Пример #1
0
void printOptions(options_t &options){
    std::cout << "Agent configuration:\n------------------------------\n";
    for(options_t::iterator it = options.begin(); it != options.end(); ++it){
		std::cout << "OPTION: '" << it->first << "' = '" << it->second << "'" << std::endl;
    }
    std::cout << std::endl;
}
Пример #2
0
int OOBase::CmdArgs::parse_short_options(options_t& options, const char** argv, int& arg, int argc) const
{
	String strKey,strVal;
	for (const char* c = argv[arg]+1; *c!='\0'; ++c)
	{
		Table<String,Option>::const_iterator i = m_map_opts.begin();
		for (;i; ++i)
		{
			if (i->second.m_short_opt == *c)
			{
				if (i->second.m_has_value)
				{
					const char* value;
					if (c[1] == '\0')
					{
						// Next arg is the value
						if (arg >= argc-1)
						{
							int err = strVal.printf("-%c",*c);
							if (err)
								return err;

							return error(options,EINVAL,"missing",strVal.c_str());
						}
						
						value = argv[++arg];
					}
					else
						value = &c[1];

					if (!strVal.assign(value) || !options.insert(i->first,strVal))
						return system_error();

					// No more for this arg...
					return 0;
				}
				else
				{
					if (!strVal.assign("true") || !options.insert(i->first,strVal))
						return system_error();

					break;
				}
			}
		}

		if (!i)
		{
			int err = strVal.printf("-%c",*c);
			if (err)
				return err;
				
			return error(options,ENOENT,"unknown",strVal.c_str());
		}
	}

	return 0;
}
Пример #3
0
int OOBase::CmdArgs::error(options_t& options, int err, const char* key, const char* value) const
{
	String strErr,strVal;
	if (!strErr.assign(key) || !strVal.assign(value))
		return system_error();
	
	options.clear();
	if (!options.insert(strErr,strVal))
		return system_error();

	return err;
}
Пример #4
0
CoinFlip::CoinFlip(options_t &options) {
	// Determine the probability of the coin landing on heads
	p = 1.0;
	if (options.count("coin-flip-p") > 0) {
		strExtract(options["coin-flip-p"], p);
	}
	assert(0.0 <= p);
	assert(p <= 1.0);

	// Set up the initial observation
	m_observation = rand01() < p ? 1 : 0;
	m_reward = 0;
}
Пример #5
0
int OOBase::CmdArgs::parse_long_option(options_t& options, const char** argv, int& arg, int argc) const
{
	String strKey,strVal;
	for (Table<String,Option>::const_iterator i = m_map_opts.begin();i; ++i)
	{
		const char* value = "true";
		if (i->second.m_long_opt == argv[arg]+2)
		{
			if (i->second.m_has_value)
			{
				if (arg >= argc-1)
					return error(options,EINVAL,"missing",argv[arg]);
					
				value = argv[++arg];
			}

			if (!strVal.assign(value) || !options.insert(i->first,strVal))
				return system_error();

			return 0;
		}

		if (strncmp(i->second.m_long_opt.c_str(),argv[arg]+2,i->second.m_long_opt.length())==0 && argv[arg][i->second.m_long_opt.length()+2]=='=')
		{
			if (i->second.m_has_value)
				value = &argv[arg][i->second.m_long_opt.length()+3];

			if (!strVal.assign(value) || !options.insert(i->first,strVal))
				return system_error();

			return 0;
		}
	}

	return error(options,ENOENT,"unknown",argv[arg]);
}
Пример #6
0
// The main agent/environment interaction loop
void mainLoop(Agent &ai, Environment &env, options_t &options) {

	// Determine exploration options
	bool explore = options.count("exploration") > 0;
	double explore_rate, explore_decay;
	if (explore) {
		strExtract(options["exploration"], explore_rate);
		strExtract(options["explore-decay"], explore_decay);
		assert(0.0 <= explore_rate && explore_rate <= 1.0);
		assert(0.0 <= explore_decay && explore_decay <= 1.0);
	}

    
	// Determine termination age
	bool terminate_check = options.count("terminate-age") > 0;
	age_t terminate_age;
	if (terminate_check) {
		strExtract(options["terminate-age"], terminate_age);
		assert(0 <= terminate_age);
	}

    // Determine mc-timelimit
    timelimit_t mc_timelimit;
    strExtract(options["mc-timelimit"], mc_timelimit);
    //if we assume that time_limit > agent.numActions() we can be sure 
    //that every action is selected at least once
    if(mc_timelimit < ai.numActions()){
        std::cerr << "WARNING: time_limit not large enough to sample all actions" << std::endl;
    }

	// Determine whether to write cts during the process, or only at the end.
    bool intermediate_ct = true;
    if(options.count("intermediate-ct") > 0){
        intermediate_ct = !(options["intermediate-ct"] == "0");
    }

    std::cout << "starting agent/environment interaction loop...\n"; 
	// Agent/environment interaction loop
	for (unsigned int cycle = 1; !env.isFinished(); cycle++) {

		// check for agent termination
		if (terminate_check && ai.age() >= terminate_age) {
			verboseLog << "info: terminating agent" << std::endl;
			break;
		}

		// Get a percept from the environment
		percept_t observation = env.getObservation();
		percept_t reward = env.getReward();

		// Update agent's environment model with the new percept
		ai.modelUpdate(observation, reward);

		// Determine best exploitive action, or explore
		action_t action;
		bool explored = false;
		if (explore && rand01() < explore_rate) {
			explored = true;
			action = ai.genRandomAction();
		}
		else {
			action = search(ai, mc_timelimit);
		}

		// Send an action to the environment
		env.performAction(action); 

		// Update agent's environment model with the chosen action
		ai.modelUpdate(action); 

		// Log this turn
		verboseLog << "cycle: " << cycle << std::endl;
		verboseLog << "observation: " << observation << std::endl;
		verboseLog << "reward: " << reward << std::endl;
		verboseLog << "action: " << action << std::endl;
		verboseLog << "explored: " << (explored ? "yes" : "no") << std::endl;
		verboseLog << "explore rate: " << explore_rate << std::endl;
		verboseLog << "total reward: " << ai.reward() << std::endl;
		verboseLog << "average reward: " << ai.averageReward() << std::endl;

		// Log the data in a more compact form
		compactLog << cycle << ", " << observation << ", " << reward << ", "
				<< action << ", " << explored << ", " << explore_rate << ", "
				<< ai.reward() << ", " << ai.averageReward() << std::endl;

		// Print to standard output when cycle == 2^n
		if ((cycle & (cycle - 1)) == 0) {
			std::cout << "cycle: " << cycle << std::endl;
			std::cout << "average reward: " << ai.averageReward() << std::endl;
			if (explore) {
				std::cout << "explore rate: " << explore_rate << std::endl;
			}

			// Write context tree file
			if(options["write-ct"] != "" && intermediate_ct){
				// write a ct for each 2^n cycles.
				char cycle_string[256];
				sprintf(cycle_string, "%d", cycle);
				std::ofstream ct((options["write-ct"] + std::string(cycle_string) + ".ct").c_str());
				ai.writeCT(ct);
				ct.close();
			}
		}

		// Update exploration rate
		if (explore) explore_rate *= explore_decay;

	}

	// Print summary to standard output
	std::cout << std::endl << std::endl << "SUMMARY" << std::endl;
	std::cout << "agent age: " << ai.age() << std::endl;
	std::cout << "average reward: " << ai.averageReward() << std::endl;

    // Write context tree file
    if(options["write-ct"] != ""){
    	// write a ct for the final cycle too.
		char cycle_string[256];
		sprintf(cycle_string, "%lld", ai.age());
		std::ofstream ct((options["write-ct"] + std::string(cycle_string) + ".ct").c_str());
		ai.writeCT(ct);
		ct.close();
    }
}
Пример #7
0
// The main agent/environment interaction loop
void mainLoop(Agent &ai, Environment &env, options_t &options) {

	// Determine exploration options
	bool explore = options.count("exploration") > 0;
	double explore_rate, explore_decay;
	if (explore) {
		strExtract(options["exploration"], explore_rate);
		strExtract(options["explore-decay"], explore_decay);
		assert(0.0 <= explore_rate && explore_rate <= 1.0);
		assert(0.0 <= explore_decay && explore_decay <= 1.0);
	}


	// Determine termination lifetime
	bool terminate_check = options.count("terminate-lifetime") > 0;
	lifetime_t terminate_lifetime;
	if (terminate_check) {
		strExtract(options["terminate-lifetime"], terminate_lifetime);
		assert(0 <= terminate_lifetime);
	}

	// Agent/environment interaction loop
	for (unsigned int cycle = 1; !env.isFinished(); cycle++) {

		// check for agent termination
		if (terminate_check && ai.lifetime() > terminate_lifetime) {
			log << "info: terminating lifetiment" << std::endl;
			break;
		}

		// Get a percept from the environment
		percept_t observation = env.getObservation();
		percept_t reward = env.getReward();

		// Update agent's environment model with the new percept
		ai.modelUpdate(observation, reward); // TODO: implement in agent.cpp

		// Determine best exploitive action, or explore
		action_t action;
		bool explored = false;
		if (explore && rand01() < explore_rate) {
			explored = true;
			action = ai.genRandomAction();
		}
		else {
			action = search(ai); // TODO: implement in search.cpp
		}

		// Send an action to the environment
		env.performAction(action); // TODO: implement for each environment

		// Update agent's environment model with the chosen action
		ai.modelUpdate(action); // TODO: implement in agent.cpp

		// Log this turn
		log << "cycle: " << cycle << std::endl;
		log << "observation: " << observation << std::endl;
		log << "reward: " << reward << std::endl;
		log << "action: " << action << std::endl;
		log << "explored: " << (explored ? "yes" : "no") << std::endl;
		log << "explore rate: " << explore_rate << std::endl;
		log << "total reward: " << ai.reward() << std::endl;
		log << "average reward: " << ai.averageReward() << std::endl;

		// Log the data in a more compact form
		compactLog << cycle << ", " << observation << ", " << reward << ", "
				<< action << ", " << explored << ", " << explore_rate << ", "
				<< ai.reward() << ", " << ai.averageReward() << std::endl;

		// Print to standard output when cycle == 2^n
		if ((cycle & (cycle - 1)) == 0) {
			std::cout << "cycle: " << cycle << std::endl;
			std::cout << "average reward: " << ai.averageReward() << std::endl;
			if (explore) {
				std::cout << "explore rate: " << explore_rate << std::endl;
			}
		}

		// Update exploration rate
		if (explore) explore_rate *= explore_decay;

	}

	// Print summary to standard output
	std::cout << std::endl << std::endl << "SUMMARY" << std::endl;
	std::cout << "agent lifetime: " << ai.lifetime() << std::endl;
	std::cout << "average reward: " << ai.averageReward() << std::endl;
}
Пример #8
0
/** The main agent/environment interaction loop. Each interaction cycle begins
 * with the agent receiving an observation and reward from the environment.
 * Subsequently, the agent selects an action and informs the environment. The
 * interactions that took place are logged to the ::logger and ::compactLogger
 * streams. When the cycle equals a power of two, a summary of the interactions
 * is printed to the standard output.
 * \param ai The agent.
 * \param env The environment.
 * \param options The configuration options. */
void mainLoop(Agent &ai, Environment &env, options_t &options) {

	// Apply random seed (Defaut: 0)
	srand(getOption<unsigned int>(options, "random-seed", 0));

	// Verbose output (Default: false)
	bool verbose = getOption<bool>(options, "verbose", false);

	// Determine exploration options (Default: don't explore, don't decay)
	bool explore = options.count("exploration") > 0;
	double explore_rate = getOption<double>(options, "exploration", 0.0);
	double explore_decay = getOption<double>(options, "explore-decay", 1.0);
    assert(0.0 <= explore_rate);
	assert(0.0 <= explore_decay && explore_decay <= 1.0);

	// Determine termination age (Default: don't terminate)
	bool terminate_check = options.count("terminate-age") > 0;
	age_t terminate_age = getOption<age_t>(options, "terminate-age", 0);
	assert(0 <= terminate_age);
	
	// Determine the cycle after which the agent stops learning (if ever)
	int learning_period = getOption<int>(options, "learning-period", 0);
	assert(0 <= learning_period);

	// Agent/environment interaction loop
	for (int cycle = 1; !env.isFinished(); cycle++) {

		// Check for agent termination
		if (terminate_check && ai.age() > terminate_age) {
			break;
		}
		
		// Save the current clock cycle (to compute how long this cycle took)
		clock_t cycle_start = clock();

		// Get a percept from the environment
		percept_t observation = env.getObservation();
		percept_t reward = env.getReward();


		if (learning_period > 0 && cycle > learning_period)
			explore = false;
		
		// Update agent's environment model with the new percept
		ai.modelUpdate(observation, reward);

		// Determine best exploitive action, or explore
		action_t action;
		bool explored = false;

		if (explore && (rand01() < explore_rate)) { // Explore
			explored = true;
			action = ai.genRandomAction();
		}
		else { // Exploit
			action = ai.search();
		}

		// Send an action to the environment
		env.performAction(action);
		
		// Update agent's environment model with the chosen action
		ai.modelUpdate(action);
		
		// Calculate how long this cycle took
		double time = double(clock() - cycle_start) / double(CLOCKS_PER_SEC);

		// Log this turn
		logger << cycle << ", " << observation << ", " << reward << ", "
			<< action << ", " << explored << ", " << explore_rate << ", "
			<< ai.totalReward() << ", " << ai.averageReward() << ", "
			<< time << ", " << ai.modelSize() << std::endl;

		// Print to standard output when cycle == 2^n or on verbose option
		if (verbose || (cycle & (cycle - 1)) == 0) {
			std::cout << "cycle: " << cycle << std::endl;
			std::cout << "average reward: " << ai.averageReward() << std::endl;
			if (explore) {
				std::cout << "explore rate: " << explore_rate << std::endl;
			}
		}

		// Print environment state if verbose option is true
		if (verbose) {
  		    std::cout << env.print();
		}

		// Update exploration rate
		if (explore) explore_rate *= explore_decay;

	}

	// Print summary to standard output
	std::cout << std::endl << std::endl << "SUMMARY" << std::endl;
	std::cout << "agent age: " << ai.age() << std::endl;
	std::cout << "average reward: " << ai.averageReward() << std::endl;
}
Пример #9
0
void argparse::init_options(options_t& options) {
    options.reset();
}
Пример #10
0
int argparse::parse_arguments(char* arg, options_t& options) {
    std::string argument = arg, option, value;

    if (argument.compare(0, 8, "--macpo:") != 0)
        return -1;

    size_t start_position = -1, end_position;
    if ((start_position = argument.find(":")) == std::string::npos)
        return -1;

    end_position = argument.find("=", start_position + 1);
    if (end_position == std::string::npos) {
        option = argument.substr(start_position + 1);
        value = "";
    } else {
        option = argument.substr(start_position + 1,
            end_position - start_position - 1);
        value = argument.substr(end_position + 1);
    }

    location_t location;
    if (option == "instrument") {
        if (!value.size())
            return -1;

        parse_location(value, location);
        options.add_location(ACTION_INSTRUMENT, location);
    } else if (option == "check-alignment") {
        if (!value.size())
            return -1;

        parse_location(value, location);
        options.add_location(ACTION_ALIGNCHECK, location);
    } else if (option == "record-tripcount") {
        if (!value.size())
            return -1;

        parse_location(value, location);
        options.add_location(ACTION_TRIPCOUNT, location);
    } else if (option == "record-branchpath") {
        if (!value.size())
            return -1;

        parse_location(value, location);
        options.add_location(ACTION_BRANCHPATH, location);
    } else if (option == "gen-trace") {
        if (!value.size())
            return -1;

        parse_location(value, location);
        options.add_location(ACTION_GENTRACE, location);
    } else if (option == "vector-strides") {
        if (!value.size())
            return -1;

        parse_location(value, location);
        options.add_location(ACTION_VECTORSTRIDES, location);
    } else if (option == "overlap-check") {
        if (!value.size())
            return -1;

        parse_location(value, location);
        options.add_location(ACTION_OVERLAPCHECK, location);
    } else if (option == "stride-check") {
        if (!value.size())
            return -1;

        parse_location(value, location);
        options.add_location(ACTION_STRIDECHECK, location);
    } else if (option == "reuse-distance") {
        if (!value.size())
            return -1;

        parse_location(value, location);
        options.add_location(ACTION_REUSEDISTANCE, location);
    } else if (option == "backup-filename") {
        if (!value.size())
            return -1;

        options.backup_filename = value;
    } else if (option == "no-compile") {
        options.no_compile = true;
    } else if (option == "enable-sampling") {
        options.disable_sampling = false;
    } else if (option == "disable-sampling") {
        options.disable_sampling = true;
    } else if (option == "profile-analysis") {
        options.profile_analysis = true;
    } else if (option == "compiler") {
        // Check if we were passed a valid executable.
        if (!value.size()) {
            return -1;
        }

        options.base_compiler = value;
    } else {
        return -1;
    }

    return 0;
}