void transfer_bytes(kdu_byte *dest, kdu_line_buf &src, int gap, int precision) /* Transfers source samples from the supplied line buffer into the output byte buffer, spacing successive output samples apart by `gap' bytes (to allow for interleaving of colour components). The function performs all necessary level shifting, type conversion, rounding and truncation. */ { int width = src.get_width(); if (src.get_buf32() != NULL) { // Decompressed samples have a 32-bit representation (integer or float) assert(precision >= 8); // Else would have used 16 bit representation kdu_sample32 *sp = src.get_buf32(); if (!src.is_absolute()) { // Transferring normalized floating point data. float scale16 = (float)(1<<16); kdu_int32 val; for (; width > 0; width--, sp++, dest+=gap) { val = (kdu_int32)(sp->fval*scale16); val = (val+128)>>8; // May be faster than true rounding val += 128; if (val & ((-1)<<8)) { val = (val < 0 ? 0 : 255); } *dest = (kdu_byte) val; } }
bool LLKDUMemIn::get(int comp_idx, kdu_line_buf &line, int x_tnum) { int idx = comp_idx - this->first_comp_idx; assert((idx >= 0) && (idx < num_components)); x_tnum = x_tnum*num_components+idx; image_line_buf *scan, *prev=NULL; for (scan = incomplete_lines; scan != NULL; prev = scan, scan = scan->next) { assert(scan->next_x_tnum >= x_tnum); if (scan->next_x_tnum == x_tnum) { break; } } if (scan == NULL) { // Need to read a new image line. assert(x_tnum == 0); // Must consume in very specific order. if (num_unread_rows == 0) { return false; } if ((scan = free_lines) == NULL) { scan = new image_line_buf(cols+3,num_components); } free_lines = scan->next; if (prev == NULL) { incomplete_lines = scan; } else { prev->next = scan; } // Copy from image buffer into scan. memcpy(scan->buf, mData+mCurPos, cols*num_components); mCurPos += cols*num_components; num_unread_rows--; scan->accessed_samples = 0; scan->next_x_tnum = 0; } assert((cols-scan->accessed_samples) >= line.get_width()); int comp_offset = idx; kdu_byte *sp = scan->buf+num_components*scan->accessed_samples + comp_offset; int n=line.get_width(); if (line.get_buf32() != NULL) { kdu_sample32 *dp = line.get_buf32(); if (line.is_absolute()) { // 32-bit absolute integers for (; n > 0; n--, sp+=num_components, dp++) { dp->ival = ((kdu_int32)(*sp)) - 128; } } else { // true 32-bit floats for (; n > 0; n--, sp+=num_components, dp++) { dp->fval = (((float)(*sp)) / 256.0F) - 0.5F; } } } else { kdu_sample16 *dp = line.get_buf16(); if (line.is_absolute()) { // 16-bit absolute integers for (; n > 0; n--, sp+=num_components, dp++) { dp->ival = ((kdu_int16)(*sp)) - 128; } } else { // 16-bit normalized representation. for (; n > 0; n--, sp+=num_components, dp++) { dp->ival = (((kdu_int16)(*sp)) - 128) << (KDU_FIX_POINT-8); } } } scan->next_x_tnum++; if (idx == (num_components-1)) { scan->accessed_samples += line.get_width(); } if (scan->accessed_samples == cols) { // Send empty line to free list. assert(scan == incomplete_lines); incomplete_lines = scan->next; scan->next = free_lines; free_lines = scan; } return true; }