template<class T, class Policies> inline interval<T, Policies> div_non_zero(const interval<T, Policies>& x, const interval<T, Policies>& y) { // assert(!in_zero(y)); typename Policies::rounding rnd; typedef interval<T, Policies> I; const T& xl = x.lower(); const T& xu = x.upper(); const T& yl = y.lower(); const T& yu = y.upper(); if (is_neg(xu)) if (is_neg(yu)) return I(rnd.div_down(xu, yl), rnd.div_up(xl, yu), true); else return I(rnd.div_down(xl, yl), rnd.div_up(xu, yu), true); else if (is_neg(xl)) if (is_neg(yu)) return I(rnd.div_down(xu, yu), rnd.div_up(xl, yu), true); else return I(rnd.div_down(xl, yl), rnd.div_up(xu, yl), true); else if (is_neg(yu)) return I(rnd.div_down(xu, yu), rnd.div_up(xl, yl), true); else return I(rnd.div_down(xl, yu), rnd.div_up(xu, yl), true); }
template<class T, class Policies> inline interval<T, Policies> div_zero_part1(const interval<T, Policies>& x, const interval<T, Policies>& y, bool& b) { // assert(y.lower() < 0 && y.upper() > 0); if (is_zero(x.lower()) && is_zero(x.upper())) { b = false; return x; } typename Policies::rounding rnd; typedef interval<T, Policies> I; const T& xl = x.lower(); const T& xu = x.upper(); const T& yl = y.lower(); const T& yu = y.upper(); typedef typename I::checking checking; const T& inf = checking::inf(); if (is_neg(xu)) { b = true; return I(-inf, rnd.div_up(xu, yu), true); } else if (is_neg(xl)) { b = false; return I(-inf, inf, true); } else { b = true; return I(-inf, rnd.div_up(xl, yl), true); } }
template<class T, class Policies1, class Policies2> inline bool operator>=(const interval<T, Policies1>& x, const interval<T, Policies2>& y) { if (detail::test_input(x, y)) throw comparison_error(); const T& xl = x.lower(); const T& yl = y.lower(); return xl > yl || (xl == yl && x.upper() >= y.upper()); }
template<class T, class Policies1, class Policies2> inline logic::tribool operator==(const interval<T, Policies1>& x, const interval<T, Policies2>& y) { if (detail::test_input(x, y)) throw comparison_error(); if (x.upper() == y.lower() && x.lower() == y.upper()) return true; if (x.upper() < y.lower() || x.lower() > y.upper()) return false; return logic::indeterminate; }
template<class T, class Policies1, class Policies2> inline bool overlap(const interval<T, Policies1>& x, const interval<T, Policies2>& y) { if (interval_lib::detail::test_input(x, y)) return false; return x.lower() <= y.lower() && y.lower() <= x.upper() || y.lower() <= x.lower() && x.lower() <= y.upper(); }
template<class T, class Policies1, class Policies2> inline bool proper_subset(const interval<T, Policies1>& x, const interval<T, Policies2>& y) { if (empty(y)) return false; if (empty(x)) return true; return y.lower() <= x.lower() && x.upper() <= y.upper() && (y.lower() != x.lower() || x.upper() != y.upper()); }
template<class T, class Policies> inline interval<T, Policies> min(const interval<T, Policies>& x, const interval<T, Policies>& y) { BOOST_NUMERIC_INTERVAL_using_max(min); typedef interval<T, Policies> I; if (interval_lib::detail::test_input(x, y)) return I::empty(); return I(min(x.lower(), y.lower()), min(x.upper(), y.upper()), true); }
template<class T, class Policies> inline interval<T, Policies> operator-(const interval<T, Policies>& x, const interval<T, Policies>& y) { if (interval_lib::detail::test_input(x, y)) return interval<T, Policies>::empty(); typename Policies::rounding rnd; return interval<T,Policies>(rnd.sub_down(x.lower(), y.upper()), rnd.sub_up (x.upper(), y.lower()), true); }
template<class T, class Policies> inline interval<T, Policies> acosh(const interval<T, Policies>& x) { typedef interval<T, Policies> I; if (interval_lib::detail::test_input(x) || x.upper() < static_cast<T>(1)) return I::empty(); typename Policies::rounding rnd; T l = x.lower() <= static_cast<T>(1) ? static_cast<T>(0) : rnd.acosh_down(x.lower()); return I(l, rnd.acosh_up(x.upper()), true); }
template<class T, class Policies> inline interval<T, Policies> operator*(const interval<T, Policies>& x, const interval<T, Policies>& y) { BOOST_USING_STD_MIN(); BOOST_USING_STD_MAX(); typedef interval<T, Policies> I; if (interval_lib::detail::test_input(x, y)) return I::empty(); typename Policies::rounding rnd; const T& xl = x.lower(); const T& xu = x.upper(); const T& yl = y.lower(); const T& yu = y.upper(); if (interval_lib::user::is_neg(xl)) if (interval_lib::user::is_pos(xu)) if (interval_lib::user::is_neg(yl)) if (interval_lib::user::is_pos(yu)) // M * M return I(min BOOST_PREVENT_MACRO_SUBSTITUTION(rnd.mul_down(xl, yu), rnd.mul_down(xu, yl)), max BOOST_PREVENT_MACRO_SUBSTITUTION(rnd.mul_up (xl, yl), rnd.mul_up (xu, yu)), true); else // M * N return I(rnd.mul_down(xu, yl), rnd.mul_up(xl, yl), true); else if (interval_lib::user::is_pos(yu)) // M * P return I(rnd.mul_down(xl, yu), rnd.mul_up(xu, yu), true); else // M * Z return I(static_cast<T>(0), static_cast<T>(0), true); else if (interval_lib::user::is_neg(yl)) if (interval_lib::user::is_pos(yu)) // N * M return I(rnd.mul_down(xl, yu), rnd.mul_up(xl, yl), true); else // N * N return I(rnd.mul_down(xu, yu), rnd.mul_up(xl, yl), true); else if (interval_lib::user::is_pos(yu)) // N * P return I(rnd.mul_down(xl, yu), rnd.mul_up(xu, yl), true); else // N * Z return I(static_cast<T>(0), static_cast<T>(0), true); else if (interval_lib::user::is_pos(xu)) if (interval_lib::user::is_neg(yl)) if (interval_lib::user::is_pos(yu)) // P * M return I(rnd.mul_down(xu, yl), rnd.mul_up(xu, yu), true); else // P * N return I(rnd.mul_down(xu, yl), rnd.mul_up(xl, yu), true); else if (interval_lib::user::is_pos(yu)) // P * P return I(rnd.mul_down(xl, yl), rnd.mul_up(xu, yu), true); else // P * Z return I(static_cast<T>(0), static_cast<T>(0), true); else // Z * ? return I(static_cast<T>(0), static_cast<T>(0), true); }
template<class T, class Policies> inline interval<T, Policies> operator*(const interval<T, Policies>& x, const interval<T, Policies>& y) { BOOST_NUMERIC_INTERVAL_using_max(min); BOOST_NUMERIC_INTERVAL_using_max(max); typedef interval<T, Policies> I; if (interval_lib::detail::test_input(x, y)) return I::empty(); typename Policies::rounding rnd; const T& xl = x.lower(); const T& xu = x.upper(); const T& yl = y.lower(); const T& yu = y.upper(); if (interval_lib::detail::is_neg(xl)) if (interval_lib::detail::is_pos(xu)) if (interval_lib::detail::is_neg(yl)) if (interval_lib::detail::is_pos(yu)) // M * M return I(min(rnd.mul_down(xl, yu), rnd.mul_down(xu, yl)), max(rnd.mul_up (xl, yl), rnd.mul_up (xu, yu)), true); else // M * N return I(rnd.mul_down(xu, yl), rnd.mul_up(xl, yl), true); else if (interval_lib::detail::is_pos(yu)) // M * P return I(rnd.mul_down(xl, yu), rnd.mul_up(xu, yu), true); else // M * Z return I(0, 0, true); else if (interval_lib::detail::is_neg(yl)) if (interval_lib::detail::is_pos(yu)) // N * M return I(rnd.mul_down(xl, yu), rnd.mul_up(xl, yl), true); else // N * N return I(rnd.mul_down(xu, yu), rnd.mul_up(xl, yl), true); else if (interval_lib::detail::is_pos(yu)) // N * P return I(rnd.mul_down(xl, yu), rnd.mul_up(xu, yl), true); else // N * Z return I(0, 0, true); else if (interval_lib::detail::is_pos(xu)) if (interval_lib::detail::is_neg(yl)) if (interval_lib::detail::is_pos(yu)) // P * M return I(rnd.mul_down(xu, yl), rnd.mul_up(xu, yu), true); else // P * N return I(rnd.mul_down(xu, yl), rnd.mul_up(xl, yu), true); else if (interval_lib::detail::is_pos(yu)) // P * P return I(rnd.mul_down(xl, yl), rnd.mul_up(xu, yu), true); else // P * Z return I(0, 0, true); else // Z * ? return I(0, 0, true); }
template<class T, class Policies> inline interval<T, Policies> abs(const interval<T, Policies>& x) { typedef interval<T, Policies> I; if (interval_lib::detail::test_input(x)) return I::empty(); if (!interval_lib::user::is_neg(x.lower())) return x; if (!interval_lib::user::is_pos(x.upper())) return -x; BOOST_USING_STD_MAX(); return I(static_cast<T>(0), max BOOST_PREVENT_MACRO_SUBSTITUTION(-x.lower(), x.upper()), true); }
template<class T, class Policies> inline interval<T, Policies> abs(const interval<T, Policies>& x) { BOOST_NUMERIC_INTERVAL_using_max(max); typedef interval<T, Policies> I; if (interval_lib::detail::test_input(x)) return I::empty(); if (!interval_lib::detail::is_neg(x.lower())) return x; if (interval_lib::detail::is_neg(x.upper())) return -x; return I(0, max(-x.lower(), x.upper()), true); }
template<class T, class Policies> inline interval<T, Policies> intersect(const interval<T, Policies>& x, const interval<T, Policies>& y) { BOOST_NUMERIC_INTERVAL_using_max(min); BOOST_NUMERIC_INTERVAL_using_max(max); if (interval_lib::detail::test_input(x, y)) return interval<T, Policies>::empty(); const T& l = max(x.lower(), y.lower()); const T& u = min(x.upper(), y.upper()); if (l <= u) return interval<T, Policies>(l, u, true); else return interval<T, Policies>::empty(); }
template<class T, class Policies> inline interval<T, Policies> intersect(const interval<T, Policies>& x, const interval<T, Policies>& y) { BOOST_USING_STD_MIN(); BOOST_USING_STD_MAX(); if (interval_lib::detail::test_input(x, y)) return interval<T, Policies>::empty(); const T& l = max BOOST_PREVENT_MACRO_SUBSTITUTION(x.lower(), y.lower()); const T& u = min BOOST_PREVENT_MACRO_SUBSTITUTION(x.upper(), y.upper()); if (l <= u) return interval<T, Policies>(l, u, true); else return interval<T, Policies>::empty(); }
template<class T, class Policies> inline interval<T, Policies> log(const interval<T, Policies>& x) { typedef interval<T, Policies> I; if (interval_lib::detail::test_input(x) || !interval_lib::user::is_pos(x.upper())) return I::empty(); typename Policies::rounding rnd; typedef typename Policies::checking checking; T l = !interval_lib::user::is_pos(x.lower()) ? checking::neg_inf() : rnd.log_down(x.lower()); return I(l, rnd.log_up(x.upper()), true); }
template<class T, class Policies> inline interval<T, Policies> div_zero_part2(const interval<T, Policies>& x, const interval<T, Policies>& y) { // assert(::boost::numeric::interval_lib::user::is_neg(y.lower()) && ::boost::numeric::interval_lib::user::is_pos(y.upper()) && (div_zero_part1(x, y, b), b)); typename Policies::rounding rnd; typedef interval<T, Policies> I; typedef typename Policies::checking checking; if (::boost::numeric::interval_lib::user::is_neg(x.upper())) return I(rnd.div_down(x.upper(), y.lower()), checking::pos_inf(), true); else return I(rnd.div_down(x.lower(), y.upper()), checking::pos_inf(), true); }
template<class T, class Policies> inline interval<T, Policies> cosh(const interval<T, Policies>& x) { typedef interval<T, Policies> I; if (interval_lib::detail::test_input(x)) return I::empty(); typename Policies::rounding rnd; if (interval_lib::user::is_neg(x.upper())) return I(rnd.cosh_down(x.upper()), rnd.cosh_up(x.lower()), true); else if (!interval_lib::user::is_neg(x.lower())) return I(rnd.cosh_down(x.lower()), rnd.cosh_up(x.upper()), true); else return I(static_cast<T>(0), rnd.cosh_up(-x.lower() > x.upper() ? x.lower() : x.upper()), true); }
template<class T, class Policies> inline interval<T, Policies> div_zero_part2(const interval<T, Policies>& x, const interval<T, Policies>& y) { // assert(y.lower() < 0 && y.upper() > 0 && (div_zero_part1(x, y, b), b)); typename Policies::rounding rnd; typedef interval<T, Policies> I; typedef typename I::checking checking; const T& inf = checking::inf(); if (is_neg(x.upper())) return I(rnd.div_down(x.upper(), y.lower()), inf, true); else return I(rnd.div_down(x.lower(), y.upper()), inf, true); }
template<class T, class Policies> inline interval<T, Policies> atanh(const interval<T, Policies>& x) { typedef interval<T, Policies> I; if (interval_lib::detail::test_input(x) || x.upper() < static_cast<T>(-1) || x.lower() > static_cast<T>(1)) return I::empty(); typename Policies::rounding rnd; typedef typename Policies::checking checking; T l = (x.lower() <= static_cast<T>(-1)) ? checking::neg_inf() : rnd.atanh_down(x.lower()); T u = (x.upper() >= static_cast<T>(1) ) ? checking::pos_inf() : rnd.atanh_up (x.upper()); return I(l, u, true); }
template<class T, class Policies> inline bool zero_in(const interval<T, Policies>& x) { if (interval_lib::detail::test_input(x)) return false; return (!interval_lib::user::is_pos(x.lower())) && (!interval_lib::user::is_neg(x.upper())); }
template<class T, class Policies> inline interval<T, Policies> asin(const interval<T, Policies>& x) { typedef interval<T, Policies> I; if (interval_lib::detail::test_input(x) || x.upper() < static_cast<T>(-1) || x.lower() > static_cast<T>(1)) return I::empty(); typename Policies::rounding rnd; T l = (x.lower() <= static_cast<T>(-1)) ? -interval_lib::constants::pi_half_upper<T>() : rnd.asin_down(x.lower()); T u = (x.upper() >= static_cast<T>(1) ) ? interval_lib::constants::pi_half_upper<T>() : rnd.asin_up (x.upper()); return I(l, u, true); }
template<class T, class Policies> inline bool operator>(const interval<T, Policies>& x, const T& y) { if (detail::test_input(x, y)) throw comparison_error(); const T& xl = x.lower(); return xl > y || (xl == y && x.upper() > y); }
template<class T, class Policies> inline interval<T, Policies> operator-(const interval<T, Policies>& x) { if (interval_lib::detail::test_input(x)) return interval<T, Policies>::empty(); return interval<T, Policies>(-x.upper(), -x.lower(), true); }
template<class T, class Policies> inline interval<T, Policies> hull(const interval<T, Policies>& x, const interval<T, Policies>& y) { BOOST_NUMERIC_INTERVAL_using_max(min); BOOST_NUMERIC_INTERVAL_using_max(max); bool bad_x = interval_lib::detail::test_input(x); bool bad_y = interval_lib::detail::test_input(y); if (bad_x) if (bad_y) return interval<T, Policies>::empty(); else return y; else if (bad_y) return x; return interval<T, Policies>(min(x.lower(), y.lower()), max(x.upper(), y.upper()), true); }
template<class T, class Policies> inline T width(const interval<T, Policies>& x) { if (interval_lib::detail::test_input(x)) return static_cast<T>(0); typename Policies::rounding rnd; return rnd.sub_up(x.upper(), x.lower()); }
template<class T, class Policies> inline interval<T, Policies> div_zero(const interval<T, Policies>& x) { if (is_zero(x.lower()) && is_zero(x.upper())) return x; else return interval<T, Policies>::whole(); }
template<class T, class Policies> inline interval<T, Policies> hull(const interval<T, Policies>& x, const interval<T, Policies>& y) { BOOST_USING_STD_MIN(); BOOST_USING_STD_MAX(); bool bad_x = interval_lib::detail::test_input(x); bool bad_y = interval_lib::detail::test_input(y); if (bad_x) if (bad_y) return interval<T, Policies>::empty(); else return y; else if (bad_y) return x; return interval<T, Policies>(min BOOST_PREVENT_MACRO_SUBSTITUTION(x.lower(), y.lower()), max BOOST_PREVENT_MACRO_SUBSTITUTION(x.upper(), y.upper()), true); }
template<class T, class Policies> inline logic::tribool operator>=(const interval<T, Policies>& x, const T& y) { if (detail::test_input(x, y)) throw comparison_error(); if (x.lower() >= y) return true; if (x.upper() < y) return false; return logic::indeterminate; }
template<class T, class Policies> inline interval<T, Policies> div_zero(const interval<T, Policies>& x) { if (::boost::numeric::interval_lib::user::is_zero(x.lower()) && ::boost::numeric::interval_lib::user::is_zero(x.upper())) return x; else return interval<T, Policies>::whole(); }