void color_general_colpack( VectorSet& pattern , const VectorSize& row , const VectorSize& col , CppAD::vector<size_t>& color ) { size_t i, j, k; size_t m = pattern.n_set(); size_t n = pattern.end(); // Determine number of non-zero entries in each row CppAD::vector<size_t> n_nonzero(m); size_t n_nonzero_total = 0; for(i = 0; i < m; i++) { n_nonzero[i] = 0; pattern.begin(i); j = pattern.next_element(); while( j != pattern.end() ) { n_nonzero[i]++; j = pattern.next_element(); } n_nonzero_total += n_nonzero[i]; } // Allocate memory and fill in Adolc sparsity pattern CppAD::vector<unsigned int*> adolc_pattern(m); CppAD::vector<unsigned int> adolc_memory(m + n_nonzero_total); size_t i_memory = 0; for(i = 0; i < m; i++) { adolc_pattern[i] = adolc_memory.data() + i_memory; adolc_pattern[i][0] = n_nonzero[i]; pattern.begin(i); j = pattern.next_element(); k = 1; while(j != pattern.end() ) { adolc_pattern[i][k++] = j; j = pattern.next_element(); } CPPAD_ASSERT_UNKNOWN( k == 1 + n_nonzero[i] ); i_memory += k; } CPPAD_ASSERT_UNKNOWN( i_memory == m + n_nonzero_total ); // Must use an external routine for this part of the calculation because // ColPack/ColPackHeaders.h has as 'using namespace std' at global level. cppad_colpack_general(color, m, n, adolc_pattern); return; }
void color_general_cppad( VectorSet& pattern , const VectorSize& row , const VectorSize& col , CppAD::vector<size_t>& color ) { size_t i, j, k, ell, r; size_t K = row.size(); size_t m = pattern.n_set(); size_t n = pattern.end(); CPPAD_ASSERT_UNKNOWN( size_t( col.size() ) == K ); CPPAD_ASSERT_UNKNOWN( size_t( color.size() ) == m ); // We define the set of rows, columns, and pairs that appear // by the set ( row[k], col[k] ) for k = 0, ... , K-1. // initialize rows that appear CppAD::vector<bool> row_appear(m); for(i = 0; i < m; i++) row_appear[i] = false; // rows and columns that appear VectorSet c2r_appear, r2c_appear; c2r_appear.resize(n, m); r2c_appear.resize(m, n); for(k = 0; k < K; k++) { CPPAD_ASSERT_UNKNOWN( pattern.is_element(row[k], col[k]) ); row_appear[ row[k] ] = true; c2r_appear.add_element(col[k], row[k]); r2c_appear.add_element(row[k], col[k]); } // for each column, which rows are non-zero and do not appear VectorSet not_appear; not_appear.resize(n, m); for(i = 0; i < m; i++) { pattern.begin(i); j = pattern.next_element(); while( j != pattern.end() ) { if( ! c2r_appear.is_element(j , i) ) not_appear.add_element(j, i); j = pattern.next_element(); } } // initial coloring color.resize(m); ell = 0; for(i = 0; i < m; i++) { if( row_appear[i] ) color[i] = ell++; else color[i] = m; } /* See GreedyPartialD2Coloring Algorithm Section 3.6.2 of Graph Coloring in Optimization Revisited by Assefaw Gebremedhin, Fredrik Maane, Alex Pothen The algorithm above was modified (by Brad Bell) to take advantage of the fact that only the entries (subset of the sparsity pattern) specified by row and col need to be computed. */ CppAD::vector<bool> forbidden(m); for(i = 1; i < m; i++) // for each row that appears if( color[i] < m ) { // initial all colors as ok for this row // (value of forbidden for ell > initial color[i] does not matter) for(ell = 0; ell <= color[i]; ell++) forbidden[ell] = false; // ----------------------------------------------------- // Forbid colors for which this row would destroy results: // // for each column that is non-zero for this row pattern.begin(i); j = pattern.next_element(); while( j != pattern.end() ) { // for each row that appears with this column c2r_appear.begin(j); r = c2r_appear.next_element(); while( r != c2r_appear.end() ) { // if this is not the same row, forbid its color if( (r < i) & (color[r] < m) ) forbidden[ color[r] ] = true; r = c2r_appear.next_element(); } j = pattern.next_element(); } // ----------------------------------------------------- // Forbid colors that destroy results needed for this row. // // for each column that appears with this row r2c_appear.begin(i); j = r2c_appear.next_element(); while( j != r2c_appear.end() ) { // For each row that is non-zero for this column // (the appear rows have already been checked above). not_appear.begin(j); r = not_appear.next_element(); while( r != not_appear.end() ) { // if this is not the same row, forbid its color if( (r < i) & (color[r] < m) ) forbidden[ color[r] ] = true; r = not_appear.next_element(); } j = r2c_appear.next_element(); } // pick the color with smallest index ell = 0; while( forbidden[ell] ) { ell++; CPPAD_ASSERT_UNKNOWN( ell <= color[i] ); } color[i] = ell; } return; }
size_t ADFun<Base>::SparseJacobianRev( const VectorBase& x , VectorSet& p , VectorBase& jac , sparse_jacobian_work& work ) { using CppAD::vectorBool; size_t i, j, k, ell; CppAD::vector<size_t>& row(work.user_row); CppAD::vector<size_t>& col(work.user_col); CppAD::vector<size_t>& sort_row(work.sort_row); CppAD::vector<size_t>& color(work.color); size_t m = Range(); size_t n = Domain(); // some values const Base zero(0); const Base one(1); // check VectorBase is Simple Vector class with Base type elements CheckSimpleVector<Base, VectorBase>(); CPPAD_ASSERT_UNKNOWN( size_t(x.size()) == n ); CPPAD_ASSERT_UNKNOWN (color.size() == m || color.size() == 0 ); // number of components of Jacobian that are required size_t K = size_t(jac.size()); CPPAD_ASSERT_UNKNOWN( row.size() == K+1 ); CPPAD_ASSERT_UNKNOWN( col.size() == K+1 ); CPPAD_ASSERT_UNKNOWN( row[K] == m ); CPPAD_ASSERT_UNKNOWN( col[K] == n ); // Point at which we are evaluating the Jacobian Forward(0, x); if( color.size() == 0 ) { CPPAD_ASSERT_UNKNOWN( p.n_set() == m ); CPPAD_ASSERT_UNKNOWN( p.end() == n ); // rows and columns that are in the returned jacobian VectorSet r_used, c_used; r_used.resize(n, m); c_used.resize(m, n); k = 0; while( k < K ) { CPPAD_ASSERT_UNKNOWN( row[sort_row[k]] < m && col[sort_row[k]] < n ); CPPAD_ASSERT_UNKNOWN( k == 0 || row[sort_row[k-1]] <= row[sort_row[k]] ); CPPAD_ASSERT_KNOWN( p.is_element(row[sort_row[k]], col[sort_row[k]]) , "SparseJacobianReverse: " "an (row, col) pair is not in sparsity pattern." ); r_used.add_element(col[sort_row[k]], row[sort_row[k]]); c_used.add_element(row[sort_row[k]], col[sort_row[k]]); k++; } // given a column index, which rows are non-zero and not used VectorSet not_used; not_used.resize(n, m); for(i = 0; i < m; i++) { p.begin(i); j = p.next_element(); while( j != p.end() ) { if( ! r_used.is_element(j , i) ) not_used.add_element(j, i); j = p.next_element(); } } // initial coloring color.resize(m); for(i = 0; i < m; i++) color[i] = i; // See GreedyPartialD2Coloring Algorithm Section 3.6.2 of // Graph Coloring in Optimization Revisited by // Assefaw Gebremedhin, Fredrik Maane, Alex Pothen vectorBool forbidden(m); for(i = 1; i < m; i++) { // initial all colors as ok for this row // (value of forbidden for ell > i does not matter) for(ell = 0; ell <= i; ell++) forbidden[ell] = false; // ----------------------------------------------------- // Forbid colors for which this row would destroy results // for each column that is non-zero for this row p.begin(i); j = p.next_element(); while( j != p.end() ) { // for each row that this column uses r_used.begin(j); ell = r_used.next_element(); while( ell != r_used.end() ) { // if this is not the same row, forbid its color if( ell < i ) forbidden[ color[ell] ] = true; ell = r_used.next_element(); } j = p.next_element(); } // ----------------------------------------------------- // Forbid colors that would destroy results for this row. // for each column that this row uses c_used.begin(i); j = c_used.next_element(); while( j != c_used.end() ) { // For each row that is non-zero for this column // (the used rows have already been checked above). not_used.begin(j); ell = not_used.next_element(); while( ell != not_used.end() ) { // if this is not the same row, forbid its color if( ell < i ) forbidden[ color[ell] ] = true; ell = not_used.next_element(); } j = c_used.next_element(); } // pick the color with smallest index ell = 0; while( forbidden[ell] ) { ell++; CPPAD_ASSERT_UNKNOWN( ell <= i ); } color[i] = ell; } } size_t n_color = 1; for(ell = 0; ell < m; ell++) n_color = std::max(n_color, color[ell] + 1); // weighting vector for calls to reverse VectorBase w(m); // location for return values from Reverse VectorBase dw(n); // initialize the return value for(k = 0; k < K; k++) jac[k] = zero; // loop over colors size_t n_sweep = 0; for(ell = 0; ell < n_color; ell++) { bool any = false; k = 0; for(i = 0; i < m; i++) if( color[i] == ell ) { // find first k such that row[sort_row[k]] has color ell if( ! any ) { while( row[sort_row[k]] < i ) k++; any = row[sort_row[k]] == i; } } if( any ) { n_sweep++; // combine all the rows with this color for(i = 0; i < m; i++) { w[i] = zero; if( color[i] == ell ) w[i] = one; } // call reverse mode for all these rows at once dw = Reverse(1, w); // set the corresponding components of the result for(i = 0; i < m; i++) if( color[i] == ell ) { // find first index in r for this row while( row[sort_row[k]] < i ) k++; // extract the row results for this row while( row[sort_row[k]] == i ) { jac[ sort_row[k] ] = dw[col[sort_row[k]]]; k++; } } } } return n_sweep; }