIndex=0; cellIndex<numCells; cellIndex++){ // TODO: rewrite to take advantage of SerialDenseWrapper... Epetra_SerialDenseSolver solver; Epetra_SerialDenseMatrix A(Copy, &gramMatrix(cellIndex,0,0), gramMatrix.dimension(2), gramMatrix.dimension(2), gramMatrix.dimension(1)); // stride -- fc stores in row-major order (a.o.t. SDM) Epetra_SerialDenseVector b(Copy, &ipVector(cellIndex,0), ipVector.dimension(1)); Epetra_SerialDenseVector x(gramMatrix.dimension(1)); solver.SetMatrix(A); int info = solver.SetVectors(x,b); if (info!=0){ cout << "projectFunctionOntoBasis: failed to SetVectors with error " << info << endl; } bool equilibrated = false; if (solver.ShouldEquilibrate()){ solver.EquilibrateMatrix(); solver.EquilibrateRHS(); equilibrated = true; } info = solver.Solve(); if (info!=0){ cout << "projectFunctionOntoBasis: failed to solve with error " << info << endl; } if (equilibrated) { int successLocal = solver.UnequilibrateLHS(); if (successLocal != 0) { cout << "projection: unequilibration FAILED with error: " << successLocal << endl; } } basisCoefficients.resize(numCells,cardinality); for (int i=0;i<cardinality;i++) { if (fieldIndicesToSkip.size()==0) { basisCoefficients(cellIndex,i) = x(i); } else { int i_filtered = oldToNewIndices[i]; if (i_filtered==-1) { basisCoefficients(cellIndex,i) = 0.0; } else { basisCoefficients(cellIndex,i) = x(i_filtered); } } } } }
void Boundary::bcsToImpose(FieldContainer<GlobalIndexType> &globalIndices, FieldContainer<Scalar> &globalValues, TBC<Scalar> &bc, DofInterpreter* dofInterpreter) { set< GlobalIndexType > rankLocalCells = _mesh->cellIDsInPartition(); map< GlobalIndexType, double> bcGlobalIndicesAndValues; for (GlobalIndexType cellID : rankLocalCells) { bcsToImpose(bcGlobalIndicesAndValues, bc, cellID, dofInterpreter); } singletonBCsToImpose(bcGlobalIndicesAndValues, bc, dofInterpreter); // ****** New, tag-based BC imposition follows ****** map< GlobalIndexType, double> bcTagGlobalIndicesAndValues; map< int, vector<pair<VarPtr, TFunctionPtr<Scalar>>>> tagBCs = bc.getDirichletTagBCs(); // keys are tags MeshTopology* meshTopo = dynamic_cast<MeshTopology*>(_mesh->getTopology().get()); TEUCHOS_TEST_FOR_EXCEPTION(!meshTopo, std::invalid_argument, "pure MeshTopologyViews are not yet supported by new tag-based BC imposition"); for (auto tagBC : tagBCs) { int tagID = tagBC.first; vector<EntitySetPtr> entitySets = meshTopo->getEntitySetsForTagID(DIRICHLET_SET_TAG_NAME, tagID); for (EntitySetPtr entitySet : entitySets) { // get rank-local cells that match the entity set: set<IndexType> matchingCellIDs = entitySet->cellIDsThatMatch(_mesh->getTopology(), rankLocalCells); for (IndexType cellID : matchingCellIDs) { ElementTypePtr elemType = _mesh->getElementType(cellID); BasisCachePtr basisCache = BasisCache::basisCacheForCell(_mesh, cellID); for (auto varFunctionPair : tagBC.second) { VarPtr var = varFunctionPair.first; FunctionPtr f = varFunctionPair.second; vector<int> sideOrdinals = elemType->trialOrderPtr->getSidesForVarID(var->ID()); for (int sideOrdinal : sideOrdinals) { BasisPtr basis = elemType->trialOrderPtr->getBasis(var->ID(), sideOrdinal); bool isVolume = basis->domainTopology()->getDimension() == _mesh->getDimension(); for (int d=0; d<_mesh->getDimension(); d++) { vector<unsigned> matchingSubcells; if (isVolume) matchingSubcells = entitySet->subcellOrdinals(_mesh->getTopology(), cellID, d); else { CellTopoPtr cellTopo = elemType->cellTopoPtr; int sideDim = cellTopo->getDimension() - 1; vector<unsigned> matchingSubcellsOnSide = entitySet->subcellOrdinalsOnSide(_mesh->getTopology(), cellID, sideOrdinal, d); for (unsigned sideSubcellOrdinal : matchingSubcellsOnSide) { unsigned cellSubcellOrdinal = CamelliaCellTools::subcellOrdinalMap(cellTopo, sideDim, sideOrdinal, d, sideSubcellOrdinal); matchingSubcells.push_back(cellSubcellOrdinal); } } if (matchingSubcells.size() == 0) continue; // nothing to impose /* What follows - projecting the function onto the basis on the whole domain - is more expensive than necessary, in the general case: we can do the projection on just the matching subcells, and if we had a way of taking the restriction of a basis to a subcell of the domain, then we could avoid computing the whole basis as well. But for now, this should work, and it's simple to implement. */ BasisCachePtr basisCacheForImposition = isVolume ? basisCache : basisCache->getSideBasisCache(sideOrdinal); int numCells = 1; FieldContainer<double> basisCoefficients(numCells,basis->getCardinality()); Projector<double>::projectFunctionOntoBasisInterpolating(basisCoefficients, f, basis, basisCacheForImposition); basisCoefficients.resize(basis->getCardinality()); set<GlobalIndexType> matchingGlobalIndices; for (unsigned matchingSubcell : matchingSubcells) { set<GlobalIndexType> subcellGlobalIndices = dofInterpreter->globalDofIndicesForVarOnSubcell(var->ID(),cellID,d,matchingSubcell); matchingGlobalIndices.insert(subcellGlobalIndices.begin(),subcellGlobalIndices.end()); } FieldContainer<double> globalData; FieldContainer<GlobalIndexType> globalDofIndices; // dofInterpreter->interpretLocalBasisCoefficients(cellID, var->ID(), sideOrdinal, basisCoefficientsToImpose, globalData, globalDofIndices); dofInterpreter->interpretLocalBasisCoefficients(cellID, var->ID(), sideOrdinal, basisCoefficients, globalData, globalDofIndices); for (int globalDofOrdinal=0; globalDofOrdinal<globalDofIndices.size(); globalDofOrdinal++) { GlobalIndexType globalDofIndex = globalDofIndices(globalDofOrdinal); if (matchingGlobalIndices.find(globalDofIndex) != matchingGlobalIndices.end()) bcTagGlobalIndicesAndValues[globalDofIndex] = globalData(globalDofOrdinal); } } } } } } } // merge tag-based and legacy BC maps double tol = 1e-15; for (auto tagEntry : bcTagGlobalIndicesAndValues) { if (bcGlobalIndicesAndValues.find(tagEntry.first) != bcGlobalIndicesAndValues.end()) { // then check that they match, within tolerance double diff = abs(bcGlobalIndicesAndValues[tagEntry.first] - tagEntry.second); TEUCHOS_TEST_FOR_EXCEPTION(diff > tol, std::invalid_argument, "Incompatible BC entries encountered"); } else { bcGlobalIndicesAndValues[tagEntry.first] = tagEntry.second; } } globalIndices.resize(bcGlobalIndicesAndValues.size()); globalValues.resize(bcGlobalIndicesAndValues.size()); globalIndices.initialize(0); globalValues.initialize(0.0); int entryOrdinal = 0; for (auto bcEntry : bcGlobalIndicesAndValues) { globalIndices[entryOrdinal] = bcEntry.first; globalValues[entryOrdinal] = bcEntry.second; entryOrdinal++; } }
bool FunctionTests::testValuesDottedWithTensor() { bool success = true; vector< FunctionPtr > vectorFxns; double xValue = 3, yValue = 4; FunctionPtr simpleVector = Function::vectorize(Function::constant(xValue), Function::constant(yValue)); vectorFxns.push_back(simpleVector); FunctionPtr x = Function::xn(1); FunctionPtr y = Function::yn(1); vectorFxns.push_back( Function::vectorize(x*x, x*y) ); VGPStokesFormulation vgpStokes = VGPStokesFormulation(1.0); BFPtr bf = vgpStokes.bf(); int h1Order = 1; MeshPtr mesh = MeshFactory::quadMesh(bf, h1Order); int cellID=0; // the only cell BasisCachePtr basisCache = BasisCache::basisCacheForCell(mesh, cellID); for (int i=0; i<vectorFxns.size(); i++) { FunctionPtr vectorFxn_i = vectorFxns[i]; for (int j=0; j<vectorFxns.size(); j++) { FunctionPtr vectorFxn_j = vectorFxns[j]; FunctionPtr dotProduct = vectorFxn_i * vectorFxn_j; FunctionPtr expectedDotProduct = vectorFxn_i->x() * vectorFxn_j->x() + vectorFxn_i->y() * vectorFxn_j->y(); if (! expectedDotProduct->equals(dotProduct, basisCache)) { cout << "testValuesDottedWithTensor() failed: expected dot product does not match dotProduct.\n"; success = false; double tol = 1e-14; reportFunctionValueDifferences(dotProduct, expectedDotProduct, basisCache, tol); } } } // now, let's try the same thing, but for a LinearTerm dot product VarFactoryPtr vf = VarFactory::varFactory(); VarPtr v = vf->testVar("v", HGRAD); DofOrderingPtr dofOrdering = Teuchos::rcp( new DofOrdering(CellTopology::quad()) ); shards::CellTopology quad_4(shards::getCellTopologyData<shards::Quadrilateral<4> >() ); BasisPtr basis = BasisFactory::basisFactory()->getBasis(h1Order, quad_4.getKey(), Camellia::FUNCTION_SPACE_HGRAD); dofOrdering->addEntry(v->ID(), basis, v->rank()); int numCells = 1; int numFields = basis->getCardinality(); for (int i=0; i<vectorFxns.size(); i++) { FunctionPtr f_i = vectorFxns[i]; LinearTermPtr lt_i = f_i * v; LinearTermPtr lt_i_x = f_i->x() * v; LinearTermPtr lt_i_y = f_i->y() * v; for (int j=0; j<vectorFxns.size(); j++) { FunctionPtr f_j = vectorFxns[j]; LinearTermPtr lt_j = f_j * v; LinearTermPtr lt_j_x = f_j->x() * v; LinearTermPtr lt_j_y = f_j->y() * v; FieldContainer<double> values(numCells,numFields,numFields); lt_i->integrate(values, dofOrdering, lt_j, dofOrdering, basisCache); FieldContainer<double> values_expected(numCells,numFields,numFields); lt_i_x->integrate(values_expected,dofOrdering,lt_j_x,dofOrdering,basisCache); lt_i_y->integrate(values_expected,dofOrdering,lt_j_y,dofOrdering,basisCache); double tol = 1e-14; double maxDiff = 0; if (!fcsAgree(values, values_expected, tol, maxDiff)) { cout << "FunctionTests::testValuesDottedWithTensor: "; cout << "dot product and sum of the products of scalar components differ by maxDiff " << maxDiff; cout << " in LinearTerm::integrate().\n"; success = false; } } } // // finally, let's try the same sort of thing, but now with a vector-valued basis // BasisPtr vectorBasisTemp = BasisFactory::basisFactory()->getBasis(h1Order, quad_4.getKey(), Camellia::FUNCTION_SPACE_VECTOR_HGRAD); // VectorBasisPtr vectorBasis = Teuchos::rcp( (VectorizedBasis<double, FieldContainer<double> > *)vectorBasisTemp.get(),false); // // BasisPtr compBasis = vectorBasis->getComponentBasis(); // // // create a new v, and a new dofOrdering // VarPtr v_vector = vf->testVar("v_vector", VECTOR_HGRAD); // dofOrdering = Teuchos::rcp( new DofOrdering ); // dofOrdering->addEntry(v_vector->ID(), vectorBasis, v_vector->rank()); // // DofOrderingPtr dofOrderingComp = Teuchos::rcp( new DofOrdering ); // dofOrderingComp->addEntry(v->ID(), compBasis, v->rank()); // return success; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); int rank=mpiSession.getRank(); int numProcs=mpiSession.getNProc(); #else int rank = 0; int numProcs = 1; #endif int polyOrder = 2; // define our manufactured solution or problem bilinear form: double epsilon = 1e-3; bool useTriangles = false; int pToAdd = 2; int nCells = 2; if ( argc > 1) { nCells = atoi(argv[1]); if (rank==0) { cout << "numCells = " << nCells << endl; } } int numSteps = 20; if ( argc > 2) { numSteps = atoi(argv[2]); if (rank==0) { cout << "num NR steps = " << numSteps << endl; } } int useHessian = 0; // defaults to "not use" if ( argc > 3) { useHessian = atoi(argv[3]); if (rank==0) { cout << "useHessian = " << useHessian << endl; } } int thresh = numSteps; // threshhold for when to apply linesearch/hessian if ( argc > 4) { thresh = atoi(argv[4]); if (rank==0) { cout << "thresh = " << thresh << endl; } } int H1Order = polyOrder + 1; double energyThreshold = 0.2; // for mesh refinements double nonlinearStepSize = 0.5; double nonlinearRelativeEnergyTolerance = 1e-8; // used to determine convergence of the nonlinear solution //////////////////////////////////////////////////////////////////// // DEFINE VARIABLES //////////////////////////////////////////////////////////////////// // new-style bilinear form definition VarFactory varFactory; VarPtr uhat = varFactory.traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_hat = varFactory.fluxVar("\\widehat{\\beta_n u - \\sigma_n}"); VarPtr u = varFactory.fieldVar("u"); VarPtr sigma1 = varFactory.fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory.fieldVar("\\sigma_2"); VarPtr tau = varFactory.testVar("\\tau",HDIV); VarPtr v = varFactory.testVar("v",HGRAD); BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // initialize bilinear form //////////////////////////////////////////////////////////////////// // CREATE MESH //////////////////////////////////////////////////////////////////// // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells, bf, H1Order, H1Order+pToAdd); mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC"))); //////////////////////////////////////////////////////////////////// // INITIALIZE BACKGROUND FLOW FUNCTIONS //////////////////////////////////////////////////////////////////// BCPtr nullBC = Teuchos::rcp((BC*)NULL); RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL); IPPtr nullIP = Teuchos::rcp((IP*)NULL); SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); vector<double> e1(2); // (1,0) e1[0] = 1; vector<double> e2(2); // (0,1) e2[1] = 1; FunctionPtr u_prev = Teuchos::rcp( new PreviousSolutionFunction(backgroundFlow, u) ); FunctionPtr beta = e1 * u_prev + Teuchos::rcp( new ConstantVectorFunction( e2 ) ); //////////////////////////////////////////////////////////////////// // DEFINE BILINEAR FORM //////////////////////////////////////////////////////////////////// // tau parts: // 1/eps (sigma, tau)_K + (u, div tau)_K - (u_hat, tau_n)_dK bf->addTerm(sigma1 / epsilon, tau->x()); bf->addTerm(sigma2 / epsilon, tau->y()); bf->addTerm(u, tau->div()); bf->addTerm( - uhat, tau->dot_normal() ); // v: // (sigma, grad v)_K - (sigma_hat_n, v)_dK - (u, beta dot grad v) + (u_hat * n dot beta, v)_dK bf->addTerm( sigma1, v->dx() ); bf->addTerm( sigma2, v->dy() ); bf->addTerm( -u, beta * v->grad()); bf->addTerm( beta_n_u_minus_sigma_hat, v); // ==================== SET INITIAL GUESS ========================== mesh->registerSolution(backgroundFlow); FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); FunctionPtr u0 = Teuchos::rcp( new U0 ); map<int, Teuchos::RCP<Function> > functionMap; functionMap[u->ID()] = u0; functionMap[sigma1->ID()] = zero; functionMap[sigma2->ID()] = zero; backgroundFlow->projectOntoMesh(functionMap); // ==================== END SET INITIAL GUESS ========================== //////////////////////////////////////////////////////////////////// // DEFINE INNER PRODUCT //////////////////////////////////////////////////////////////////// // function to scale the squared guy by epsilon/h FunctionPtr epsilonOverHScaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); IPPtr ip = Teuchos::rcp( new IP ); ip->addTerm( epsilonOverHScaling * (1.0/sqrt(epsilon))* tau); ip->addTerm( tau->div()); // ip->addTerm( epsilonOverHScaling * v ); ip->addTerm( v ); ip->addTerm( sqrt(epsilon) * v->grad() ); ip->addTerm(v->grad()); // ip->addTerm( beta * v->grad() ); //////////////////////////////////////////////////////////////////// // DEFINE RHS //////////////////////////////////////////////////////////////////// RHSPtr rhs = RHS::rhs(); FunctionPtr u_prev_squared_div2 = 0.5 * u_prev * u_prev; rhs->addTerm((e1 * u_prev_squared_div2 + e2 * u_prev) * v->grad() - u_prev * tau->div()); //////////////////////////////////////////////////////////////////// // DEFINE DIRICHLET BC //////////////////////////////////////////////////////////////////// FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); SpatialFilterPtr outflowBoundary = Teuchos::rcp( new TopBoundary); SpatialFilterPtr inflowBoundary = Teuchos::rcp( new NegatedSpatialFilter(outflowBoundary) ); BCPtr inflowBC = BC::bc(); FunctionPtr u0_squared_div_2 = 0.5 * u0 * u0; inflowBC->addDirichlet(beta_n_u_minus_sigma_hat,inflowBoundary, ( e1 * u0_squared_div_2 + e2 * u0) * n ); //////////////////////////////////////////////////////////////////// // CREATE SOLUTION OBJECT //////////////////////////////////////////////////////////////////// Teuchos::RCP<Solution> solution = Teuchos::rcp(new Solution(mesh, inflowBC, rhs, ip)); mesh->registerSolution(solution); //////////////////////////////////////////////////////////////////// // WARNING: UNFINISHED HESSIAN BIT //////////////////////////////////////////////////////////////////// VarFactory hessianVars = varFactory.getBubnovFactory(VarFactory::BUBNOV_TRIAL); VarPtr du = hessianVars.test(u->ID()); BFPtr hessianBF = Teuchos::rcp( new BF(hessianVars) ); // initialize bilinear form // FunctionPtr e_v = Function::constant(1.0); // dummy error rep function for now - should do nothing FunctionPtr u_current = Teuchos::rcp( new PreviousSolutionFunction(solution, u) ); FunctionPtr sig1_prev = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma1) ); FunctionPtr sig2_prev = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma2) ); FunctionPtr sig_prev = (e1*sig1_prev + e2*sig2_prev); FunctionPtr fnhat = Teuchos::rcp(new PreviousSolutionFunction(solution,beta_n_u_minus_sigma_hat)); FunctionPtr uhat_prev = Teuchos::rcp(new PreviousSolutionFunction(solution,uhat)); LinearTermPtr residual = Teuchos::rcp(new LinearTerm);// residual residual->addTerm(fnhat*v - (e1 * (u_prev_squared_div2 - sig1_prev) + e2 * (u_prev - sig2_prev)) * v->grad()); residual->addTerm((1/epsilon)*sig_prev * tau + u_prev * tau->div() - uhat_prev*tau->dot_normal()); LinearTermPtr Bdu = Teuchos::rcp(new LinearTerm);// residual Bdu->addTerm( u_current*tau->div() - u_current*(beta*v->grad())); Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ip, residual)); Teuchos::RCP<RieszRep> duRiesz = Teuchos::rcp(new RieszRep(mesh, ip, Bdu)); riesz->computeRieszRep(); FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,riesz)); e_v->writeValuesToMATLABFile(mesh, "e_v.m"); FunctionPtr posErrPart = Teuchos::rcp(new PositivePart(e_v->dx())); hessianBF->addTerm(e_v->dx()*u,du); // hessianBF->addTerm(posErrPart*u,du); Teuchos::RCP<HessianFilter> hessianFilter = Teuchos::rcp(new HessianFilter(hessianBF)); if (useHessian) { solution->setWriteMatrixToFile(true,"hessianStiffness.dat"); } else { solution->setWriteMatrixToFile(true,"stiffness.dat"); } Teuchos::RCP< LineSearchStep > LS_Step = Teuchos::rcp(new LineSearchStep(riesz)); ofstream out; out.open("Burgers.txt"); double NL_residual = 9e99; for (int i = 0; i<numSteps; i++) { solution->solve(false); // do one solve to initialize things... double stepLength = 1.0; stepLength = LS_Step->stepSize(backgroundFlow,solution, NL_residual); if (useHessian) { solution->setFilter(hessianFilter); } backgroundFlow->addSolution(solution,stepLength); NL_residual = LS_Step->getNLResidual(); if (rank==0) { cout << "NL residual after adding = " << NL_residual << " with step size " << stepLength << endl; out << NL_residual << endl; // saves initial NL error } } out.close(); //////////////////////////////////////////////////////////////////// // DEFINE REFINEMENT STRATEGY //////////////////////////////////////////////////////////////////// Teuchos::RCP<RefinementStrategy> refinementStrategy; refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold)); int numRefs = 0; Teuchos::RCP<NonlinearStepSize> stepSize = Teuchos::rcp(new NonlinearStepSize(nonlinearStepSize)); Teuchos::RCP<NonlinearSolveStrategy> solveStrategy; solveStrategy = Teuchos::rcp( new NonlinearSolveStrategy(backgroundFlow, solution, stepSize, nonlinearRelativeEnergyTolerance)); //////////////////////////////////////////////////////////////////// // SOLVE //////////////////////////////////////////////////////////////////// for (int refIndex=0; refIndex<numRefs; refIndex++) { solveStrategy->solve(rank==0); // print to console on rank 0 refinementStrategy->refine(rank==0); // print to console on rank 0 } // solveStrategy->solve(rank==0); if (rank==0) { backgroundFlow->writeToVTK("Burgers.vtu",min(H1Order+1,4)); solution->writeFluxesToFile(uhat->ID(), "burgers.dat"); cout << "wrote solution files" << endl; } return 0; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); choice::MpiArgs args( argc, argv ); #else choice::Args args( argc, argv ); #endif int rank = Teuchos::GlobalMPISession::getRank(); int numProcs = Teuchos::GlobalMPISession::getNProc(); int nCells = args.Input<int>("--nCells", "num cells",2); int numRefs = args.Input<int>("--numRefs","num adaptive refinements",0); int numPreRefs = args.Input<int>("--numPreRefs","num preemptive adaptive refinements",0); int order = args.Input<int>("--order","order of approximation",2); double eps = args.Input<double>("--epsilon","diffusion parameter",1e-2); double energyThreshold = args.Input<double>("-energyThreshold","energy thresh for adaptivity", .5); double rampHeight = args.Input<double>("--rampHeight","ramp height at x = 2", 0.0); double ipSwitch = args.Input<double>("--ipSwitch","point at which to switch to graph norm", 0.0); // default to 0 to remain on robust norm bool useAnisotropy = args.Input<bool>("--useAnisotropy","aniso flag ", false); int H1Order = order+1; int pToAdd = args.Input<int>("--pToAdd","test space enrichment", 2); FunctionPtr zero = Function::constant(0.0); FunctionPtr one = Function::constant(1.0); FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); vector<double> e1,e2; e1.push_back(1.0);e1.push_back(0.0); e2.push_back(0.0);e2.push_back(1.0); //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactory varFactory; VarPtr tau = varFactory.testVar("\\tau", HDIV); VarPtr v = varFactory.testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory.traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory.fieldVar("u"); VarPtr sigma1 = varFactory.fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory.fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); // first order term with magnitude alpha double alpha = 0.0; // confusionBF->addTerm(alpha * u, v); //////////////////// BUILD MESH /////////////////////// // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC"))); MeshInfo meshInfo(mesh); // gets info like cell measure, etc //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// IPPtr ip = Teuchos::rcp(new IP); /* // robust test norm FunctionPtr C_h = Teuchos::rcp( new EpsilonScaling(eps) ); FunctionPtr invH = Teuchos::rcp(new InvHScaling); FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling); FunctionPtr sqrtH = Teuchos::rcp(new SqrtHScaling); FunctionPtr hSwitch = Teuchos::rcp(new HSwitch(ipSwitch,mesh)); ip->addTerm(hSwitch*sqrt(eps) * v->grad() ); ip->addTerm(hSwitch*beta * v->grad() ); ip->addTerm(hSwitch*tau->div() ); // graph norm ip->addTerm( (one-hSwitch)*((1.0/eps) * tau + v->grad())); ip->addTerm( (one-hSwitch)*(beta * v->grad() - tau->div())); // regularizing terms ip->addTerm(C_h/sqrt(eps) * tau ); ip->addTerm(invSqrtH*v); */ // robust test norm IPPtr robIP = Teuchos::rcp(new IP); FunctionPtr C_h = Teuchos::rcp( new EpsilonScaling(eps) ); FunctionPtr invH = Teuchos::rcp(new InvHScaling); FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling); FunctionPtr sqrtH = Teuchos::rcp(new SqrtHScaling); FunctionPtr hSwitch = Teuchos::rcp(new HSwitch(ipSwitch,mesh)); robIP->addTerm(sqrt(eps) * v->grad() ); robIP->addTerm(beta * v->grad() ); robIP->addTerm(tau->div() ); // regularizing terms robIP->addTerm(C_h/sqrt(eps) * tau ); robIP->addTerm(invSqrtH*v); IPPtr graphIP = confusionBF->graphNorm(); graphIP->addTerm(invSqrtH*v); // graphIP->addTerm(C_h/sqrt(eps) * tau ); IPPtr switchIP = Teuchos::rcp(new IPSwitcher(robIP,graphIP,ipSwitch)); // rob IP for h>ipSwitch mesh size, graph norm o/w ip = switchIP; LinearTermPtr vVecLT = Teuchos::rcp(new LinearTerm); LinearTermPtr tauVecLT = Teuchos::rcp(new LinearTerm); vVecLT->addTerm(sqrt(eps)*v->grad()); tauVecLT->addTerm(C_h/sqrt(eps)*tau); LinearTermPtr restLT = Teuchos::rcp(new LinearTerm); restLT->addTerm(alpha*v); restLT->addTerm(invSqrtH*v); restLT = restLT + beta * v->grad(); restLT = restLT + tau->div(); //////////////////// SPECIFY RHS /////////////////////// Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); FunctionPtr f = zero; // f = one; rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// CREATE BCs /////////////////////// Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy ); SpatialFilterPtr Inflow = Teuchos::rcp(new LeftInflow); SpatialFilterPtr wallBoundary = Teuchos::rcp(new WallBoundary);//MeshUtilities::rampBoundary(rampHeight); SpatialFilterPtr freeStream = Teuchos::rcp(new FreeStreamBoundary); bc->addDirichlet(uhat, wallBoundary, one); // bc->addDirichlet(uhat, wallBoundary, Teuchos::rcp(new WallSmoothBC(eps))); bc->addDirichlet(beta_n_u_minus_sigma_n, Inflow, zero); bc->addDirichlet(beta_n_u_minus_sigma_n, freeStream, zero); //////////////////// SOLVE & REFINE /////////////////////// Teuchos::RCP<Solution> solution; solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); BCPtr nullBC = Teuchos::rcp((BC*)NULL); RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL); IPPtr nullIP = Teuchos::rcp((IP*)NULL); SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); mesh->registerSolution(backgroundFlow); // to trigger issue with p-refinements map<int, Teuchos::RCP<Function> > functionMap; functionMap[u->ID()] = Function::constant(3.14); backgroundFlow->projectOntoMesh(functionMap); // lower p to p = 1 at SINGULARITY only vector<int> ids; /* for (int i = 0;i<mesh->numActiveElements();i++){ bool cellIDset = false; int cellID = mesh->activeElements()[i]->cellID(); int elemOrder = mesh->cellPolyOrder(cellID)-1; FieldContainer<double> vv(4,2); mesh->verticesForCell(vv, cellID); bool vertexOnWall = false; bool vertexAtSingularity = false; for (int j = 0;j<4;j++){ if ((abs(vv(j,0)-.5) + abs(vv(j,1)))<1e-10){ vertexAtSingularity = true; cellIDset = true; } } if (!vertexAtSingularity && elemOrder<2 && !cellIDset ){ ids.push_back(cellID); cout << "celliD = " << cellID << endl; } } */ ids.push_back(1); ids.push_back(3); mesh->pRefine(ids); // to put order = 1 return 0; LinearTermPtr residual = rhs->linearTermCopy(); residual->addTerm(-confusionBF->testFunctional(solution)); RieszRepPtr rieszResidual = Teuchos::rcp(new RieszRep(mesh, ip, residual)); rieszResidual->computeRieszRep(); FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,rieszResidual)); FunctionPtr e_tau = Teuchos::rcp(new RepFunction(tau,rieszResidual)); map<int,FunctionPtr> errRepMap; errRepMap[v->ID()] = e_v; errRepMap[tau->ID()] = e_tau; FunctionPtr errTau = tauVecLT->evaluate(errRepMap,false); FunctionPtr errV = vVecLT->evaluate(errRepMap,false); FunctionPtr errRest = restLT->evaluate(errRepMap,false); FunctionPtr xErr = (errTau->x())*(errTau->x()) + (errV->dx())*(errV->dx()); FunctionPtr yErr = (errTau->y())*(errTau->y()) + (errV->dy())*(errV->dy()); FunctionPtr restErr = errRest*errRest; RefinementStrategy refinementStrategy( solution, energyThreshold ); //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // PRE REFINEMENTS //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// if (rank==0){ cout << "Number of pre-refinements = " << numPreRefs << endl; } for (int i =0;i<=numPreRefs;i++){ vector<ElementPtr> elems = mesh->activeElements(); vector<ElementPtr>::iterator elemIt; vector<int> wallCells; for (elemIt=elems.begin();elemIt != elems.end();elemIt++){ int cellID = (*elemIt)->cellID(); int numSides = mesh->getElement(cellID)->numSides(); FieldContainer<double> vertices(numSides,2); //for quads mesh->verticesForCell(vertices, cellID); bool cellIDset = false; for (int j = 0;j<numSides;j++){ if ((abs(vertices(j,0)-.5)<1e-7) && (abs(vertices(j,1))<1e-7) && !cellIDset){ // if at singularity, i.e. if a vertex is (1,0) wallCells.push_back(cellID); cellIDset = true; } } } if (i<numPreRefs){ refinementStrategy.refineCells(wallCells); } } double minSideLength = meshInfo.getMinCellSideLength() ; double minCellMeasure = meshInfo.getMinCellMeasure() ; if (rank==0){ cout << "after prerefs, sqrt min cell measure = " << sqrt(minCellMeasure) << ", min side length = " << minSideLength << endl; } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// VTKExporter exporter(solution, mesh, varFactory); for (int refIndex=0;refIndex<numRefs;refIndex++){ if (rank==0){ cout << "on ref index " << refIndex << endl; } rieszResidual->computeRieszRep(); // in preparation to get anisotropy vector<int> cellIDs; refinementStrategy.getCellsAboveErrorThreshhold(cellIDs); map<int,double> energyError = solution->energyError(); map<int,double> xErrMap = xErr->cellIntegrals(cellIDs,mesh,5,true); map<int,double> yErrMap = yErr->cellIntegrals(cellIDs,mesh,5,true); map<int,double> restErrMap = restErr->cellIntegrals(cellIDs,mesh,5,true); for (vector<ElementPtr>::iterator elemIt = mesh->activeElements().begin();elemIt!=mesh->activeElements().end();elemIt++){ int cellID = (*elemIt)->cellID(); double err = xErrMap[cellID]+ yErrMap[cellID] + restErrMap[cellID]; // if (rank==0) // cout << "err thru LT = " << sqrt(err) << ", while energy err = " << energyError[cellID] << endl; } /* map<int,double> ratio,xErr,yErr; vector<ElementPtr> elems = mesh->activeElements(); for (vector<ElementPtr>::iterator elemIt = elems.begin();elemIt!=elems.end();elemIt++){ int cellID = (*elemIt)->cellID(); ratio[cellID] = 0.0; xErr[cellID] = 0.0; yErr[cellID] = 0.0; if (std::find(cellIDs.begin(),cellIDs.end(),cellID)!=cellIDs.end()){ // if this cell is above energy thresh ratio[cellID] = yErrMap[cellID]/xErrMap[cellID]; xErr[cellID] = xErrMap[cellID]; yErr[cellID] = yErrMap[cellID]; } } FunctionPtr ratioFxn = Teuchos::rcp(new EnergyErrorFunction(ratio)); FunctionPtr xErrFxn = Teuchos::rcp(new EnergyErrorFunction(xErr)); FunctionPtr yErrFxn = Teuchos::rcp(new EnergyErrorFunction(yErr)); exporter.exportFunction(ratioFxn, string("ratio")+oss.str()); exporter.exportFunction(xErrFxn, string("xErr")+oss.str()); exporter.exportFunction(yErrFxn, string("yErr")+oss.str()); */ if (useAnisotropy){ refinementStrategy.refine(rank==0,xErrMap,yErrMap); //anisotropic refinements }else{ refinementStrategy.refine(rank==0); // no anisotropy } // lower p to p = 1 at SINGULARITY only vector<int> ids; for (int i = 0;i<mesh->numActiveElements();i++){ int cellID = mesh->activeElements()[i]->cellID(); int elemOrder = mesh->cellPolyOrder(cellID)-1; FieldContainer<double> vv(4,2); mesh->verticesForCell(vv, cellID); bool vertexOnWall = false; bool vertexAtSingularity = false; for (int j = 0;j<4;j++){ if ((abs(vv(j,0)-.5) + abs(vv(j,1)))<1e-10) vertexAtSingularity = true; } if (!vertexAtSingularity && elemOrder<2){ ids.push_back(cellID); } } mesh->pRefine(ids); // to put order = 1 /* if (elemOrder>1){ if (vertexAtSingularity){ vector<int> ids; ids.push_back(cellID); mesh->pRefine(ids,1-(elemOrder-1)); // to put order = 1 // mesh->pRefine(ids); // to put order = 1 if (rank==0) cout << "p unrefining elem with elemOrder = " << elemOrder << endl; } }else{ if (!vertexAtSingularity){ vector<int> ids; ids.push_back(cellID); mesh->pRefine(ids,2-elemOrder); } } */ double minSideLength = meshInfo.getMinCellSideLength() ; if (rank==0) cout << "minSideLength is " << minSideLength << endl; solution->condensedSolve(); std::ostringstream oss; oss << refIndex; } // final solve on final mesh solution->setWriteMatrixToFile(true,"K.mat"); solution->condensedSolve(); //////////////////////////////////////////////////////////////////////////////////////////////////////////// // CHECK CONDITIONING //////////////////////////////////////////////////////////////////////////////////////////////////////////// bool checkConditioning = true; if (checkConditioning){ double minSideLength = meshInfo.getMinCellSideLength() ; StandardAssembler assembler(solution); double maxCond = 0.0; int maxCellID = 0; for (int i = 0;i<mesh->numActiveElements();i++){ int cellID = mesh->getActiveElement(i)->cellID(); FieldContainer<double> ipMat = assembler.getIPMatrix(mesh->getElement(cellID)); double cond = SerialDenseWrapper::getMatrixConditionNumber(ipMat); if (cond>maxCond){ maxCond = cond; maxCellID = cellID; } } if (rank==0){ cout << "cell ID " << maxCellID << " has minCellLength " << minSideLength << " and condition estimate " << maxCond << endl; } string ipMatName = string("ipMat.mat"); ElementPtr maxCondElem = mesh->getElement(maxCellID); FieldContainer<double> ipMat = assembler.getIPMatrix(maxCondElem); SerialDenseWrapper::writeMatrixToMatlabFile(ipMatName,ipMat); } //////////////////// print to file /////////////////////// if (rank==0){ exporter.exportSolution(string("robustIP")); cout << endl; } return 0; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); int rank=mpiSession.getRank(); int numProcs=mpiSession.getNProc(); #else int rank = 0; int numProcs = 1; #endif //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactory varFactory; VarPtr tau = varFactory.testVar("\\tau", HDIV); VarPtr v = varFactory.testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory.traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory.fieldVar("u"); VarPtr sigma1 = varFactory.fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory.fieldVar("\\sigma_2"); vector<double> beta_const; beta_const.push_back(1.0); beta_const.push_back(0.0); // FunctionPtr beta = Teuchos::rcp(new Beta()); double eps = 1e-2; //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(-uhat, tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( beta_const * u, - v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // mathematician's norm IPPtr mathIP = Teuchos::rcp(new IP()); mathIP->addTerm(tau); mathIP->addTerm(tau->div()); mathIP->addTerm(v); mathIP->addTerm(v->grad()); // quasi-optimal norm IPPtr qoptIP = Teuchos::rcp(new IP); qoptIP->addTerm( v ); qoptIP->addTerm( tau / eps + v->grad() ); qoptIP->addTerm( beta_const * v->grad() - tau->div() ); // robust test norm IPPtr robIP = Teuchos::rcp(new IP); FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(eps) ); if (enforceLocalConservation) { robIP->addZeroMeanTerm( v ); } else { robIP->addTerm( ip_scaling * v ); } robIP->addTerm( sqrt(eps) * v->grad() ); robIP->addTerm( beta_const * v->grad() ); robIP->addTerm( tau->div() ); robIP->addTerm( ip_scaling/sqrt(eps) * tau ); //////////////////// SPECIFY RHS /////////////////////// FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); FunctionPtr f = zero; rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// CREATE BCs /////////////////////// Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy ); // SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary ); // SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary ); SpatialFilterPtr inflowTop = Teuchos::rcp(new InflowLshapeTop); SpatialFilterPtr inflowBot = Teuchos::rcp(new InflowLshapeBottom); SpatialFilterPtr LshapeBot1 = Teuchos::rcp(new LshapeBottom1); SpatialFilterPtr LshapeBot2 = Teuchos::rcp(new LshapeBottom2); SpatialFilterPtr Top = Teuchos::rcp(new LshapeTop); SpatialFilterPtr Out = Teuchos::rcp(new LshapeOutflow); FunctionPtr u0 = Teuchos::rcp( new U0 ); bc->addDirichlet(uhat, LshapeBot1, u0); bc->addDirichlet(uhat, LshapeBot2, u0); bc->addDirichlet(uhat, Top, u0); bc->addDirichlet(uhat, Out, u0); FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); // bc->addDirichlet(uhat, inflowBot, u0); FunctionPtr u0Top = Teuchos::rcp(new ParabolicProfile); FunctionPtr u0Bot = Teuchos::rcp(new LinearProfile); bc->addDirichlet(beta_n_u_minus_sigma_n, inflowTop, beta_const*n*u0Top); // bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBot, beta_const*n*u0Bot); bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBot, beta_const*n*zero); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int H1Order = 2, pToAdd = 2; /* FieldContainer<double> quadPoints(4,2); quadPoints(0,0) = 0.0; // x1 quadPoints(0,1) = 0.0; // y1 quadPoints(1,0) = 1.0; quadPoints(1,1) = 0.0; quadPoints(2,0) = 1.0; quadPoints(2,1) = 1.0; quadPoints(3,0) = 0.0; quadPoints(3,1) = 1.0; int horizontalCells = 1, verticalCells = 1; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(quadPoints, horizontalCells, verticalCells, confusionBF, H1Order, H1Order+pToAdd); */ Teuchos::RCP<Mesh> mesh; // L-shaped domain for double ramp problem FieldContainer<double> A(2), B(2), C(2), D(2), E(2), F(2), G(2), H(2); A(0) = 0.0; A(1) = 0.5; B(0) = 0.0; B(1) = 1.0; C(0) = 0.5; C(1) = 1.0; D(0) = 1.0; D(1) = 1.0; E(0) = 1.0; E(1) = 0.5; F(0) = 1.0; F(1) = 0.0; G(0) = 0.5; G(1) = 0.0; H(0) = 0.5; H(1) = 0.5; vector<FieldContainer<double> > vertices; vertices.push_back(A); int A_index = 0; vertices.push_back(B); int B_index = 1; vertices.push_back(C); int C_index = 2; vertices.push_back(D); int D_index = 3; vertices.push_back(E); int E_index = 4; vertices.push_back(F); int F_index = 5; vertices.push_back(G); int G_index = 6; vertices.push_back(H); int H_index = 7; vector< vector<int> > elementVertices; vector<int> el1, el2, el3, el4, el5; // left patch: el1.push_back(A_index); el1.push_back(H_index); el1.push_back(C_index); el1.push_back(B_index); // top right: el2.push_back(H_index); el2.push_back(E_index); el2.push_back(D_index); el2.push_back(C_index); // bottom right: el3.push_back(G_index); el3.push_back(F_index); el3.push_back(E_index); el3.push_back(H_index); elementVertices.push_back(el1); elementVertices.push_back(el2); elementVertices.push_back(el3); mesh = Teuchos::rcp( new Mesh(vertices, elementVertices, confusionBF, H1Order, pToAdd) ); //////////////////// SOLVE & REFINE /////////////////////// // Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, qoptIP) ); Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) ); // solution->setFilter(pc); if (enforceLocalConservation) { FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero); } double energyThreshold = 0.2; // for mesh refinements RefinementStrategy refinementStrategy( solution, energyThreshold ); int numRefs = 8; for (int refIndex=0; refIndex<numRefs; refIndex++) { solution->solve(false); refinementStrategy.refine(rank==0); // print to console on rank 0 } // one more solve on the final refined mesh: solution->solve(false); if (rank==0) { solution->writeToVTK("step.vtu",min(H1Order+1,4)); solution->writeFluxesToFile(uhat->ID(), "uhat.dat"); cout << "wrote files: u.m, uhat.dat\n"; } return 0; }
int main(int argc, char *argv[]) { // Process command line arguments #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); int rank=mpiSession.getRank(); int numProcs=mpiSession.getNProc(); #else int rank = 0; int numProcs = 1; #endif //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactory varFactory; VarPtr v = varFactory.testVar("v", HGRAD); // define trial variables VarPtr beta_n_u_hat = varFactory.fluxVar("\\widehat{\\beta \\cdot n }"); VarPtr u = varFactory.fieldVar("u"); FunctionPtr beta = Teuchos::rcp(new Beta()); //////////////////// BUILD MESH /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // define nodes for mesh FieldContainer<double> meshBoundary(4,2); meshBoundary(0,0) = -1.0; // x1 meshBoundary(0,1) = -1.0; // y1 meshBoundary(1,0) = 1.0; meshBoundary(1,1) = -1.0; meshBoundary(2,0) = 1.0; meshBoundary(2,1) = 1.0; meshBoundary(3,0) = -1.0; meshBoundary(3,1) = 1.0; int horizontalCells = 32, verticalCells = 32; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(meshBoundary, horizontalCells, verticalCells, confusionBF, H1Order, H1Order+pToAdd); //////////////////////////////////////////////////////////////////// // INITIALIZE FLOW FUNCTIONS //////////////////////////////////////////////////////////////////// BCPtr nullBC = Teuchos::rcp((BC*)NULL); RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL); IPPtr nullIP = Teuchos::rcp((IP*)NULL); SolutionPtr prevTimeFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); SolutionPtr flowResidual = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); FunctionPtr u_prev_time = Teuchos::rcp( new PreviousSolutionFunction(prevTimeFlow, u) ); //////////////////// DEFINE BILINEAR FORM /////////////////////// Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); FunctionPtr invDt = Teuchos::rcp(new ScalarParamFunction(1.0/dt)); // v terms: confusionBF->addTerm( beta * u, - v->grad() ); confusionBF->addTerm( beta_n_u_hat, v); confusionBF->addTerm( u, invDt*v ); rhs->addTerm( u_prev_time * invDt * v ); //////////////////// SPECIFY RHS /////////////////////// FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) ); rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr ip = confusionBF->graphNorm(); // IPPtr ip = Teuchos::rcp(new IP); // ip->addTerm(v); // ip->addTerm(invDt*v - beta*v->grad()); //////////////////// CREATE BCs /////////////////////// Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy ); SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary(beta) ); FunctionPtr u0 = Teuchos::rcp( new ConstantScalarFunction(0) ); FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); bc->addDirichlet(beta_n_u_hat, inflowBoundary, beta*n*u0); Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); // ==================== Register Solutions ========================== mesh->registerSolution(solution); mesh->registerSolution(prevTimeFlow); mesh->registerSolution(flowResidual); // ==================== SET INITIAL GUESS ========================== FunctionPtr u_init = Teuchos::rcp(new InitialCondition()); map<int, Teuchos::RCP<Function> > functionMap; functionMap[u->ID()] = u_init; prevTimeFlow->projectOntoMesh(functionMap); //////////////////// SOLVE & REFINE /////////////////////// // if (enforceLocalConservation) { // // FunctionPtr parity = Teuchos::rcp<Function>( new SideParityFunction ); // // LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(parity, beta_n_u_minus_sigma_n) ); // LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(1.0, beta_n_u_minus_sigma_n) ); // LinearTermPtr sourcePart = Teuchos::rcp<LinearTerm>( new LinearTerm(invDt, u) ); // conservedQuantity->addTerm(sourcePart, true); // solution->lagrangeConstraints()->addConstraint(conservedQuantity == u_prev_time * invDt); // } int timestepCount = 0; double time_tol = 1e-8; double L2_time_residual = 1e9; while((L2_time_residual > time_tol) && (timestepCount < numTimeSteps)) { solution->solve(false); // Subtract solutions to get residual flowResidual->setSolution(solution); flowResidual->addSolution(prevTimeFlow, -1.0); L2_time_residual = flowResidual->L2NormOfSolutionGlobal(u->ID()); if (rank == 0) { cout << endl << "Timestep: " << timestepCount << ", dt = " << dt << ", Time residual = " << L2_time_residual << endl; stringstream outfile; outfile << "rotatingCylinder_" << timestepCount; solution->writeToVTK(outfile.str(), 5); // Check local conservation FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_hat) ); FunctionPtr source = Teuchos::rcp( new PreviousSolutionFunction(flowResidual, u) ); source = invDt * source; Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, source, varFactory, mesh); cout << "Mass flux: Largest Local = " << fluxImbalances[0] << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl; } prevTimeFlow->setSolution(solution); // reset previous time solution to current time sol timestepCount++; } return 0; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); choice::MpiArgs args( argc, argv ); #else choice::Args args( argc, argv ); #endif int commRank = Teuchos::GlobalMPISession::getRank(); int numProcs = Teuchos::GlobalMPISession::getNProc(); // Required arguments int numRefs = args.Input<int>("--numRefs", "number of refinement steps"); bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation"); bool steady = args.Input<bool>("--steady", "run steady rather than transient"); // Optional arguments (have defaults) double dt = args.Input("--dt", "time step", 0.25); int numTimeSteps = args.Input("--nt", "number of time steps", 20); halfWidth = args.Input("--halfWidth", "half width of inlet profile", 1.0); args.Process(); //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactory varFactory; VarPtr v = varFactory.testVar("v", HGRAD); // define trial variables VarPtr beta_n_u_hat = varFactory.fluxVar("\\widehat{\\beta \\cdot n }"); VarPtr u = varFactory.fieldVar("u"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// BUILD MESH /////////////////////// BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // define nodes for mesh FieldContainer<double> meshBoundary(4,2); meshBoundary(0,0) = 0.0; // x1 meshBoundary(0,1) = -2.0; // y1 meshBoundary(1,0) = 4.0; meshBoundary(1,1) = -2.0; meshBoundary(2,0) = 4.0; meshBoundary(2,1) = 2.0; meshBoundary(3,0) = 0.0; meshBoundary(3,1) = 2.0; int horizontalCells = 8, verticalCells = 8; // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(meshBoundary, horizontalCells, verticalCells, bf, H1Order, H1Order+pToAdd); //////////////////////////////////////////////////////////////////// // INITIALIZE FLOW FUNCTIONS //////////////////////////////////////////////////////////////////// BCPtr nullBC = Teuchos::rcp((BC*)NULL); RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL); IPPtr nullIP = Teuchos::rcp((IP*)NULL); SolutionPtr prevTimeFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); SolutionPtr flowResidual = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) ); FunctionPtr u_prev_time = Teuchos::rcp( new PreviousSolutionFunction(prevTimeFlow, u) ); //////////////////// DEFINE BILINEAR FORM /////////////////////// Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); FunctionPtr invDt = Teuchos::rcp(new ScalarParamFunction(1.0/dt)); // v terms: bf->addTerm( beta * u, - v->grad() ); bf->addTerm( beta_n_u_hat, v); if (!steady) { bf->addTerm( u, invDt*v ); rhs->addTerm( u_prev_time * invDt * v ); } //////////////////// SPECIFY RHS /////////////////////// FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) ); rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// IPPtr ip = bf->graphNorm(); // ip->addTerm(v); // ip->addTerm(beta*v->grad()); //////////////////// CREATE BCs /////////////////////// Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy ); SpatialFilterPtr lBoundary = Teuchos::rcp( new LeftBoundary ); FunctionPtr u1 = Teuchos::rcp( new InletBC ); bc->addDirichlet(beta_n_u_hat, lBoundary, -u1); Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) ); // ==================== Register Solutions ========================== mesh->registerSolution(solution); mesh->registerSolution(prevTimeFlow); mesh->registerSolution(flowResidual); // ==================== SET INITIAL GUESS ========================== double u_free = 0.0; map<int, Teuchos::RCP<Function> > functionMap; // functionMap[u->ID()] = Teuchos::rcp( new ConInletBC functionMap[u->ID()] = Teuchos::rcp( new InletBC ); prevTimeFlow->projectOntoMesh(functionMap); //////////////////// SOLVE & REFINE /////////////////////// if (enforceLocalConservation) { if (steady) { FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); solution->lagrangeConstraints()->addConstraint(beta_n_u_hat == zero); } else { // FunctionPtr parity = Teuchos::rcp<Function>( new SideParityFunction ); // LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(parity, beta_n_u_minus_sigma_n) ); LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(1.0, beta_n_u_hat) ); LinearTermPtr sourcePart = Teuchos::rcp<LinearTerm>( new LinearTerm(invDt, u) ); conservedQuantity->addTerm(sourcePart, true); solution->lagrangeConstraints()->addConstraint(conservedQuantity == u_prev_time * invDt); } } double energyThreshold = 0.2; // for mesh refinements RefinementStrategy refinementStrategy( solution, energyThreshold ); VTKExporter exporter(solution, mesh, varFactory); for (int refIndex=0; refIndex<=numRefs; refIndex++) { if (steady) { solution->solve(false); if (commRank == 0) { stringstream outfile; outfile << "Convection_" << refIndex; exporter.exportSolution(outfile.str()); // Check local conservation FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_hat) ); FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) ); Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh); cout << "Mass flux: Largest Local = " << fluxImbalances[0] << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl; } } else { int timestepCount = 0; double time_tol = 1e-8; double L2_time_residual = 1e9; // cout << L2_time_residual <<" "<< time_tol << timestepCount << numTimeSteps << endl; while((L2_time_residual > time_tol) && (timestepCount < numTimeSteps)) { solution->solve(false); // Subtract solutions to get residual flowResidual->setSolution(solution); flowResidual->addSolution(prevTimeFlow, -1.0); L2_time_residual = flowResidual->L2NormOfSolutionGlobal(u->ID()); if (commRank == 0) { cout << endl << "Timestep: " << timestepCount << ", dt = " << dt << ", Time residual = " << L2_time_residual << endl; stringstream outfile; outfile << "TransientConvection_" << refIndex << "-" << timestepCount; exporter.exportSolution(outfile.str()); // Check local conservation FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_hat) ); FunctionPtr source = Teuchos::rcp( new PreviousSolutionFunction(flowResidual, u) ); source = -invDt * source; Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, source, varFactory, mesh); cout << "Mass flux: Largest Local = " << fluxImbalances[0] << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl; } prevTimeFlow->setSolution(solution); // reset previous time solution to current time sol timestepCount++; } } if (refIndex < numRefs) refinementStrategy.refine(commRank==0); // print to console on commRank 0 } return 0; }
bool LinearTermTests::testIntegrateMixedBasis() { bool success = true; //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactoryPtr varFactory = VarFactory::varFactory(); VarPtr v = varFactory->testVar("v", HGRAD); // define trial variables VarPtr beta_n_u_hat = varFactory->fluxVar("\\widehat{\\beta \\cdot n }"); VarPtr u = varFactory->fieldVar("u"); vector<double> beta; beta.push_back(1.0); beta.push_back(1.0); //////////////////// DEFINE BILINEAR FORM/Mesh /////////////////////// BFPtr convectionBF = Teuchos::rcp( new BF(varFactory) ); // v terms: convectionBF->addTerm( -u, beta * v->grad() ); convectionBF->addTerm( beta_n_u_hat, v); convectionBF->addTerm( u, v); // build CONSTANT SINGLE ELEMENT MESH int order = 0; int H1Order = order+1; int pToAdd = 1; int nCells = 2; // along a side // create a pointer to a new mesh: Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,convectionBF, H1Order, H1Order+pToAdd); ElementTypePtr elemType = mesh->getElement(0)->elementType(); BasisCachePtr basisCache = Teuchos::rcp(new BasisCache(elemType, mesh)); vector<GlobalIndexType> cellIDs; vector< ElementPtr > allElems = mesh->activeElements(); vector< ElementPtr >::iterator elemIt; for (elemIt=allElems.begin(); elemIt!=allElems.end(); elemIt++) { cellIDs.push_back((*elemIt)->cellID()); } bool createSideCacheToo = true; basisCache->setPhysicalCellNodes(mesh->physicalCellNodesGlobal(elemType), cellIDs, createSideCacheToo); int numTrialDofs = elemType->trialOrderPtr->totalDofs(); int numCells = mesh->numActiveElements(); double areaPerCell = 1.0 / numCells; FieldContainer<double> integrals(numCells,numTrialDofs); FieldContainer<double> expectedIntegrals(numCells,numTrialDofs); double sidelengthOfCell = 1.0 / nCells; DofOrderingPtr trialOrdering = elemType->trialOrderPtr; int dofForField = trialOrdering->getDofIndex(u->ID(), 0); vector<int> dofsForFlux; const vector<int>* sidesForFlux = &trialOrdering->getSidesForVarID(beta_n_u_hat->ID()); for (vector<int>::const_iterator sideIt = sidesForFlux->begin(); sideIt != sidesForFlux->end(); sideIt++) { int sideIndex = *sideIt; dofsForFlux.push_back(trialOrdering->getDofIndex(beta_n_u_hat->ID(), 0, sideIndex)); } for (int cellIndex = 0; cellIndex < numCells; cellIndex++) { expectedIntegrals(cellIndex, dofForField) = areaPerCell; for (vector<int>::iterator dofIt = dofsForFlux.begin(); dofIt != dofsForFlux.end(); dofIt++) { int fluxDofIndex = *dofIt; expectedIntegrals(cellIndex, fluxDofIndex) = sidelengthOfCell; } } // cout << "expectedIntegrals:\n" << expectedIntegrals; // setup: with constant degrees of freedom, we expect that the integral of int_dK (flux) + int_K (field) will be ones for each degree of freedom, assuming the basis functions for these constants field/flux variables are just C = 1.0. // //On a unit square, int_K (constant) = 1.0, and int_dK (u_i) = 1, for i = 0,...,3. LinearTermPtr lt = 1.0 * beta_n_u_hat; LinearTermPtr field = 1.0 * u; lt->addTerm(field,true); lt->integrate(integrals, elemType->trialOrderPtr, basisCache); double tol = 1e-12; double maxDiff; success = TestSuite::fcsAgree(integrals,expectedIntegrals,tol,maxDiff); if (success==false) { cout << "Failed testIntegrateMixedBasis with maxDiff = " << maxDiff << endl; } return success; }
int main(int argc, char *argv[]) { #ifdef HAVE_MPI Teuchos::GlobalMPISession mpiSession(&argc, &argv,0); choice::MpiArgs args( argc, argv ); #else choice::Args args( argc, argv ); #endif int rank = Teuchos::GlobalMPISession::getRank(); int numProcs = Teuchos::GlobalMPISession::getNProc(); int nCells = args.Input<int>("--nCells", "num cells",2); int numRefs = args.Input<int>("--numRefs","num adaptive refinements",0); int numPreRefs = args.Input<int>("--numPreRefs","num preemptive adaptive refinements",0); int order = args.Input<int>("--order","order of approximation",2); double eps = args.Input<double>("--epsilon","diffusion parameter",1e-2); double energyThreshold = args.Input<double>("-energyThreshold","energy thresh for adaptivity", .5); double rampHeight = args.Input<double>("--rampHeight","ramp height at x = 2", 0.0); bool useAnisotropy = args.Input<bool>("--useAnisotropy","aniso flag ", false); FunctionPtr zero = Function::constant(0.0); FunctionPtr one = Function::constant(1.0); FunctionPtr n = Teuchos::rcp( new UnitNormalFunction ); vector<double> e1,e2; e1.push_back(1.0); e1.push_back(0.0); e2.push_back(0.0); e2.push_back(1.0); //////////////////// DECLARE VARIABLES /////////////////////// // define test variables VarFactory varFactory; VarPtr tau = varFactory.testVar("\\tau", HDIV); VarPtr v = varFactory.testVar("v", HGRAD); // define trial variables VarPtr uhat = varFactory.traceVar("\\widehat{u}"); VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}"); VarPtr u = varFactory.fieldVar("u"); VarPtr sigma1 = varFactory.fieldVar("\\sigma_1"); VarPtr sigma2 = varFactory.fieldVar("\\sigma_2"); vector<double> beta; beta.push_back(1.0); beta.push_back(0.0); //////////////////// DEFINE BILINEAR FORM /////////////////////// BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) ); // tau terms: confusionBF->addTerm(sigma1 / eps, tau->x()); confusionBF->addTerm(sigma2 / eps, tau->y()); confusionBF->addTerm(u, tau->div()); confusionBF->addTerm(uhat, -tau->dot_normal()); // v terms: confusionBF->addTerm( sigma1, v->dx() ); confusionBF->addTerm( sigma2, v->dy() ); confusionBF->addTerm( -u, beta * v->grad() ); confusionBF->addTerm( beta_n_u_minus_sigma_n, v); // first order term with magnitude alpha double alpha = 0.0; confusionBF->addTerm(alpha * u, v); //////////////////// DEFINE INNER PRODUCT(S) /////////////////////// // robust test norm IPPtr robIP = Teuchos::rcp(new IP); FunctionPtr C_h = Teuchos::rcp( new EpsilonScaling(eps) ); FunctionPtr invH = Teuchos::rcp(new InvHScaling); FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling); FunctionPtr sqrtH = Teuchos::rcp(new SqrtHScaling); robIP->addTerm(v*alpha); robIP->addTerm(invSqrtH*v); // robIP->addTerm(v); robIP->addTerm(sqrt(eps) * v->grad() ); robIP->addTerm(beta * v->grad() ); robIP->addTerm(tau->div() ); robIP->addTerm(C_h/sqrt(eps) * tau ); LinearTermPtr vVecLT = Teuchos::rcp(new LinearTerm); LinearTermPtr tauVecLT = Teuchos::rcp(new LinearTerm); vVecLT->addTerm(sqrt(eps)*v->grad()); tauVecLT->addTerm(C_h/sqrt(eps)*tau); LinearTermPtr restLT = Teuchos::rcp(new LinearTerm); restLT->addTerm(alpha*v); restLT->addTerm(invSqrtH*v); restLT = restLT + beta * v->grad(); restLT = restLT + tau->div(); //////////////////// SPECIFY RHS /////////////////////// Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy ); FunctionPtr f = zero; // f = one; rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary! //////////////////// CREATE BCs /////////////////////// Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy ); // SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary ); // SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary); // bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, zero); // bc->addDirichlet(uhat, outflowBoundary, zero); SpatialFilterPtr rampInflow = Teuchos::rcp(new LeftInflow); SpatialFilterPtr rampBoundary = MeshUtilities::rampBoundary(rampHeight); SpatialFilterPtr freeStream = Teuchos::rcp(new FreeStreamBoundary); SpatialFilterPtr outflowBoundary = Teuchos::rcp(new OutflowBoundary); bc->addDirichlet(uhat, rampBoundary, one); // bc->addDirichlet(uhat, outflowBoundary, one); bc->addDirichlet(beta_n_u_minus_sigma_n, rampInflow, zero); bc->addDirichlet(beta_n_u_minus_sigma_n, freeStream, zero); //////////////////// BUILD MESH /////////////////////// // define nodes for mesh int H1Order = order+1; int pToAdd = 2; // create a pointer to a new mesh: // Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd); Teuchos::RCP<Mesh> mesh = MeshUtilities::buildRampMesh(rampHeight,confusionBF, H1Order, H1Order+pToAdd); mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC"))); //////////////////// SOLVE & REFINE /////////////////////// Teuchos::RCP<Solution> solution; solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) ); // solution->solve(false); solution->condensedSolve(); LinearTermPtr residual = rhs->linearTermCopy(); residual->addTerm(-confusionBF->testFunctional(solution)); RieszRepPtr rieszResidual = Teuchos::rcp(new RieszRep(mesh, robIP, residual)); rieszResidual->computeRieszRep(); FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,rieszResidual)); FunctionPtr e_tau = Teuchos::rcp(new RepFunction(tau,rieszResidual)); map<int,FunctionPtr> errRepMap; errRepMap[v->ID()] = e_v; errRepMap[tau->ID()] = e_tau; FunctionPtr errTau = tauVecLT->evaluate(errRepMap,false); FunctionPtr errV = vVecLT->evaluate(errRepMap,false); FunctionPtr errRest = restLT->evaluate(errRepMap,false); FunctionPtr xErr = (errTau->x())*(errTau->x()) + (errV->dx())*(errV->dx()); FunctionPtr yErr = (errTau->y())*(errTau->y()) + (errV->dy())*(errV->dy()); FunctionPtr restErr = errRest*errRest; RefinementStrategy refinementStrategy( solution, energyThreshold ); //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // PRE REFINEMENTS //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// if (rank==0) { cout << "Number of pre-refinements = " << numPreRefs << endl; } for (int i =0; i<=numPreRefs; i++) { vector<ElementPtr> elems = mesh->activeElements(); vector<ElementPtr>::iterator elemIt; vector<int> wallCells; for (elemIt=elems.begin(); elemIt != elems.end(); elemIt++) { int cellID = (*elemIt)->cellID(); int numSides = mesh->getElement(cellID)->numSides(); FieldContainer<double> vertices(numSides,2); //for quads mesh->verticesForCell(vertices, cellID); bool cellIDset = false; for (int j = 0; j<numSides; j++) { if ((abs(vertices(j,0)-1.0)<1e-7) && (abs(vertices(j,1))<1e-7) && !cellIDset) // if at singularity, i.e. if a vertex is (1,0) { wallCells.push_back(cellID); cellIDset = true; } } } if (i<numPreRefs) { refinementStrategy.refineCells(wallCells); } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// VTKExporter exporter(solution, mesh, varFactory); for (int refIndex=0; refIndex<numRefs; refIndex++) { if (rank==0) { cout << "on ref index " << refIndex << endl; } rieszResidual->computeRieszRep(); // in preparation to get anisotropy vector<int> cellIDs; refinementStrategy.getCellsAboveErrorThreshhold(cellIDs); map<int,double> energyError = solution->energyError(); map<int,double> xErrMap = xErr->cellIntegrals(cellIDs,mesh,5,true); map<int,double> yErrMap = yErr->cellIntegrals(cellIDs,mesh,5,true); map<int,double> restErrMap = restErr->cellIntegrals(cellIDs,mesh,5,true); for (vector<ElementPtr>::iterator elemIt = mesh->activeElements().begin(); elemIt!=mesh->activeElements().end(); elemIt++) { int cellID = (*elemIt)->cellID(); double err = xErrMap[cellID]+ yErrMap[cellID] + restErrMap[cellID]; if (rank==0) cout << "err thru LT = " << sqrt(err) << ", while energy err = " << energyError[cellID] << endl; } map<int,double> ratio,xErr,yErr; vector<ElementPtr> elems = mesh->activeElements(); for (vector<ElementPtr>::iterator elemIt = elems.begin(); elemIt!=elems.end(); elemIt++) { int cellID = (*elemIt)->cellID(); ratio[cellID] = 0.0; xErr[cellID] = 0.0; yErr[cellID] = 0.0; if (std::find(cellIDs.begin(),cellIDs.end(),cellID)!=cellIDs.end()) // if this cell is above energy thresh { ratio[cellID] = yErrMap[cellID]/xErrMap[cellID]; xErr[cellID] = xErrMap[cellID]; yErr[cellID] = yErrMap[cellID]; } } FunctionPtr ratioFxn = Teuchos::rcp(new EnergyErrorFunction(ratio)); FunctionPtr xErrFxn = Teuchos::rcp(new EnergyErrorFunction(xErr)); FunctionPtr yErrFxn = Teuchos::rcp(new EnergyErrorFunction(yErr)); std::ostringstream oss; oss << refIndex; exporter.exportFunction(ratioFxn, string("ratio")+oss.str()); exporter.exportFunction(xErrFxn, string("xErr")+oss.str()); exporter.exportFunction(yErrFxn, string("yErr")+oss.str()); if (useAnisotropy) { refinementStrategy.refine(rank==0,xErrMap,yErrMap); //anisotropic refinements } else { refinementStrategy.refine(rank==0); // no anisotropy } solution->condensedSolve(); } // final solve on final mesh solution->condensedSolve(); //////////////////// print to file /////////////////////// FunctionPtr orderFxn = Teuchos::rcp(new MeshPolyOrderFunction(mesh)); std::ostringstream oss; oss << nCells; if (rank==0) { exporter.exportSolution(string("robustIP")+oss.str()); exporter.exportFunction(orderFxn, "meshOrder"); cout << endl; } return 0; }
int main(int argc, char *argv[]) { #ifdef ENABLE_INTEL_FLOATING_POINT_EXCEPTIONS cout << "NOTE: enabling floating point exceptions for divide by zero.\n"; _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~_MM_MASK_INVALID); #endif Teuchos::GlobalMPISession mpiSession(&argc, &argv); int rank = Teuchos::GlobalMPISession::getRank(); #ifdef HAVE_MPI Epetra_MpiComm Comm(MPI_COMM_WORLD); //cout << "rank: " << rank << " of " << numProcs << endl; #else Epetra_SerialComm Comm; #endif Comm.Barrier(); // set breakpoint here to allow debugger attachment to other MPI processes than the one you automatically attached to. Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options double minTol = 1e-8; bool use3D = false; int refCount = 10; int k = 4; // poly order for field variables int delta_k = use3D ? 3 : 2; // test space enrichment int k_coarse = 0; bool useMumps = true; bool useGMGSolver = true; bool enforceOneIrregularity = true; bool useStaticCondensation = false; bool conformingTraces = false; bool useDiagonalScaling = false; // of the global stiffness matrix in GMGSolver bool printRefinementDetails = false; bool useWeightedGraphNorm = true; // graph norm scaled according to units, more or less int numCells = 2; int AztecOutputLevel = 1; int gmgMaxIterations = 10000; int smootherOverlap = 0; double relativeTol = 1e-6; double D = 1.0; // characteristic length scale cmdp.setOption("polyOrder",&k,"polynomial order for field variable u"); cmdp.setOption("delta_k", &delta_k, "test space polynomial order enrichment"); cmdp.setOption("k_coarse", &k_coarse, "polynomial order for field variables on coarse mesh"); cmdp.setOption("numRefs",&refCount,"number of refinements"); cmdp.setOption("D", &D, "domain dimension"); cmdp.setOption("useConformingTraces", "useNonConformingTraces", &conformingTraces); cmdp.setOption("enforceOneIrregularity", "dontEnforceOneIrregularity", &enforceOneIrregularity); cmdp.setOption("smootherOverlap", &smootherOverlap, "overlap for smoother"); cmdp.setOption("printRefinementDetails", "dontPrintRefinementDetails", &printRefinementDetails); cmdp.setOption("azOutput", &AztecOutputLevel, "Aztec output level"); cmdp.setOption("numCells", &numCells, "number of cells in the initial mesh"); cmdp.setOption("useScaledGraphNorm", "dontUseScaledGraphNorm", &useWeightedGraphNorm); // cmdp.setOption("gmgTol", &gmgTolerance, "tolerance for GMG convergence"); cmdp.setOption("relativeTol", &relativeTol, "Energy error-relative tolerance for iterative solver."); cmdp.setOption("gmgMaxIterations", &gmgMaxIterations, "tolerance for GMG convergence"); bool enhanceUField = false; cmdp.setOption("enhanceUField", "dontEnhanceUField", &enhanceUField); cmdp.setOption("useStaticCondensation", "dontUseStaticCondensation", &useStaticCondensation); if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) { #ifdef HAVE_MPI MPI_Finalize(); #endif return -1; } double width = D, height = D, depth = D; VarFactory varFactory; // fields: VarPtr u = varFactory.fieldVar("u", L2); VarPtr sigma = varFactory.fieldVar("\\sigma", VECTOR_L2); FunctionPtr n = Function::normal(); // traces: VarPtr u_hat; if (conformingTraces) { u_hat = varFactory.traceVar("\\widehat{u}", u); } else { cout << "Note: using non-conforming traces.\n"; u_hat = varFactory.traceVar("\\widehat{u}", u, L2); } VarPtr sigma_n_hat = varFactory.fluxVar("\\widehat{\\sigma}_{n}", sigma * n); // test functions: VarPtr tau = varFactory.testVar("\\tau", HDIV); VarPtr v = varFactory.testVar("v", HGRAD); BFPtr poissonBF = Teuchos::rcp( new BF(varFactory) ); FunctionPtr alpha = Function::constant(1); // viscosity // tau terms: poissonBF->addTerm(sigma / alpha, tau); poissonBF->addTerm(-u, tau->div()); // (sigma1, tau1) poissonBF->addTerm(u_hat, tau * n); // v terms: poissonBF->addTerm(- sigma, v->grad()); // (mu sigma1, grad v1) poissonBF->addTerm( sigma_n_hat, v); int horizontalCells = numCells, verticalCells = numCells, depthCells = numCells; vector<double> domainDimensions; domainDimensions.push_back(width); domainDimensions.push_back(height); vector<int> elementCounts; elementCounts.push_back(horizontalCells); elementCounts.push_back(verticalCells); if (use3D) { domainDimensions.push_back(depth); elementCounts.push_back(depthCells); } MeshPtr mesh, k0Mesh; int H1Order = k + 1; int H1Order_coarse = k_coarse + 1; if (!use3D) { Teuchos::ParameterList pl; map<int,int> trialOrderEnhancements; if (enhanceUField) { trialOrderEnhancements[u->ID()] = 1; } BFPtr poissonBilinearForm = poissonBF; pl.set("useMinRule", true); pl.set("bf",poissonBilinearForm); pl.set("H1Order", H1Order); pl.set("delta_k", delta_k); pl.set("horizontalElements", horizontalCells); pl.set("verticalElements", verticalCells); pl.set("divideIntoTriangles", false); pl.set("useConformingTraces", conformingTraces); pl.set("trialOrderEnhancements", &trialOrderEnhancements); pl.set("x0",(double)0); pl.set("y0",(double)0); pl.set("width", width); pl.set("height",height); mesh = MeshFactory::quadMesh(pl); pl.set("H1Order", H1Order_coarse); k0Mesh = MeshFactory::quadMesh(pl); } else { mesh = MeshFactory::rectilinearMesh(poissonBF, domainDimensions, elementCounts, H1Order, delta_k); k0Mesh = MeshFactory::rectilinearMesh(poissonBF, domainDimensions, elementCounts, H1Order_coarse, delta_k); } mesh->registerObserver(k0Mesh); // ensure that the k0 mesh refinements track those of the solution mesh RHSPtr rhs = RHS::rhs(); // zero FunctionPtr sin_pi_x = Teuchos::rcp( new Sin_ax(PI/D) ); FunctionPtr sin_pi_y = Teuchos::rcp( new Sin_ay(PI/D) ); FunctionPtr u_exact = sin_pi_x * sin_pi_y; FunctionPtr f = -(2.0 * PI * PI / (D * D)) * sin_pi_x * sin_pi_y; rhs->addTerm( f * v ); BCPtr bc = BC::bc(); SpatialFilterPtr boundary = SpatialFilter::allSpace(); bc->addDirichlet(u_hat, boundary, u_exact); IPPtr graphNorm; FunctionPtr h = Teuchos::rcp( new hFunction() ); if (useWeightedGraphNorm) { graphNorm = IP::ip(); graphNorm->addTerm( tau->div() ); // u graphNorm->addTerm( (h / alpha) * tau - h * v->grad() ); // sigma graphNorm->addTerm( v ); // boundary term (adjoint to u) graphNorm->addTerm( h * tau ); // // new effort, with the idea that the test norm should be considered in reference space, basically // graphNorm = IP::ip(); // graphNorm->addTerm( tau->div() ); // u // graphNorm->addTerm( tau / h - v->grad() ); // sigma // graphNorm->addTerm( v / h ); // boundary term (adjoint to u) // graphNorm->addTerm( tau / h ); } else { map<int, double> trialWeights; // on the squared terms in the trial space norm trialWeights[u->ID()] = 1.0 / (D * D); trialWeights[sigma->ID()] = 1.0; graphNorm = poissonBF->graphNorm(trialWeights, 1.0); // 1.0: weight on the L^2 terms } SolutionPtr solution = Solution::solution(mesh, bc, rhs, graphNorm); solution->setUseCondensedSolve(useStaticCondensation); mesh->registerSolution(solution); // sign up for projection of old solution onto refined cells. double energyThreshold = 0.2; RefinementStrategy refinementStrategy( solution, energyThreshold ); refinementStrategy.setReportPerCellErrors(true); refinementStrategy.setEnforceOneIrregularity(enforceOneIrregularity); Teuchos::RCP<Solver> coarseSolver, fineSolver; if (useMumps) { #ifdef HAVE_AMESOS_MUMPS coarseSolver = Teuchos::rcp( new MumpsSolver(512, true) ); #else cout << "useMumps=true, but MUMPS is not available!\n"; exit(0); #endif } else { coarseSolver = Teuchos::rcp( new KluSolver ); } GMGSolver* gmgSolver; if (useGMGSolver) { double tol = relativeTol; int maxIters = gmgMaxIterations; BCPtr zeroBCs = bc->copyImposingZero(); gmgSolver = new GMGSolver(zeroBCs, k0Mesh, graphNorm, mesh, solution->getDofInterpreter(), solution->getPartitionMap(), maxIters, tol, coarseSolver, useStaticCondensation); gmgSolver->setAztecOutput(AztecOutputLevel); gmgSolver->setUseConjugateGradient(true); gmgSolver->gmgOperator()->setSmootherType(GMGOperator::IFPACK_ADDITIVE_SCHWARZ); gmgSolver->gmgOperator()->setSmootherOverlap(smootherOverlap); fineSolver = Teuchos::rcp( gmgSolver ); } else { fineSolver = coarseSolver; } // if (rank==0) cout << "experimentally starting by solving with MUMPS on the fine mesh.\n"; // solution->solve( Teuchos::rcp( new MumpsSolver) ); solution->solve(fineSolver); #ifdef HAVE_EPETRAEXT_HDF5 ostringstream dir_name; dir_name << "poissonCavityFlow_k" << k; HDF5Exporter exporter(mesh,dir_name.str()); exporter.exportSolution(solution,varFactory,0); #endif #ifdef HAVE_AMESOS_MUMPS if (useMumps) coarseSolver = Teuchos::rcp( new MumpsSolver(512, true) ); #endif solution->reportTimings(); if (useGMGSolver) gmgSolver->gmgOperator()->reportTimings(); for (int refIndex=0; refIndex < refCount; refIndex++) { double energyError = solution->energyErrorTotal(); GlobalIndexType numFluxDofs = mesh->numFluxDofs(); if (rank==0) { cout << "Before refinement " << refIndex << ", energy error = " << energyError; cout << " (using " << numFluxDofs << " trace degrees of freedom)." << endl; } bool printToConsole = printRefinementDetails && (rank==0); refinementStrategy.refine(printToConsole); if (useStaticCondensation) { CondensedDofInterpreter* condensedDofInterpreter = dynamic_cast<CondensedDofInterpreter*>(solution->getDofInterpreter().get()); if (condensedDofInterpreter != NULL) { condensedDofInterpreter->reinitialize(); } } GlobalIndexType fineDofs = mesh->globalDofCount(); GlobalIndexType coarseDofs = k0Mesh->globalDofCount(); if (rank==0) { cout << "After refinement, coarse mesh has " << k0Mesh->numActiveElements() << " elements and " << coarseDofs << " dofs.\n"; cout << " Fine mesh has " << mesh->numActiveElements() << " elements and " << fineDofs << " dofs.\n"; } if (!use3D) { ostringstream fineMeshLocation, coarseMeshLocation; fineMeshLocation << "poissonFineMesh_k" << k << "_ref" << refIndex; GnuPlotUtil::writeComputationalMeshSkeleton(fineMeshLocation.str(), mesh, true); // true: label cells coarseMeshLocation << "poissonCoarseMesh_k" << k << "_ref" << refIndex; GnuPlotUtil::writeComputationalMeshSkeleton(coarseMeshLocation.str(), k0Mesh, true); // true: label cells } if (useGMGSolver) // create fresh fineSolver now that the meshes have changed: { #ifdef HAVE_AMESOS_MUMPS if (useMumps) coarseSolver = Teuchos::rcp( new MumpsSolver(512, true) ); #endif double tol = max(relativeTol * energyError, minTol); int maxIters = gmgMaxIterations; BCPtr zeroBCs = bc->copyImposingZero(); gmgSolver = new GMGSolver(zeroBCs, k0Mesh, graphNorm, mesh, solution->getDofInterpreter(), solution->getPartitionMap(), maxIters, tol, coarseSolver, useStaticCondensation); gmgSolver->setAztecOutput(AztecOutputLevel); gmgSolver->setUseDiagonalScaling(useDiagonalScaling); fineSolver = Teuchos::rcp( gmgSolver ); } solution->solve(fineSolver); solution->reportTimings(); if (useGMGSolver) gmgSolver->gmgOperator()->reportTimings(); #ifdef HAVE_EPETRAEXT_HDF5 exporter.exportSolution(solution,varFactory,refIndex+1); #endif } double energyErrorTotal = solution->energyErrorTotal(); GlobalIndexType numFluxDofs = mesh->numFluxDofs(); GlobalIndexType numGlobalDofs = mesh->numGlobalDofs(); if (rank==0) { cout << "Final mesh has " << mesh->numActiveElements() << " elements and " << numFluxDofs << " trace dofs ("; cout << numGlobalDofs << " total dofs, including fields).\n"; cout << "Final energy error: " << energyErrorTotal << endl; } #ifdef HAVE_EPETRAEXT_HDF5 exporter.exportSolution(solution,varFactory,0); #endif if (!use3D) { GnuPlotUtil::writeComputationalMeshSkeleton("poissonRefinedMesh", mesh, true); } coarseSolver = Teuchos::rcp((Solver*) NULL); // without this when useMumps = true and running on one rank, we see a crash on exit, which may have to do with MPI being finalized before coarseSolver is deleted. return 0; }
void ExactSolution::setSolutionFunction( VarPtr var, FunctionPtr varFunction ) { _exactFunctions[var->ID()] = varFunction; }