virtual float predict(const record & rcd) const{ unsigned int i = rcd.user - 1, j = rcd.movie - 1; double result = as_scalar(U.col(i).t() * V.col(j)) + A(i) + B(j) + mu; return result; }
mat nnls_solver_with_missing(const mat & A, const mat & W, const mat & W1, const mat & H2, const umat & mask, const double & eta, const double & beta, int max_iter, double rel_tol, int n_threads) { // A = [W, W1, W2] [H, H1, H2]^T. // Where A may have missing values // Note that here in the input W = [W, W2] // compute x = [H, H1]^T given W, W2 // A0 = W2*H2 is empty when H2 is empty (no partial info in H) // Return: x = [H, H1] int n = A.n_rows, m = A.n_cols; int k = W.n_cols - H2.n_cols; int kW = W1.n_cols; int nH = k+kW; mat x(nH, m, fill::zeros); if (n_threads < 0) n_threads = 0; bool is_masked = !mask.empty(); #pragma omp parallel for num_threads(n_threads) schedule(dynamic) for (int j = 0; j < m; j++) { // break if all entries of col_j are masked if (is_masked && arma::all(mask.col(j))) continue; uvec non_missing = find_finite(A.col(j)); mat WtW(nH, nH); // WtW update_WtW(WtW, W.rows(non_missing), W1.rows(non_missing), H2); if (beta > 0) WtW += beta; if (eta > 0) WtW.diag() += eta; mat mu(nH, 1); // -WtA uvec jv(1); jv(0) = j; //non_missing.t().print("non_missing = "); //std::cout << "1.1" << std::endl; if (H2.empty()) update_WtA(mu, W.rows(non_missing), W1.rows(non_missing), H2, A.submat(non_missing, jv)); else update_WtA(mu, W.rows(non_missing), W1.rows(non_missing), H2.rows(j, j), A.submat(non_missing, jv)); //std::cout << "1.5" << std::endl; vec x0(nH); double tmp; int i = 0; double err1, err2 = 9999; do { x0 = x.col(j); err1 = err2; err2 = 0; for (int l = 0; l < nH; l++) { if (is_masked && mask(l,j) > 0) continue; tmp = x(l,j) - mu(l,0) / WtW(l,l); if (tmp < 0) tmp = 0; if (tmp != x(l,j)) { mu.col(0) += (tmp - x(l,j)) * WtW.col(l); } x(l,j) = tmp; tmp = std::abs(x(l,j) - x0(l)); if (tmp > err2) err2 = tmp; } } while(++i < max_iter && std::abs(err1 - err2) / (err1 + 1e-9) > rel_tol); } return x; }
mat compute_hessian_theta1_delta_weighted(uint i, mat station_data, uint wdclat1_col, uint wdclon1_col, double pointslat1_i, double pointslon1_i, double beta1, double sigma0, colvec xdeltain, uvec st_point_list_uvec, rowvec deltain_row, urowvec mat_st_state_row, NumericVector xv0_vec, uint focal_station_index, uint xtheta1_size, double point_density_i, rowvec points_den_covariates) { rowvec station_data_dis_vIdx = conv_to< rowvec >::from(latlondistance(station_data.col(wdclat1_col), station_data.col(wdclon1_col), pointslat1_i, pointslon1_i)); rowvec util = exp(beta1*station_data_dis_vIdx + deltain_row)% (mat_st_state_row==0); double den_util = sum(util); uint no_t_st = util.size(); //rowvec lambda_st_t(no_t_st,fill::zeros); mat hessian_beta1_delta_t(1,no_t_st,fill::zeros); mat hessian_theta1_delta_t(xtheta1_size,no_t_st,fill::zeros); rowvec grad_delta(no_t_st,fill::zeros); uvec no_focal_indexes(no_t_st,fill::zeros); //fill no_focal_indexes with index sequence //find more efficient way to do this for(uint m=0; m<no_focal_indexes.size(); ++m) { no_focal_indexes(m)=m; } no_focal_indexes.shed_row(focal_station_index); for(int m=0; m<xv0_vec.size(); ++m) { double out = exp(-xv0_vec(m)*sigma0); double denutil_t = den_util+out; rowvec util_prob_t = util/denutil_t; rowvec disP = util_prob_t%station_data_dis_vIdx; double disP_sum = sum( disP); // rowvec disP_sum_vec(no_t_st); // disP_sum_vec.fill(disP_sum); vec val1(no_t_st,fill::zeros); val1 = station_data_dis_vIdx val1 += station_data_dis_vIdx(focal_station_index) - 2*disP_sum_vec; val1 = val1 % util_prob_t; val1 *= -util_prob_t(focal_station_index); //remove focal_station_index from val1 as it is incorrect. val1.shed_row(focal_station_index); hessian_beta1_delta_t(0,no_focal_indexes) += val1; hessian_beta1_delta_t(0,focal_station_index) += util_prob_t(focal_station_index) * (1-2*util_prob_t(focal_station_index))\ (station_data_dis_vIdx(focal_station_index)-disP_sum); grad_delta -= util_prob_t(focal_station_index)*util_prob_t; grad_delta(focal_station_index) += util_prob_t(focal_station_index); } grad_delta *= (1/xv0_vec.size()); hessian_beta1_delta_t *= (1/xv0_vec.size())* point_density_i; mat hessian_thetaden_delta_t = points_den_covariates.t() * grad_delta; assert(hessian_thetaden_delta_t.n_rows==points_den_covariates.size()); assert(hessian_thetaden_delta_t.n_cols==grad_delta.size()); hessian_theta1_delta_t.row(0)=hessian_beta1_delta_t; hessian_theta1_delta_t.rows(span(2,xtheta1_size-1))=hessian_thetaden_delta_t; return((hessian_theta1_delta_t)); }