Пример #1
0
void Ball::Collide(CollisionEvent *coll)
{
    Ball *pball = coll->ball;
	const Vertex3Ds vnormal = coll->normal[0];

	if (pball->fFrozen) 
		return;

	// correct displacements, mostly from low velocity, alternative to true acceleration processing

    // target ball to object ball delta velocity
	const Vertex3Ds impulse = pball->collisionMass * pball->vel - collisionMass * vel;

	float dot = impulse.Dot(vnormal);

	if (dot >= -C_LOWNORMVEL )								// nearly receding ... make sure of conditions
	{														// otherwise if clearly approaching .. process the collision
		if (dot > C_LOWNORMVEL) return;						//is this velocity clearly receding (i.e must > a minimum)		
#ifdef C_EMBEDDED
		if (coll->distance < -C_EMBEDDED)
			dot = -C_EMBEDSHOT;		// has ball become embedded???, give it a kick
		else return;
#endif
	}
			
#ifdef C_DISP_GAIN 		
	float edist = -C_DISP_GAIN * coll->distance;
	if (edist > 1.0e-4f)
	{										
		if (edist > C_DISP_LIMIT) 
			edist = C_DISP_LIMIT;		// crossing ramps, delta noise
		if (!fFrozen) edist *= 0.5f;	// if the hitten ball is not frozen
        pball->pos += edist * vnormal;// push along norm, back to free area
        // use the norm, but is not correct, but cheaply handled
	}

	edist = -C_DISP_GAIN * m_coll.distance;	// noisy value .... needs investigation
	if (!fFrozen && edist > 1.0e-4f)
	{ 
		if (edist > C_DISP_LIMIT) 
			edist = C_DISP_LIMIT;		// crossing ramps, delta noise
		edist *= 0.5f;		
        pos -= edist * vnormal;         // pull along norm, back to free area
	}
#endif				

	const float averageMass = (collisionMass + pball->collisionMass)*0.5f;
	const float impulse1 = ((float)(-1.8 * 0.5) * dot) * pball->collisionMass / (averageMass * collisionMass);
	float impulse2 = ((float)(-1.8 * 0.5) * dot) * collisionMass / (averageMass * pball->collisionMass);

	if (!fFrozen)
	{
        vel -= impulse1 * vnormal;
		m_fDynamic = C_DYNAMIC;		
	}
	else impulse2 += impulse1;
		
    pball->vel += impulse2 * vnormal;
	pball->m_fDynamic = C_DYNAMIC;
}
Пример #2
0
void Ball::AngularAcceleration(const Vertex3Ds& hitnormal)
{
	const Vertex3Ds bccpd = -radius * hitnormal;    // vector ball center to contact point displacement

	const float bnv = vel.Dot(hitnormal);       // ball normal velocity to hit face

	const Vertex3Ds bvn = bnv * hitnormal;      // project the normal velocity along normal

	const Vertex3Ds bvt = vel - bvn;            // calc the tangent velocity

	Vertex3Ds bvT = bvt;                        // ball tangent velocity Unit Tangent
	bvT.Normalize();	

	const Vertex3Ds bstv =						// ball surface tangential velocity
	CrossProduct(m_angularvelocity, bccpd);		// velocity of ball surface at contact point

	const float dot = bstv.Dot(bvT);			// speed ball surface contact point tangential to contact surface point
	const Vertex3Ds cpvt = dot * bvT;           // contact point velocity tangential to hit face

	const Vertex3Ds slideVel = bstv - cpvt;     // contact point slide velocity with ball center velocity -- slide velocity

	// If the point and the ball are travelling in opposite directions,
	// and the point's velocity is at least the magnitude of the balls,
	// then we have a natural roll
	
	Vertex3Ds cpctrv = -slideVel;				//contact point co-tangential reverse velocity

    if (vel.LengthSquared() > (float)(0.7*0.7))
    {
        // Calculate the maximum amount the point velocity can change this
        // time segment due to friction
        Vertex3Ds FrictionForce = cpvt + bvt;

        // If the point can change fast enough to go directly to a natural roll, then do it.

        if (FrictionForce.LengthSquared() > (float)(ANGULARFORCE*ANGULARFORCE))
            FrictionForce.Normalize(ANGULARFORCE);

        cpctrv -= FrictionForce;
    }

	// Divide by the inertial tensor for a sphere in order to change
	// linear force into angular momentum
	cpctrv *= (float)(2.0/5.0); // Inertial tensor for a sphere

	const Vertex3Ds vResult = CrossProduct(bccpd, cpctrv); // ball center contact point displacement X reverse contact point co-tan vel

	m_angularmomentum *= 0.99f;
	m_angularmomentum += vResult; // add delta
	m_angularvelocity = m_inverseworldinertiatensor.MultiplyVector(m_angularmomentum);
}
Пример #3
0
float Ball::HitTest(const Ball * pball_, float dtime, CollisionEvent& coll)
{	
    Ball * pball = const_cast<Ball*>(pball_);   // HACK; needed below

    Vertex3Ds d = pos - pball->pos;          // delta position

    Vertex3Ds dv = vel - pball->vel;        // delta velocity

	float bcddsq = d.LengthSquared();       // square of ball center's delta distance
	float bcdd = sqrtf(bcddsq);				// length of delta

	if (bcdd < 1.0e-8f)						// two balls center-over-center embedded
	{ //return -1;
		d.z = -1.0f;						// patch up
		pball->pos.z -= d.z;				// lift up
		
		bcdd = 1.0f;						// patch up
		bcddsq = 1.0f;						// patch up
		dv.z = 0.1f;						// small speed difference
		pball->vel.z -= dv.z;
	}

	float b = dv.Dot(d);                    // inner product
	const float bnv = b/bcdd;				// normal speed of balls toward each other

	if ( bnv > C_LOWNORMVEL) return -1.0f;	// dot of delta velocity and delta displacement, postive if receding no collison

	const float totalradius = pball->radius + radius;
	const float bnd = bcdd - totalradius;   // distance between ball surfaces

	float hittime;
	if (bnd < (float)PHYS_TOUCH)			// in contact??? 
	{
		if (bnd <= (float)(-PHYS_SKIN*2.0))
			return -1.0f;					// embedded too deep

		if ((fabsf(bnv) > C_CONTACTVEL)			// >fast velocity, return zero time
												//zero time for rigid fast bodies
		|| (bnd <= (float)(-PHYS_TOUCH)))
			hittime = 0;						// slow moving but embedded
		else
			hittime = bnd/(float)(2.0*PHYS_TOUCH) + 0.5f;	// don't compete for fast zero time events
	}
	else
	{
        // find collision time as solution of quadratic equation
        //   at^2 + bt + c = 0
		const float a = dv.LengthSquared();         // square of differential velocity

		if (a < 1.0e-8f) return -1.0f;				// ball moving really slow, then wait for contact

		const float c = bcddsq - totalradius*totalradius;	//first contact test: square delta position - square of radii
		b *= 2.0f;									// two inner products
		float result = b*b - 4.0f*a*c;				// squareroot term (discriminant) in quadratic equation

		if (result < 0.0f) return -1.0f;			// no collision path exist	

		result = sqrtf(result);

        // compute the two solutions to the quadratic equation
		      float time1 = (-b + result)/(2.0f * a);
		const float time2 = (-b - result)/(2.0f * a);

        // choose smallest non-negative solution
		hittime = std::min(time1, time2);
        if (hittime < 0)
            hittime = std::max(time1, time2);

		if (infNaN(hittime) || hittime < 0 || hittime > dtime)
            return -1.0f; // .. was some time previous || beyond the next physics tick
	}

    const Vertex3Ds hitPos = pball->pos + hittime * dv; // new ball position

    //calc unit normal of collision
	coll.normal[0] = hitPos - pos;
    coll.normal[0].Normalize();

	coll.distance = bnd;					//actual contact distance
	coll.hitRigid = true;					//rigid collision type

	return hittime;	
}
Пример #4
0
float HitTriangle::HitTest(const Ball * pball, float dtime, CollisionEvent& coll)
{
	if (!m_fEnabled) return -1.0f;

    const float bnv = normal.Dot(pball->m_vel);     // speed in Normal-vector direction

	if (bnv >= C_CONTACTVEL)						// return if clearly ball is receding from object
		return -1.0f;

	// Point on the ball that will hit the polygon, if it hits at all
	const float bRadius = pball->m_radius;
    Vertex3Ds hitPos = pball->m_pos - bRadius * normal; // nearest point on ball ... projected radius along norm

    const float bnd = normal.Dot( hitPos - m_rgv[0] );  // distance from plane to ball

	float hittime;

	if (bnd < -pball->m_radius/**2.0f*/) //!! *2 necessary?
        return -1.0f;	// (ball normal distance) excessive pentratration of object skin ... no collision HACK

    bool isContact = false;

    if (bnd <= (float)PHYS_TOUCH)
    {
        if (fabsf(bnv) <= C_CONTACTVEL)
        {
            hittime = 0;
            isContact = true;
        }
        else if (bnd <= 0)
            hittime = 0;                            // zero time for rigid fast bodies
        else
            hittime = bnd / -bnv;
    }
    else if (fabsf(bnv) > C_LOWNORMVEL )			// not velocity low?
        hittime = bnd / -bnv;						// rate ok for safe divide 
    else
        return -1.0f;								// wait for touching

	if (infNaN(hittime) || hittime < 0 || hittime > dtime)
        return -1.0f;	// time is outside this frame ... no collision

    hitPos += hittime * pball->m_vel;	// advance hit point to contact

    // check if hitPos is within the triangle

    // Compute vectors
    const Vertex3Ds v0 = m_rgv[2] - m_rgv[0];
    const Vertex3Ds v1 = m_rgv[1] - m_rgv[0];
    const Vertex3Ds v2 = hitPos   - m_rgv[0];

    // Compute dot products
    const float dot00 = v0.Dot(v0);
    const float dot01 = v0.Dot(v1);
    const float dot02 = v0.Dot(v2);
    const float dot11 = v1.Dot(v1);
    const float dot12 = v1.Dot(v2);

    // Compute barycentric coordinates
    const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
    const float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
    const float v = (dot00 * dot12 - dot01 * dot02) * invDenom;

    // Check if point is in triangle
    const bool pointInTri = (u >= 0.f) && (v >= 0.f) && (u + v <= 1.f);

	if (pointInTri)
	{
		coll.hitnormal = normal;

		coll.hitdistance = bnd;				// 3dhit actual contact distance ... 
		//coll.hitRigid = true;				// collision type

        if (isContact)
        {
            coll.isContact = true;
            coll.hitvelocity.z = bnv;
        }

		return hittime;
	}
    else
        return -1.0f;
}
Пример #5
0
float HitPoint::HitTest(const Ball * pball, float dtime, CollisionEvent& coll)
{
    if (!m_fEnabled)
        return -1.0f;

    const Vertex3Ds dist = pball->m_pos - m_p;  // relative ball position

    const float bcddsq = dist.LengthSquared();  // ball center to line distance squared
    const float bcdd = sqrtf(bcddsq);           // distance ball to line
    if (bcdd <= 1.0e-6f)
        return -1.0f;                           // no hit on exact center

    const float b = dist.Dot(pball->m_vel);
    const float bnv = b/bcdd;                   // ball normal velocity

    if (bnv > C_CONTACTVEL)
        return -1.0f;                           // clearly receding from radius

    const float bnd = bcdd - pball->m_radius;   // ball distance to line

    const float a = pball->m_vel.LengthSquared();

    float hittime = 0;
    bool isContact = false;

    if (bnd < (float)PHYS_TOUCH)       // already in collision distance?
    {
        if (fabsf(bnv) <= C_CONTACTVEL)
        {
            isContact = true;
            hittime = 0;
        }
        else
            hittime = std::max(0.0f, -bnd / bnv);   // estimate based on distance and speed along distance
    }
    else
    {
        if (a < 1.0e-8f)
            return -1.0f;    // no hit - ball not moving relative to object

        float time1, time2;
        if (!SolveQuadraticEq(a, 2.0f*b, bcddsq - pball->m_radius*pball->m_radius, time1, time2))
            return -1.0f;

        hittime = (time1*time2 < 0) ? max(time1,time2) : min(time1,time2); // find smallest nonnegative solution
    }

    if (infNaN(hittime) || hittime < 0 || hittime > dtime)
        return -1.0f; // contact out of physics frame

    const Vertex3Ds hitPos = pball->m_pos + hittime * pball->m_vel;
    coll.hitnormal = hitPos - m_p;
    coll.hitnormal.Normalize();

    coll.isContact = isContact;
    if (isContact)
        coll.hitvelocity.z = bnv;

    coll.hitdistance = bnd;                    // actual contact distance
    //coll.hitRigid = true;

    return hittime;
}
Пример #6
0
float HitCircle::HitTestBasicRadius(const Ball * pball, float dtime, CollisionEvent& coll,
									bool direction, bool lateral, bool rigid)
{
	if (!m_fEnabled || pball->m_frozen) return -1.0f;	

    Vertex3Ds c(center.x, center.y, 0.0f);
    Vertex3Ds dist = pball->m_pos - c;    // relative ball position
    Vertex3Ds dv = pball->m_vel;

	float targetRadius;
	bool capsule3D;
	
	if (!lateral && pball->m_pos.z > zhigh)
	{
		capsule3D = true;										// handle ball over target? 
		//const float hcap = radius*(float)(1.0/5.0);			// cap height to hit-circle radius ratio
		//targetRadius = radius*radius/(hcap*2.0f) + hcap*0.5f;	// c = (r^2+h^2)/(2*h)
		targetRadius = radius*(float)(13.0/5.0);				// optimized version of above code
		//c.z = zhigh - (targetRadius - hcap);					// b = c - h
		c.z = zhigh - radius*(float)(12.0/5.0);					// optimized version of above code
		dist.z = pball->m_pos.z - c.z;							// ball rolling point - capsule center height 			
	}
	else
	{
		capsule3D = false;
		targetRadius = radius;
		if (lateral)
			targetRadius += pball->m_radius;
		dist.z = dv.z = 0.0f;
	}
	
	const float bcddsq = dist.LengthSquared();	// ball center to circle center distance ... squared
	const float bcdd = sqrtf(bcddsq);			// distance center to center
	if (bcdd <= 1.0e-6f)
        return -1.0f;                           // no hit on exact center

	const float b = dist.Dot(dv);
	const float bnv = b/bcdd;					// ball normal velocity

	if (direction && bnv > C_LOWNORMVEL)
        return -1.0f;                           // clearly receding from radius

	const float bnd = bcdd - targetRadius;		// ball normal distance to 

	const float a = dv.LengthSquared();

	float hittime = 0;
	bool fUnhit = false;
    bool isContact = false;
	// Kicker is special.. handle ball stalled on kicker, commonly hit while receding, knocking back into kicker pocket
	if (m_ObjType == eKicker && bnd <= 0 && bnd >= -radius && a < C_CONTACTVEL*C_CONTACTVEL )	
    {
		if (pball->m_vpVolObjs) pball->m_vpVolObjs->RemoveElement(m_pObj);	// cause capture
    }

	if (rigid && bnd < (float)PHYS_TOUCH)		// positive: contact possible in future ... Negative: objects in contact now
    {
		if (bnd < -pball->m_radius/**2.0f*/) //!! *2 necessary?
            return -1.0f;
        else if (fabsf(bnv) <= C_CONTACTVEL)
        {
            isContact = true;
            hittime = 0;
        }
        else
			hittime = std::max(0.0f, -bnd / bnv);   // estimate based on distance and speed along distance
    }
	else if (m_ObjType >= eTrigger // triggers & kickers
		     && pball->m_vpVolObjs && ((bnd < 0.f) == (pball->m_vpVolObjs->IndexOf(m_pObj) < 0)))
    { // here if ... ball inside and no hit set .... or ... ball outside and hit set

		if (fabsf(bnd-radius) < 0.05f)	 // if ball appears in center of trigger, then assumed it was gen'ed there
		{
			if (pball->m_vpVolObjs)
                pball->m_vpVolObjs->AddElement(m_pObj);	//special case for trigger overlaying a kicker
		}												// this will add the ball to the trigger space without a Hit
		else
		{
			hittime = 0;
			fUnhit = (bnd > 0.f);	// ball on outside is UnHit, otherwise it's a Hit
		}
    }
	else
    {
		if((!rigid && bnd * bnv > 0.f) ||	// (outside and receding) or (inside and approaching)
		   (a < 1.0e-8f)) return -1.0f;	    // no hit ... ball not moving relative to object

        float time1, time2;
        if (!SolveQuadraticEq(a, 2.0f*b, bcddsq - targetRadius*targetRadius, time1, time2))
            return -1.0f;
		
		fUnhit = (time1*time2 < 0.f);
		hittime = fUnhit ? max(time1,time2) : min(time1,time2); // ball is inside the circle
    }
	
    if (infNaN(hittime) || hittime < 0.f || hittime > dtime)
        return -1.0f; // contact out of physics frame
	const float hitz = pball->m_pos.z - pball->m_radius + pball->m_vel.z * hittime; // rolling point

	if(((hitz + pball->m_radius *1.5f) < zlow) ||
	   (!capsule3D && (hitz + pball->m_radius*0.5f) > zhigh) ||
	   (capsule3D && (pball->m_pos.z + pball->m_vel.z * hittime) < zhigh)) return -1.0f;
		
	const float hitx = pball->m_pos.x + pball->m_vel.x*hittime;
	const float hity = pball->m_pos.y + pball->m_vel.y*hittime;

	const float sqrlen = (hitx - c.x)*(hitx - c.x) + (hity - c.y)*(hity - c.y);

	if (sqrlen > 1.0e-8f) // over center???
	{ // no
		const float inv_len = 1.0f/sqrtf(sqrlen);
		coll.hitnormal.x = (hitx - c.x)*inv_len;
		coll.hitnormal.y = (hity - c.y)*inv_len;
        coll.hitnormal.z = 0.0f;
	}
	else 
	{ // yes, over center
		coll.hitnormal.x = 0.0f; // make up a value, any direction is ok
		coll.hitnormal.y = 1.0f;
        coll.hitnormal.z = 0.0f;
	}
	
	if (!rigid)											// non rigid body collision? return direction
		coll.hitvelocity.x = fUnhit ? 1.0f : 0.0f;		// UnHit signal	is receding from target

    coll.isContact = isContact;
    if (isContact)
        coll.hitvelocity.z = bnv;

	coll.hitdistance = bnd;				//actual contact distance ... 
	//coll.hitRigid = rigid;			// collision type

	return hittime;
}