Пример #1
0
VectorBase ADFun<Base>::ForTwo(
	const VectorBase   &x, 
	const VectorSize_t &j,
	const VectorSize_t &k)
{	size_t i;
	size_t j1;
	size_t k1;
	size_t l;

	size_t n = Domain();
	size_t m = Range();
	size_t p = j.size();

	// check VectorBase is Simple Vector class with Base type elements
	CheckSimpleVector<Base, VectorBase>();

	// check VectorSize_t is Simple Vector class with size_t elements
	CheckSimpleVector<size_t, VectorSize_t>();

	CPPAD_ASSERT_KNOWN(
		x.size() == n,
		"ForTwo: Length of x not equal domain dimension for f."
	); 
	CPPAD_ASSERT_KNOWN(
		j.size() == k.size(),
		"ForTwo: Lenght of the j and k vectors are not equal."
	);
	// point at which we are evaluating the second partials
	Forward(0, x);


	// dimension the return value
	VectorBase ddy(m * p);

	// allocate memory to hold all possible diagonal Taylor coefficients
	// (for large sparse cases, this is not efficient)
	VectorBase D(m * n);

	// boolean flag for which diagonal coefficients are computed
	CppAD::vector<bool> c(n);
	for(j1 = 0; j1 < n; j1++)
		c[j1] = false;

	// direction vector in argument space
	VectorBase dx(n);
	for(j1 = 0; j1 < n; j1++)
		dx[j1] = Base(0);

	// result vector in range space
	VectorBase dy(m);

	// compute the diagonal coefficients that are needed
	for(l = 0; l < p; l++)
	{	j1 = j[l];
		k1 = k[l];
		CPPAD_ASSERT_KNOWN(
		j1 < n,
		"ForTwo: an element of j not less than domain dimension for f."
		);
		CPPAD_ASSERT_KNOWN(
		k1 < n,
		"ForTwo: an element of k not less than domain dimension for f."
		);
		size_t count = 2;
		while(count)
		{	count--;
			if( ! c[j1] )
			{	// diagonal term in j1 direction
				c[j1]  = true;
				dx[j1] = Base(1);
				Forward(1, dx);

				dx[j1] = Base(0);
				dy     = Forward(2, dx);
				for(i = 0; i < m; i++)
					D[i * n + j1 ] = dy[i];
			} 
			j1 = k1;
		}
	}
	// compute all the requested cross partials
	for(l = 0; l < p; l++)
	{	j1 = j[l];
		k1 = k[l];
		if( j1 == k1 )
		{	for(i = 0; i < m; i++)
				ddy[i * p + l] = Base(2) * D[i * n + j1];
		}
		else
		{
			// cross term in j1 and k1 directions
			dx[j1] = Base(1);
			dx[k1] = Base(1);
			Forward(1, dx);

			dx[j1] = Base(0);
			dx[k1] = Base(0);
			dy = Forward(2, dx);

			// place result in return value
			for(i = 0; i < m; i++)
				ddy[i * p + l] = dy[i] - D[i*n+j1] - D[i*n+k1];

		}
	}
	return ddy;
}
Пример #2
0
VectorBase ADFun<Base>::RevTwo(
    const VectorBase   &x,
    const VectorSize_t &i,
    const VectorSize_t &j)
{   size_t i1;
    size_t j1;
    size_t k;
    size_t l;

    size_t n = Domain();
    size_t m = Range();
    size_t p = i.size();

    // check VectorBase is Simple Vector class with Base elements
    CheckSimpleVector<Base, VectorBase>();

    // check VectorSize_t is Simple Vector class with size_t elements
    CheckSimpleVector<size_t, VectorSize_t>();

    CPPAD_ASSERT_KNOWN(
        x.size() == n,
        "RevTwo: Length of x not equal domain dimension for f."
    );
    CPPAD_ASSERT_KNOWN(
        i.size() == j.size(),
        "RevTwo: Lenght of the i and j vectors are not equal."
    );
    // point at which we are evaluating the second partials
    Forward(0, x);

    // dimension the return value
    VectorBase ddw(n * p);

    // direction vector in argument space
    VectorBase dx(n);
    for(j1 = 0; j1 < n; j1++)
        dx[j1] = Base(0);

    // direction vector in range space
    VectorBase w(m);
    for(i1 = 0; i1 < m; i1++)
        w[i1] = Base(0);

    // place to hold the results of a reverse calculation
    VectorBase r(n * 2);

    // check the indices in i and j
    for(l = 0; l < p; l++)
    {   i1 = i[l];
        j1 = j[l];
        CPPAD_ASSERT_KNOWN(
            i1 < m,
            "RevTwo: an eleemnt of i not less than range dimension for f."
        );
        CPPAD_ASSERT_KNOWN(
            j1 < n,
            "RevTwo: an element of j not less than domain dimension for f."
        );
    }

    // loop over all forward directions
    for(j1 = 0; j1 < n; j1++)
    {   // first order forward mode calculation done
        bool first_done = false;
        for(l = 0; l < p; l++) if( j[l] == j1 )
            {   if( ! first_done )
                {   first_done = true;

                    // first order forward mode in j1 direction
                    dx[j1] = Base(1);
                    Forward(1, dx);
                    dx[j1] = Base(0);
                }
                // execute a reverse in this component direction
                i1    = i[l];
                w[i1] = Base(1);
                r     = Reverse(2, w);
                w[i1] = Base(0);

                // place the reverse result in return value
                for(k = 0; k < n; k++)
                    ddw[k * p + l] = r[k * 2 + 1];
            }
    }
    return ddw;
}