Spectrum SingleScatteringIntegrator::Li(const Scene *scene, const Renderer *renderer, const RayDifferential &ray, const Sample *sample, Spectrum *T, MemoryArena &arena) const { VolumeRegion *vr = scene->volumeRegion; float t0, t1; if (!vr || !vr->IntersectP(ray, &t0, &t1)) { *T = 1.f; return 0.f; } // Do single scattering volume integration in _vr_ Spectrum Lv(0.); // Prepare for volume integration stepping int nSamples = Ceil2Int((t1-t0) / stepSize); float step = (t1 - t0) / nSamples; Spectrum Tr(1.f); Point p = ray(t0), pPrev; Vector w = -ray.d; t0 += sample->oneD[scatterSampleOffset][0] * step; // Compute sample patterns for single scattering samples float *lightNum = arena.Alloc<float>(nSamples); LDShuffleScrambled1D(1, nSamples, lightNum, *sample->rng); float *lightComp = arena.Alloc<float>(nSamples); LDShuffleScrambled1D(1, nSamples, lightComp, *sample->rng); float *lightPos = arena.Alloc<float>(2*nSamples); LDShuffleScrambled2D(1, nSamples, lightPos, *sample->rng); u_int sampOffset = 0; for (int i = 0; i < nSamples; ++i, t0 += step) { // Advance to sample at _t0_ and update _T_ pPrev = p; p = ray(t0); Ray tauRay(pPrev, p - pPrev, 0.f, 1.f, ray.time, ray.depth); Spectrum stepTau = vr->tau(tauRay, .5f * stepSize, sample->rng->RandomFloat()); Tr *= Exp(-stepTau); // Possibly terminate ray marching if transmittance is small if (Tr.y() < 1e-3) { const float continueProb = .5f; if (sample->rng->RandomFloat() > continueProb) break; Tr /= continueProb; } // Compute single-scattering source term at _p_ Lv += Tr * vr->Lve(p, w, ray.time); Spectrum ss = vr->sigma_s(p, w, ray.time); if (!ss.IsBlack() && scene->lights.size() > 0) { int nLights = scene->lights.size(); int ln = min(Floor2Int(lightNum[sampOffset] * nLights), nLights-1); Light *light = scene->lights[ln]; // Add contribution of _light_ due to scattering at _p_ float pdf; VisibilityTester vis; Vector wo; LightSample ls(lightComp[sampOffset], lightPos[2*sampOffset], lightPos[2*sampOffset+1]); Spectrum L = light->Sample_L(p, 0.f, ls, ray.time, &wo, &pdf, &vis); if (!L.IsBlack() && pdf > 0.f && vis.Unoccluded(scene)) { Spectrum Ld = L * vis.Transmittance(scene, renderer, NULL, sample->rng, arena); Lv += Tr * ss * vr->p(p, w, -wo, ray.time) * Ld * float(nLights) / pdf; } } ++sampOffset; } *T = Tr; return Lv * step; }
Spectrum PhotonVolumeIntegrator::Li(const Scene *scene, const Renderer *renderer, const RayDifferential &ray, const Sample *sample, RNG &rng, Spectrum *T, MemoryArena &arena) const { VolumeRegion *vr = scene->volumeRegion; RainbowVolume* rv = dynamic_cast<RainbowVolume*>(vr); KdTree<Photon>* volumeMap = photonShooter->volumeMap; float t0, t1; if (!vr || !vr->IntersectP(ray, &t0, &t1) || (t1-t0) == 0.f){ *T = 1.f; return 0.f; } // Do single scattering & photon multiple scattering volume integration in _vr_ Spectrum Lv(0.); // Prepare for volume integration stepping int nSamples = Ceil2Int((t1-t0) / stepSize); float step = (t1 - t0) / nSamples; Spectrum Tr(1.f); Point p = ray(t0), pPrev; Vector w = -ray.d; t0 += sample->oneD[scatterSampleOffset][0] * step; float *lightNum = arena.Alloc<float>(nSamples); LDShuffleScrambled1D(1, nSamples, lightNum, rng); float *lightComp = arena.Alloc<float>(nSamples); LDShuffleScrambled1D(1, nSamples, lightComp, rng); float *lightPos = arena.Alloc<float>(2*nSamples); LDShuffleScrambled2D(1, nSamples, lightPos, rng); int sampOffset = 0; ClosePhoton *lookupBuf = new ClosePhoton[nSamples]; for (int i = 0; i < nSamples; ++i, t0 += step) { // Advance to sample at _t0_ and update _T_ pPrev = p; p = ray(t0); Ray tauRay(pPrev, p - pPrev, 0.f, 1.f, ray.time, ray.depth); Spectrum stepTau = vr->tau(tauRay,.5f * stepSize, rng.RandomFloat()); Tr = Exp(-stepTau); // Possibly terminate raymarching if transmittance is small. if (Tr.y() < 1e-3) { const float continueProb = .5f; if (rng.RandomFloat() > continueProb){ Tr = 0.f; break; } Tr /= continueProb; } // Compute single-scattering source term at _p_ & photon mapped MS Spectrum L_i(0.); Spectrum L_d(0.); Spectrum L_ii(0.); // Lv += Tr*vr->Lve(p, w, ray.time); Spectrum ss = vr->sigma_s(p, w, ray.time); Spectrum sa = vr->sigma_a(p, w, ray.time); if (!ss.IsBlack() && scene->lights.size() > 0) { int nLights = scene->lights.size(); int ln = min(Floor2Int(lightNum[sampOffset] * nLights), nLights-1); Light *light = scene->lights[ln]; // Add contribution of _light_ due to scattering at _p_ float pdf; VisibilityTester vis; Vector wo; LightSample ls(lightComp[sampOffset], lightPos[2*sampOffset], lightPos[2*sampOffset+1]); Spectrum L = light->Sample_L(p, 0.f, ls, ray.time, &wo, &pdf, &vis); if (!L.IsBlack() && pdf > 0.f && vis.Unoccluded(scene)) { Spectrum Ld = L * vis.Transmittance(scene,renderer, NULL, rng, arena); if(rv){ L_d = rv->rainbowReflection(Ld, ray.d, wo); } else { L_d = vr->p(p, w, -wo, ray.time) * Ld * float(nLights)/pdf; } } } // Compute 'indirect' in-scattered radiance from photon map if(!rv){ L_ii += LPhoton(volumeMap, nUsed, lookupBuf, w, p, vr, maxDistSquared, ray.time); } // Compute total in-scattered radiance if (sa.y()!=0.0 || ss.y()!=0.0) L_i = L_d + (ss/(sa+ss))*L_ii; else L_i = L_d; Spectrum nLv = (sa*vr->Lve(p,w,ray.time)*step) + (ss*L_i*step) + (Tr * Lv) ; Lv = nLv; sampOffset++; } *T = Tr; return Lv; }