Пример #1
0
// Note that we accumulate into this multivector and fail unless every term of the given multivector is a geometric product.
// Every accumulated term will be a geometric product.
bool Multivector::GeometricProductMultiply( const Vector& vectorA, const Multivector& multivectorB )
{
	for( const SumOfTerms::Node* node = multivectorB.sumOfTerms.Head(); node; node = node->Next() )
	{
		const Term* term = node->data;
		if( term->productType != Term::GEOMETRIC_PRODUCT )
			return false;

		Term* newTerm = term->Clone();
		newTerm->productOfVectors.InsertBefore()->data = vectorA.Clone();
	}

	return false;
}
Пример #2
0
bool Multivector::Term::InnerProductMultiply( const Vector& vector, Multivector& multivector, bool vectorRight ) const
{
	if( productType != OUTER_PRODUCT )
		return false;

	if( productOfVectors.Count() == 0 )
	{
		Term* newTerm = new Term( OUTER_PRODUCT );
		newTerm->coeficient->Assign( *coeficient );
		newTerm->productOfVectors.InsertAfter()->data = vector.Clone();
		multivector.sumOfTerms.InsertAfter()->data = newTerm;
		return true;
	}

	bool negateNewTerms = false;
	if( vectorRight && productOfVectors.Count() % 2 == 0 )
		negateNewTerms = true;

	ProductOfVectors::Node* node = const_cast< ProductOfVectors* >( &productOfVectors )->Head();

	do
	{
		ProductOfVectors::Node* nextNode = node->Next();

		const_cast< ProductOfVectors* >( &productOfVectors )->Remove( node );

		Term* newTerm = Clone();
		multivector.sumOfTerms.InsertAfter()->data = newTerm;

		Scalar* innerProductScalar = theBilinearForm->InnerProduct( vector.name, node->data->name );
		if( !newTerm->coeficient->AssignProduct( *newTerm->coeficient, *innerProductScalar ) )
			return false;

		if( negateNewTerms )
			newTerm->coeficient->Negate();

		if( nextNode )
			const_cast< ProductOfVectors* >( &productOfVectors )->InsertBefore( nextNode, node );
		else
			const_cast< ProductOfVectors* >( &productOfVectors )->InsertAfter( 0, node );

		node = nextNode;
	}
	while( node );

	return true;
}
Пример #3
0
// Note that we accumulate into this multivector and fail unless every term of the given multivector is an outer product.
// Every accumulated term will be an outer product.
bool Multivector::OuterProductMultiply( const Vector& vectorA, const Multivector& multivectorB )
{
	for( const SumOfTerms::Node* node = multivectorB.sumOfTerms.Head(); node; node = node->Next() )
	{
		const Term* term = node->data;
		if( term->productType != Term::OUTER_PRODUCT )
			return false;

		if( term->FindVectorWithName( vectorA.name ) )
			continue;

		Term* newTerm = term->Clone();
		newTerm->productOfVectors.InsertBefore()->data = vectorA.Clone();
	}

	return true;
}