Пример #1
0
	/*!
	Correct \c forward_next return values when <tt>op == CSkipOp</tt>.

	\param op [in]
	The input value of op must be the return value from the previous
	call to \c forward_next and must be \c CSkipOp. It is not modified.

	\param op_arg [in,out]
	The input value of \c op_arg must be the return value from the 
	previous call to \c forward_next. Its output value is the
	beginning of the vector of argument indices for the next operation.

	\param op_index [in]
	The input value of \c op_index does must be the return value from the
	previous call to \c forward_next. Its is not modified.

	\param var_index [in,out]
	The input value of \c var_index must be the return value from the
	previous call to \c forward_next. It is not modified.
	*/
	void forward_cskip(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{	using CppAD::NumRes;
		using CppAD::NumArg;
		CPPAD_ASSERT_UNKNOWN( op_       == op );
		CPPAD_ASSERT_UNKNOWN( op_arg    == op_arg_ );
		CPPAD_ASSERT_UNKNOWN( op_index  == op_index_ );
		CPPAD_ASSERT_UNKNOWN( var_index == var_index_ );

		CPPAD_ASSERT_UNKNOWN( op == CSkipOp );
		CPPAD_ASSERT_UNKNOWN( NumArg(CSkipOp) == 0 );
		CPPAD_ASSERT_UNKNOWN(
		op_arg[4] + op_arg[5] == op_arg[ 6 + op_arg[4] + op_arg[5] ]
		);
		/*
		The only thing that really needs fixing is op_arg_.
		Actual number of arugments for this operator is
			7 + op_arg[4] + op_arg[5]
 		We must change op_arg_ so that when you add NumArg(CSkipOp)
		you get first argument for next operator in sequence.
		*/
		op_arg  = op_arg_  += 7 + op_arg[4] + op_arg[5];

		CPPAD_ASSERT_UNKNOWN( op_arg_rec_.data() <= op_arg_ );
		CPPAD_ASSERT_UNKNOWN( 
			op_arg_ + NumArg(op) <= op_arg_rec_.data() + op_arg_rec_.size()
		);
		CPPAD_ASSERT_UNKNOWN( var_index_  < num_var_rec_ );
	}
Пример #2
0
	/*!
	Fetch the next operator during a forward sweep.

	Use forward_start to initialize to the first operator; i.e.,
	the BeginOp at the beginning of the recording. 
	We use the notation forward_routine to denote the set
	forward_start, forward_next, forward_csum, forward_cskip.

	\param op [in,out]
	The input value of \c op must be its output value from the 
	previous call to a forward_routine.
	Its output value is the next operator in the recording.
	For speed, \c forward_next does not check for the special cases
	where  <tt>op == CSumOp</tt> or <tt>op == CSkipOp</tt>. In these cases, 
	the other return values from \c forward_next must be corrected by a call 
	to \c forward_csum or \c forward_cskip respectively.

	\param op_arg [in,out]
	The input value of \c op_arg must be its output value form the
	previous call to a forward routine. 
	Its output value is the
	beginning of the vector of argument indices for this operation.

	\param op_index [in,out]
	The input value of \c op_index must be its output value form the
	previous call to a forward routine. 
	Its output value is the index of the next operator in the recording. 
	Thus the ouput value following the previous call to forward_start is one.
	In addition,
	the output value increases by one with each call to forward_next. 

	\param var_index [in,out]
	The input value of \c var_index must be its output value form the
	previous call to a forward routine. 
	Its output value is the
	index of the primary (last) result corresponding to the operator op.
	*/
	void forward_next(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{	using CppAD::NumRes;
		using CppAD::NumArg;
		CPPAD_ASSERT_UNKNOWN( op_       == op );
		CPPAD_ASSERT_UNKNOWN( op_arg    == op_arg_ );
		CPPAD_ASSERT_UNKNOWN( op_index  == op_index_ );
		CPPAD_ASSERT_UNKNOWN( var_index == var_index_ );

		// index for the next operator 
		op_index    = ++op_index_;

		// first argument for next operator 
		op_arg      = op_arg_    += NumArg(op_);

		// next operator
		op          = op_         = OpCode( op_rec_[ op_index_ ] );

		// index for last result for next operator
		var_index   = var_index_ += NumRes(op);
		

		CPPAD_ASSERT_UNKNOWN( op_arg_rec_.data() <= op_arg_ );
		CPPAD_ASSERT_UNKNOWN( 
			op_arg_ + NumArg(op) <= op_arg_rec_.data() + op_arg_rec_.size() 
		);
		CPPAD_ASSERT_UNKNOWN( var_index_  < num_var_rec_ );
	}
Пример #3
0
	/*!
	Fetch the next operator during a reverse sweep.

	Use reverse_start to initialize to reverse play back.
	The first call to reverse_next (after reverse_start) will give the 
	last operator in the recording.
	We use the notation reverse_routine to denote the set
	reverse_start, reverse_next, reverse_csum, reverse_cskip.

	\param op [in,out]
	The input value of \c op must be its output value from the 
	previous call to a reverse_routine.
	Its output value is the next operator in the recording (in reverse order).
	The last operator sets op equal to EndOp.

	\param op_arg [in,out]
	The input value of \c op_arg must be its output value from the 
	previous call to a reverse_routine.
	Its output value is the
	beginning of the vector of argument indices for this operation.
	The last operator sets op_arg equal to the beginning of the 
	argument indices for the entire recording.
	For speed, \c reverse_next does not check for the special cases
	<tt>op == CSumOp</tt> or <tt>op == CSkipOp</tt>. In these cases, the other
	return values from \c reverse_next must be corrected by a call to 
	\c reverse_csum or \c reverse_cskip respectively.


	\param op_index [in,out]
	The input value of \c op_index must be its output value from the 
	previous call to a reverse_routine.
	Its output value
	is the index of this operator in the recording. Thus the output
	value following the previous call to reverse_start is equal to 
	the number of variables in the recording minus one.
	In addition, the output value decreases by one with each call to
	reverse_next.
	The last operator sets op_index equal to 0.

	\param var_index [in,out]
	The input value of \c var_index must be its output value from the 
	previous call to a reverse_routine.
	Its output value is the
	index of the primary (last) result corresponding to the operator op.
	The last operator sets var_index equal to 0 (corresponding to BeginOp
	at beginning of operation sequence).
	*/
	void reverse_next(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{	using CppAD::NumRes;
		using CppAD::NumArg;
		CPPAD_ASSERT_UNKNOWN( op_       == op );
		CPPAD_ASSERT_UNKNOWN( op_arg    == op_arg_ );
		CPPAD_ASSERT_UNKNOWN( op_index  == op_index_ );
		CPPAD_ASSERT_UNKNOWN( var_index == var_index_ );

		// index of the last result for the next operator
		CPPAD_ASSERT_UNKNOWN( var_index_ >= NumRes(op_) );
		var_index   = var_index_ -= NumRes(op_);

		// next operator
		CPPAD_ASSERT_UNKNOWN( op_index_  > 0 );
		op_index    = --op_index_;                                  // index
		op          = op_         = OpCode( op_rec_[ op_index_ ] ); // value

		// first argument for next operator
		op_arg      = op_arg_    -= NumArg(op);
		CPPAD_ASSERT_UNKNOWN( op_arg_rec_.data() <= op_arg_ );
		CPPAD_ASSERT_UNKNOWN( 
			op_arg_ + NumArg(op) <= op_arg_rec_.data() + op_arg_rec_.size() 
		);
	}
Пример #4
0
	void reverse_csum(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{	using CppAD::NumRes;
		using CppAD::NumArg;
		CPPAD_ASSERT_UNKNOWN( op_       == op );
		CPPAD_ASSERT_UNKNOWN( op_arg    == op_arg_ );
		CPPAD_ASSERT_UNKNOWN( op_index  == op_index_ );
		CPPAD_ASSERT_UNKNOWN( var_index == var_index_ );

		CPPAD_ASSERT_UNKNOWN( op == CSumOp );
		CPPAD_ASSERT_UNKNOWN( NumArg(CSumOp) == 0 );
		/*
		The variables that need fixing are op_arg_ and op_arg. Currently, 
		op_arg points to the last argument for the previous operator.
		*/
		// last argument for this csum operation
		--op_arg;
		// first argument for this csum operation
		op_arg      = op_arg_    -= (op_arg[0] + 4);
		// now op_arg points to the first argument for this csum operator

		CPPAD_ASSERT_UNKNOWN(
		op_arg[0] + op_arg[1] == op_arg[ 3 + op_arg[0] + op_arg[1] ]
		);

		CPPAD_ASSERT_UNKNOWN( op_index_  < op_rec_.size() );
		CPPAD_ASSERT_UNKNOWN( op_arg_rec_.data() <= op_arg_ );
		CPPAD_ASSERT_UNKNOWN( var_index_  < num_var_rec_ );
	}
Пример #5
0
	void reverse_cskip(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{	using CppAD::NumRes;
		using CppAD::NumArg;
		CPPAD_ASSERT_UNKNOWN( op_       == op );
		CPPAD_ASSERT_UNKNOWN( op_arg    == op_arg_ );
		CPPAD_ASSERT_UNKNOWN( op_index  == op_index_ );
		CPPAD_ASSERT_UNKNOWN( var_index == var_index_ );

		CPPAD_ASSERT_UNKNOWN( op == CSkipOp );
		CPPAD_ASSERT_UNKNOWN( NumArg(CSkipOp) == 0 );
		/*
		The variables that need fixing are op_arg_ and op_arg. Currently, 
		op_arg points first arugment for the previous operator.
		*/
		--op_arg;
		op_arg      = op_arg_    -= (op_arg[0] + 4);

		CPPAD_ASSERT_UNKNOWN(
		op_arg[1] + op_arg[2] == op_arg[ 3 + op_arg[1] + op_arg[2] ]
		);
		CPPAD_ASSERT_UNKNOWN( op_index_  < op_rec_.size() );
		CPPAD_ASSERT_UNKNOWN( op_arg_rec_.data() <= op_arg_ );
		CPPAD_ASSERT_UNKNOWN( var_index_  < num_var_rec_ );
	}
Пример #6
0
	void reverse_start(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{
		op_arg      = op_arg_     = op_arg_rec_.data() + op_arg_rec_.size();
		op_index    = op_index_   = op_rec_.size() - 1; 
		var_index   = var_index_  = num_var_rec_ - 1;
		op          = op_         = OpCode( op_rec_[ op_index_ ] );
		CPPAD_ASSERT_UNKNOWN( op_ == EndOp );
		CPPAD_ASSERT_NARG_NRES(op, 0, 0);
		return;
	}
Пример #7
0
	/*!
	Start a play back of the recording during a forward sweep.

	Use repeated calls to forward_next to play back one operator at a time.

	\param op [out]
	The input value of \c op does not matter. Its output value is the
	first operator in the recording; i.e., BeginOp.

	\param op_arg [out]
	The input value of \c op_arg does not matter. Its output value is the
	beginning of the vector of argument indices for the first operation;
	i.e., 0

	\param op_index [out]
	The input value of \c op_index does not matter. Its output value
	is the index of the next first operator in the recording; i.e., 0.

	\param var_index [out]
	The input value of \c var_index does not matter. Its output value is the
	index of the primary (last) result corresponding to the the first
	operator (which must be a BeginOp); i.e., 0.
	*/
	void forward_start(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{
		op        = op_          = OpCode( op_rec_[0] ); 
		op_arg    = op_arg_      = op_arg_rec_.data();
		op_index  = op_index_    = 0;
		var_index = var_index_   = 0;

		CPPAD_ASSERT_UNKNOWN( op_  == BeginOp );
		CPPAD_ASSERT_NARG_NRES(op_, 1, 1);

		return;
	}
Пример #8
0
	void start_reverse(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{
		op_arg_     = rec_op_arg_.size();                // index
		op_arg      = op_arg_ + rec_op_arg_.data();      // pointer

		op_index    = op_index_   = rec_op_.size() - 1; 
		var_index   = var_index_  = num_rec_var_ - 1;

		op          = op_         = OpCode( rec_op_[ op_index_ ] );
		CPPAD_ASSERT_UNKNOWN( op_ == EndOp );
		CPPAD_ASSERT_NARG_NRES(op, 0, 0);
		return;
	}
Пример #9
0
	void next_reverse(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{	using CppAD::NumRes;
		using CppAD::NumArg;

		// index of the last result for the next operator
		CPPAD_ASSERT_UNKNOWN( var_index_ >= NumRes(op_) );
		var_index   = var_index_ -= NumRes(op_);

		// next operator
		CPPAD_ASSERT_UNKNOWN( op_index_  > 0 );
		op_index    = --op_index_;                                  // index
		op          = op_         = OpCode( rec_op_[ op_index_ ] ); // value

		// first argument for next operator
		CPPAD_ASSERT_UNKNOWN( op_arg_ >= NumArg(op)  );
		op_arg_    -= NumArg(op);                            // index
		op_arg      = op_arg_ + rec_op_arg_.data();          // pointer
	}
Пример #10
0
	void reverse_csum(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{	using CppAD::NumRes;
		using CppAD::NumArg;
		CPPAD_ASSERT_UNKNOWN( op == CSumOp );
		CPPAD_ASSERT_UNKNOWN( NumArg(CSumOp) == 0 );
		/*
		The things needs fixing are op_arg_ and op_arg. Currently, 
		op_arg points first arugment for the previous operator.
		*/
		--op_arg;
		op_arg_    -= (op_arg[0] + 4);
		op_arg      = op_arg_ + rec_op_arg_.data();

		CPPAD_ASSERT_UNKNOWN(
		op_arg[0] + op_arg[1] == op_arg[ 3 + op_arg[0] + op_arg[1] ]
		);
		CPPAD_ASSERT_UNKNOWN( op_index_  < rec_op_.size() );
		CPPAD_ASSERT_UNKNOWN( op_arg_ + NumArg(op) <= rec_op_arg_.size() );
		CPPAD_ASSERT_UNKNOWN( var_index_  < num_rec_var_ );
	}
Пример #11
0
	void next_forward(
	OpCode& op, const addr_t*& op_arg, size_t& op_index, size_t& var_index)
	{	using CppAD::NumRes;
		using CppAD::NumArg;

		// index for the next operator 
		op_index    = ++op_index_;

		// first argument for next operator 
		op_arg_    += NumArg(op_);                   // index
		op_arg      = op_arg_ + rec_op_arg_.data();  // pointer

		// next operator
		op          = op_         = OpCode( rec_op_[ op_index_ ] );

		// index for last result for next operator
		var_index   = var_index_ += NumRes(op);

		CPPAD_ASSERT_UNKNOWN( op_arg_ + NumArg(op) <= rec_op_arg_.size() );
		CPPAD_ASSERT_UNKNOWN( var_index_  < num_rec_var_ );
	}
Пример #12
0
	/*!
	Get a non-constant version of op_arg returned by previous next_forward

	\return
	The return value is equal to the return value of op_arg 
	corresponding to the previous call to next_forward.
	*/
	addr_t* forward_non_const_arg(void)
	{	return op_arg_ + rec_op_arg_.data(); }
Пример #13
0
	/*! 
	\brief 
	Fetch a '\\0' terminated string from the recording.

	\return 
	the beginning of the string.

	\param i
	the index where the string begins. 
	*/
	const char *GetTxt(size_t i) const
	{	CPPAD_ASSERT_UNKNOWN(i < rec_text_.size() );
		return rec_text_.data() + i;
	}
Пример #14
0
	/*! 
	\brief 
	Fetch entire parameter vector from the recording.

	\return 
	the entire parameter vector.

	*/
	const Base* GetPar(void) const
	{	return rec_par_.data(); }
Пример #15
0
void forward1sweep(
	std::ostream&         s_out,
	const bool            print,
	const size_t          p,
	const size_t          q,
	const size_t          n,
	const size_t          numvar,
	player<Base>*         play,
	const size_t          J,
	Base*                 taylor,
	bool*                 cskip_op,
	pod_vector<addr_t>&   var_by_load_op,
	size_t                compare_change_count,
	size_t&               compare_change_number,
	size_t&               compare_change_op_index
)
{
	// number of directions
	const size_t r = 1;

	CPPAD_ASSERT_UNKNOWN( p <= q );
	CPPAD_ASSERT_UNKNOWN( J >= q + 1 );
	CPPAD_ASSERT_UNKNOWN( play->num_var_rec() == numvar );

	/*
	<!-- replace forward0sweep_code_define -->
	*/
	// op code for current instruction
	OpCode op;

	// index for current instruction
	size_t i_op;

	// next variables
	size_t i_var;

	// operation argument indices
	const addr_t*   arg = CPPAD_NULL;

	// initialize the comparision operator counter
	if( p == 0 )
	{	compare_change_number   = 0;
		compare_change_op_index = 0;
	}

	// If this includes a zero calculation, initialize this information
	pod_vector<bool>   isvar_by_ind;
	pod_vector<size_t> index_by_ind;
	if( p == 0 )
	{	size_t i;

		// this includes order zero calculation, initialize vector indices
		size_t num = play->num_vec_ind_rec();
		if( num > 0 )
		{	isvar_by_ind.extend(num);
			index_by_ind.extend(num);
			for(i = 0; i < num; i++)
			{	index_by_ind[i] = play->GetVecInd(i);
				isvar_by_ind[i] = false;
			}
		}
		// includes zero order, so initialize conditional skip flags
		num = play->num_op_rec();
		for(i = 0; i < num; i++)
			cskip_op[i] = false;
	}

	// work space used by UserOp.
	vector<bool> user_vx;        // empty vecotor
	vector<bool> user_vy;        // empty vecotor
	vector<Base> user_tx;        // argument vector Taylor coefficients
	vector<Base> user_ty;        // result vector Taylor coefficients
	size_t user_index = 0;       // indentifier for this atomic operation
	size_t user_id    = 0;       // user identifier for this call to operator
	size_t user_i     = 0;       // index in result vector
	size_t user_j     = 0;       // index in argument vector
	size_t user_m     = 0;       // size of result vector
	size_t user_n     = 0;       // size of arugment vector
	//
	atomic_base<Base>* user_atom = CPPAD_NULL; // user's atomic op calculator
# ifndef NDEBUG
	bool               user_ok   = false;      // atomic op return value
# endif
	//
	// next expected operator in a UserOp sequence
	enum { user_start, user_arg, user_ret, user_end, user_trace }
	user_state = user_start;

	// length of the parameter vector (used by CppAD assert macros)
	const size_t num_par = play->num_par_rec();

	// pointer to the beginning of the parameter vector
	const Base* parameter = CPPAD_NULL;
	if( num_par > 0 )
		parameter = play->GetPar();

	// length of the text vector (used by CppAD assert macros)
	const size_t num_text = play->num_text_rec();

	// pointer to the beginning of the text vector
	const char* text = CPPAD_NULL;
	if( num_text > 0 )
		text = play->GetTxt(0);
	/*
	<!-- end forward0sweep_code_define -->
	*/
	// temporary indices
	size_t i, k;

	// number of orders for this user calculation
	// (not needed for order zero)
	const size_t user_q1 = q+1;

	// variable indices for results vector
	// (done differently for order zero).
	vector<size_t> user_iy;

	// skip the BeginOp at the beginning of the recording
	play->forward_start(op, arg, i_op, i_var);
	CPPAD_ASSERT_UNKNOWN( op == BeginOp );
# if CPPAD_FORWARD1SWEEP_TRACE
	std::cout << std::endl;
# endif
	bool more_operators = true;
	while(more_operators)
	{
		// this op
		play->forward_next(op, arg, i_op, i_var);
		CPPAD_ASSERT_UNKNOWN( (i_op > n)  | (op == InvOp) );
		CPPAD_ASSERT_UNKNOWN( (i_op <= n) | (op != InvOp) );
		CPPAD_ASSERT_UNKNOWN( i_op < play->num_op_rec() );
		CPPAD_ASSERT_ARG_BEFORE_RESULT(op, arg, i_var);

		// check if we are skipping this operation
		while( cskip_op[i_op] )
		{	if( op == CSumOp )
			{	// CSumOp has a variable number of arguments
				play->forward_csum(op, arg, i_op, i_var);
			}
			CPPAD_ASSERT_UNKNOWN( op != CSkipOp );
			// if( op == CSkipOp )
			// {	// CSkip has a variable number of arguments
			// 	play->forward_cskip(op, arg, i_op, i_var);
			// }
			play->forward_next(op, arg, i_op, i_var);
			CPPAD_ASSERT_UNKNOWN( i_op < play->num_op_rec() );
		}

		// action depends on the operator
		switch( op )
		{
			case AbsOp:
			forward_abs_op(p, q, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case AddvvOp:
			forward_addvv_op(p, q, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case AddpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_addpv_op(p, q, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case AcosOp:
			// sqrt(1 - x * x), acos(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_acos_op(p, q, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case AcoshOp:
			// sqrt(x * x - 1), acosh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_acosh_op(p, q, i_var, arg[0], J, taylor);
			break;
# endif
			// -------------------------------------------------

			case AsinOp:
			// sqrt(1 - x * x), asin(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_asin_op(p, q, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case AsinhOp:
			// sqrt(1 + x * x), asinh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_asinh_op(p, q, i_var, arg[0], J, taylor);
			break;
# endif
			// -------------------------------------------------

			case AtanOp:
			// 1 + x * x, atan(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_atan_op(p, q, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case AtanhOp:
			// 1 - x * x, atanh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_atanh_op(p, q, i_var, arg[0], J, taylor);
			break;
# endif
			// -------------------------------------------------

			case CExpOp:
			forward_cond_op(
				p, q, i_var, arg, num_par, parameter, J, taylor
			);
			break;
			// ---------------------------------------------------

			case CosOp:
			// sin(x), cos(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_cos_op(p, q, i_var, arg[0], J, taylor);
			break;
			// ---------------------------------------------------

			case CoshOp:
			// sinh(x), cosh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_cosh_op(p, q, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case CSkipOp:
			// CSkipOp has a variable number of arguments and
			// forward_next thinks it has no arguments.
			// we must inform forward_next of this special case.
			if( p == 0 )
			{	forward_cskip_op_0(
					i_var, arg, num_par, parameter, J, taylor, cskip_op
				);
			}
			play->forward_cskip(op, arg, i_op, i_var);
			break;
			// -------------------------------------------------

			case CSumOp:
			// CSumOp has a variable number of arguments and
			// forward_next thinks it has no arguments.
			// we must inform forward_next of this special case.
			forward_csum_op(
				p, q, i_var, arg, num_par, parameter, J, taylor
			);
			play->forward_csum(op, arg, i_op, i_var);
			break;
			// -------------------------------------------------

			case DisOp:
			forward_dis_op(p, q, r, i_var, arg, J, taylor);
			break;
			// -------------------------------------------------

			case DivvvOp:
			forward_divvv_op(p, q, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case DivpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_divpv_op(p, q, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case DivvpOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < num_par );
			forward_divvp_op(p, q, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case EndOp:
			CPPAD_ASSERT_NARG_NRES(op, 0, 0);
			more_operators = false;
			break;
			// -------------------------------------------------

			case EqpvOp:
			if( ( p == 0 ) & ( compare_change_count > 0 ) )
			{	forward_eqpv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				if( compare_change_count == compare_change_number )
					compare_change_op_index = i_op;
			}
			break;
			// -------------------------------------------------

			case EqvvOp:
			if( ( p == 0 ) & ( compare_change_count > 0 ) )
			{	forward_eqvv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				if( compare_change_count == compare_change_number )
					compare_change_op_index = i_op;
			}
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case ErfOp:
			CPPAD_ASSERT_UNKNOWN( CPPAD_USE_CPLUSPLUS_2011 );
			// 2DO: implement zero order version of this function
			forward_erf_op(p, q, i_var, arg, parameter, J, taylor);
			break;
# endif
			// -------------------------------------------------

			case ExpOp:
			forward_exp_op(p, q, i_var, arg[0], J, taylor);
			break;
			// ---------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case Expm1Op:
			forward_expm1_op(p, q, i_var, arg[0], J, taylor);
			break;
# endif
			// ---------------------------------------------------

			case InvOp:
			CPPAD_ASSERT_NARG_NRES(op, 0, 1);
			break;
			// -------------------------------------------------

			case LdpOp:
			if( p == 0 )
			{	forward_load_p_op_0(
					play,
					i_var,
					arg,
					parameter,
					J,
					taylor,
					isvar_by_ind.data(),
					index_by_ind.data(),
					var_by_load_op.data()
				);
				if( p < q ) forward_load_op(
					play,
					op,
					p+1,
					q,
					r,
					J,
					i_var,
					arg,
					var_by_load_op.data(),
					taylor
				);
			}
			else	forward_load_op(
				play,
				op,
				p,
				q,
				r,
				J,
				i_var,
				arg,
				var_by_load_op.data(),
				taylor
			);
			break;
			// -------------------------------------------------

			case LdvOp:
			if( p == 0 )
			{	forward_load_v_op_0(
					play,
					i_var,
					arg,
					parameter,
					J,
					taylor,
					isvar_by_ind.data(),
					index_by_ind.data(),
					var_by_load_op.data()
				);
				if( p < q ) forward_load_op(
					play,
					op,
					p+1,
					q,
					r,
					J,
					i_var,
					arg,
					var_by_load_op.data(),
					taylor
				);
			}
			else	forward_load_op(
				play,
				op,
				p,
				q,
				r,
				J,
				i_var,
				arg,
				var_by_load_op.data(),
				taylor
			);
			break;
			// -------------------------------------------------

			case LepvOp:
			if( ( p == 0 ) & ( compare_change_count > 0 ) )
			{	forward_lepv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				if( compare_change_count == compare_change_number )
					compare_change_op_index = i_op;
			}
			break;

			case LevpOp:
			if( ( p == 0 ) & ( compare_change_count > 0 ) )
			{	forward_levp_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				if( compare_change_count == compare_change_number )
					compare_change_op_index = i_op;
			}
			break;
			// -------------------------------------------------

			case LevvOp:
			if( ( p == 0 ) & ( compare_change_count > 0 ) )
			{	forward_levv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				if( compare_change_count == compare_change_number )
					compare_change_op_index = i_op;
			}
			break;
			// -------------------------------------------------

			case LogOp:
			forward_log_op(p, q, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case Log1pOp:
			forward_log1p_op(p, q, i_var, arg[0], J, taylor);
			break;
# endif
			// -------------------------------------------------

			case LtpvOp:
			if( ( p == 0 ) & ( compare_change_count > 0 ) )
			{	forward_ltpv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				if( compare_change_count == compare_change_number )
					compare_change_op_index = i_op;
			}
			break;

			case LtvpOp:
			if( ( p == 0 ) & ( compare_change_count > 0 ) )
			{	forward_ltvp_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				if( compare_change_count == compare_change_number )
					compare_change_op_index = i_op;
			}
			break;
			// -------------------------------------------------

			case LtvvOp:
			if( ( p == 0 ) & ( compare_change_count > 0 ) )
			{	forward_ltvv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				if( compare_change_count == compare_change_number )
					compare_change_op_index = i_op;
			}
			break;
			// -------------------------------------------------

			case MulvvOp:
			forward_mulvv_op(p, q, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case MulpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_mulpv_op(p, q, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case NepvOp:
			if( ( p == 0 ) & ( compare_change_count > 0 ) )
			{	forward_nepv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				if( compare_change_count == compare_change_number )
					compare_change_op_index = i_op;
			}
			break;
			// -------------------------------------------------

			case NevvOp:
			if( ( p == 0 ) & ( compare_change_count > 0 ) )
			{	forward_nevv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				if( compare_change_count == compare_change_number )
					compare_change_op_index = i_op;
			}
			break;
			// -------------------------------------------------

			case ParOp:
			i = p;
			if( i == 0 )
			{	forward_par_op_0(
					i_var, arg, num_par, parameter, J, taylor
				);
				i++;
			}
			while(i <= q)
			{	taylor[ i_var * J + i] = Base(0);
				i++;
			}
			break;
			// -------------------------------------------------

			case PowvpOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < num_par );
			forward_powvp_op(p, q, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case PowpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_powpv_op(p, q, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case PowvvOp:
			forward_powvv_op(p, q, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case PriOp:
			if( (p == 0) & print ) forward_pri_0(s_out,
				arg, num_text, text, num_par, parameter, J, taylor
			);
			break;
			// -------------------------------------------------

			case SignOp:
			// sign(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_sign_op(p, q, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case SinOp:
			// cos(x), sin(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_sin_op(p, q, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case SinhOp:
			// cosh(x), sinh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_sinh_op(p, q, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case SqrtOp:
			forward_sqrt_op(p, q, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case StppOp:
			if( p == 0 )
			{	forward_store_pp_op_0(
					i_var,
					arg,
					num_par,
					J,
					taylor,
					isvar_by_ind.data(),
					index_by_ind.data()
				);
			}
			break;
			// -------------------------------------------------

			case StpvOp:
			if( p == 0 )
			{	forward_store_pv_op_0(
					i_var,
					arg,
					num_par,
					J,
					taylor,
					isvar_by_ind.data(),
					index_by_ind.data()
				);
			}
			break;
			// -------------------------------------------------

			case StvpOp:
			if( p == 0 )
			{	forward_store_vp_op_0(
					i_var,
					arg,
					num_par,
					J,
					taylor,
					isvar_by_ind.data(),
					index_by_ind.data()
				);
			}
			break;
			// -------------------------------------------------

			case StvvOp:
			if( p == 0 )
			{	forward_store_vv_op_0(
					i_var,
					arg,
					num_par,
					J,
					taylor,
					isvar_by_ind.data(),
					index_by_ind.data()
				);
			}
			break;
			// -------------------------------------------------

			case SubvvOp:
			forward_subvv_op(p, q, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case SubpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_subpv_op(p, q, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case SubvpOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < num_par );
			forward_subvp_op(p, q, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case TanOp:
			// tan(x)^2, tan(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_tan_op(p, q, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case TanhOp:
			// tanh(x)^2, tanh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_tanh_op(p, q, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case UserOp:
			// start or end an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( NumRes( UserOp ) == 0 );
			CPPAD_ASSERT_UNKNOWN( NumArg( UserOp ) == 4 );
			if( user_state == user_start )
			{	user_index = arg[0];
				user_id    = arg[1];
				user_n     = arg[2];
				user_m     = arg[3];
				user_atom  = atomic_base<Base>::class_object(user_index);
# ifndef NDEBUG
				if( user_atom == CPPAD_NULL )
				{	std::string msg =
						atomic_base<Base>::class_name(user_index)
						+ ": atomic_base function has been deleted";
					CPPAD_ASSERT_KNOWN(false, msg.c_str() );
				}
# endif
				if(user_tx.size() != user_n * user_q1)
					user_tx.resize(user_n * user_q1);
				if(user_ty.size() != user_m * user_q1)
					user_ty.resize(user_m * user_q1);
				if(user_iy.size() != user_m)
					user_iy.resize(user_m);
				user_j     = 0;
				user_i     = 0;
				user_state = user_arg;
			}
			else
			{	CPPAD_ASSERT_UNKNOWN( user_state == user_end );
				CPPAD_ASSERT_UNKNOWN( user_index == size_t(arg[0]) );
				CPPAD_ASSERT_UNKNOWN( user_id    == size_t(arg[1]) );
				CPPAD_ASSERT_UNKNOWN( user_n     == size_t(arg[2]) );
				CPPAD_ASSERT_UNKNOWN( user_m     == size_t(arg[3]) );

				// call users function for this operation
				user_atom->set_id(user_id);
				CPPAD_ATOMIC_CALL(
					p, q, user_vx, user_vy, user_tx, user_ty
				);
# ifndef NDEBUG
				if( ! user_ok )
				{	std::string msg =
						atomic_base<Base>::class_name(user_index)
						+ ": atomic_base.forward: returned false";
					CPPAD_ASSERT_KNOWN(false, msg.c_str() );
				}
# endif
				for(i = 0; i < user_m; i++)
					if( user_iy[i] > 0 )
						for(k = p; k <= q; k++)
							taylor[ user_iy[i] * J + k ] =
								user_ty[ i * user_q1 + k ];
# if CPPAD_FORWARD1SWEEP_TRACE
				user_state = user_trace;
# else
				user_state = user_start;
# endif
			}
			break;

			case UsrapOp:
			// parameter argument in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( user_state == user_arg );
			CPPAD_ASSERT_UNKNOWN( user_j < user_n );
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			user_tx[user_j * user_q1 + 0] = parameter[ arg[0]];
			for(k = 1; k < user_q1; k++)
				user_tx[user_j * user_q1 + k] = Base(0);
			++user_j;
			if( user_j == user_n )
				user_state = user_ret;
			break;

			case UsravOp:
			// variable argument in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( user_state == user_arg );
			CPPAD_ASSERT_UNKNOWN( user_j < user_n );
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) <= i_var );
			for(k = 0; k < user_q1; k++)
				user_tx[user_j * user_q1 + k] = taylor[ arg[0] * J + k];
			++user_j;
			if( user_j == user_n )
				user_state = user_ret;
			break;

			case UsrrpOp:
			// parameter result in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( user_state == user_ret );
			CPPAD_ASSERT_UNKNOWN( user_i < user_m );
			user_iy[user_i] = 0;
			user_ty[user_i * user_q1 + 0] = parameter[ arg[0]];
			for(k = 1; k < p; k++)
				user_ty[user_i * user_q1 + k] = Base(0);
			user_i++;
			if( user_i == user_m )
				user_state = user_end;
			break;

			case UsrrvOp:
			// variable result in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( user_state == user_ret );
			CPPAD_ASSERT_UNKNOWN( user_i < user_m );
			user_iy[user_i] = i_var;
			for(k = 0; k < p; k++)
				user_ty[user_i * user_q1 + k] = taylor[ i_var * J + k];
			user_i++;
			if( user_i == user_m )
				user_state = user_end;
			break;
			// -------------------------------------------------

			default:
			CPPAD_ASSERT_UNKNOWN(0);
		}
# if CPPAD_FORWARD1SWEEP_TRACE
		if( user_state == user_trace )
		{	user_state = user_start;

			CPPAD_ASSERT_UNKNOWN( op == UserOp );
			CPPAD_ASSERT_UNKNOWN( NumArg(UsrrvOp) == 0 );
			for(i = 0; i < user_m; i++) if( user_iy[i] > 0 )
			{	size_t i_tmp   = (i_op + i) - user_m;
				printOp(
					std::cout,
					play,
					i_tmp,
					user_iy[i],
					UsrrvOp,
					CPPAD_NULL
				);
				Base* Z_tmp = taylor + user_iy[i] * J;
				printOpResult(
					std::cout,
					q + 1,
					Z_tmp,
					0,
					(Base *) CPPAD_NULL
				);
				std::cout << std::endl;
			}
		}
		Base*           Z_tmp   = taylor + J * i_var;
		const addr_t*   arg_tmp = arg;
		if( op == CSumOp )
			arg_tmp = arg - arg[-1] - 4;
		if( op == CSkipOp )
			arg_tmp = arg - arg[-1] - 7;
		if( op != UsrrvOp )
		{
			printOp(
				std::cout,
				play,
				i_op,
				i_var,
				op,
				arg_tmp
			);
			if( NumRes(op) > 0 ) printOpResult(
				std::cout,
				q + 1,
				Z_tmp,
				0,
				(Base *) CPPAD_NULL
			);
			std::cout << std::endl;
		}
	}
	std::cout << std::endl;
# else
	}
Пример #16
0
void forward0sweep(
	std::ostream&         s_out,
	bool                  print,
	size_t                n,
	size_t                numvar,
	local::player<Base>*  play,
	size_t                J,
	Base*                 taylor,
	bool*                 cskip_op,
	pod_vector<addr_t>&   var_by_load_op,
	size_t                compare_change_count,
	size_t&               compare_change_number,
	size_t&               compare_change_op_index
)
{	CPPAD_ASSERT_UNKNOWN( J >= 1 );
	CPPAD_ASSERT_UNKNOWN( play->num_var_rec() == numvar );

	// use p, q, r so other forward sweeps can use code defined here
	size_t p = 0;
	size_t q = 0;
	size_t r = 1;
	/*
	<!-- define forward0sweep_code_define -->
	*/
	// op code for current instruction
	OpCode op;

	// index for current instruction
	size_t i_op;

	// next variables
	size_t i_var;

	// operation argument indices
	const addr_t*   arg = CPPAD_NULL;

	// initialize the comparision operator counter
	if( p == 0 )
	{	compare_change_number   = 0;
		compare_change_op_index = 0;
	}

	// If this includes a zero calculation, initialize this information
	pod_vector<bool>   isvar_by_ind;
	pod_vector<size_t> index_by_ind;
	if( p == 0 )
	{	size_t i;

		// this includes order zero calculation, initialize vector indices
		size_t num = play->num_vec_ind_rec();
		if( num > 0 )
		{	isvar_by_ind.extend(num);
			index_by_ind.extend(num);
			for(i = 0; i < num; i++)
			{	index_by_ind[i] = play->GetVecInd(i);
				isvar_by_ind[i] = false;
			}
		}
		// includes zero order, so initialize conditional skip flags
		num = play->num_op_rec();
		for(i = 0; i < num; i++)
			cskip_op[i] = false;
	}

	// work space used by UserOp.
	vector<bool> user_vx;        // empty vecotor
	vector<bool> user_vy;        // empty vecotor
	vector<Base> user_tx;        // argument vector Taylor coefficients
	vector<Base> user_ty;        // result vector Taylor coefficients
	//
	atomic_base<Base>* user_atom = CPPAD_NULL; // user's atomic op calculator
# ifndef NDEBUG
	bool               user_ok   = false;      // atomic op return value
# endif
	//
	// information defined by forward_user
	size_t user_old=0, user_m=0, user_n=0, user_i=0, user_j=0;
	enum_user_state user_state = start_user; // proper initialization

	// length of the parameter vector (used by CppAD assert macros)
	const size_t num_par = play->num_par_rec();

	// pointer to the beginning of the parameter vector
	const Base* parameter = CPPAD_NULL;
	if( num_par > 0 )
		parameter = play->GetPar();

	// length of the text vector (used by CppAD assert macros)
	const size_t num_text = play->num_text_rec();

	// pointer to the beginning of the text vector
	const char* text = CPPAD_NULL;
	if( num_text > 0 )
		text = play->GetTxt(0);
	/*
	<!-- end forward0sweep_code_define -->
	*/

# if CPPAD_FORWARD0SWEEP_TRACE
	// flag as to when to trace user function values
	bool user_trace            = false;

	// variable indices for results vector
	// (done differently for order zero).
	vector<size_t> user_iy;
# endif

	// skip the BeginOp at the beginning of the recording
	play->forward_start(op, arg, i_op, i_var);
	CPPAD_ASSERT_UNKNOWN( op == BeginOp );
# if CPPAD_FORWARD0SWEEP_TRACE
	std::cout << std::endl;
# endif
	bool flag; // a temporary flag to use in switch cases
	bool more_operators = true;
	while(more_operators)
	{
		// this op
		play->forward_next(op, arg, i_op, i_var);
		CPPAD_ASSERT_UNKNOWN( (i_op > n)  | (op == InvOp) );
		CPPAD_ASSERT_UNKNOWN( (i_op <= n) | (op != InvOp) );
		CPPAD_ASSERT_UNKNOWN( i_op < play->num_op_rec() );
		CPPAD_ASSERT_ARG_BEFORE_RESULT(op, arg, i_var);

		// check if we are skipping this operation
		while( cskip_op[i_op] )
		{	switch(op)
			{	case CSumOp:
				// CSumOp has a variable number of arguments
				play->forward_csum(op, arg, i_op, i_var);
				break;

				case CSkipOp:
				// CSkip has a variable number of arguments
				play->forward_cskip(op, arg, i_op, i_var);
				break;

				case UserOp:
				{	// skip all operations in this user atomic call
					CPPAD_ASSERT_UNKNOWN( user_state == start_user );
					play->forward_user(op, user_state,
						user_old, user_m, user_n, user_i, user_j
					);
					size_t n_skip = user_m + user_n + 1;
					for(size_t i = 0; i < n_skip; i++)
					{	play->forward_next(op, arg, i_op, i_var);
						play->forward_user(op, user_state,
							user_old, user_m, user_n, user_i, user_j
						);
					}
					CPPAD_ASSERT_UNKNOWN( user_state == start_user );
				}
				break;

				default:
				break;
			}
			play->forward_next(op, arg, i_op, i_var);
			CPPAD_ASSERT_UNKNOWN( i_op < play->num_op_rec() );
		}

		// action to take depends on the case
		switch( op )
		{
			case AbsOp:
			forward_abs_op_0(i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case AddvvOp:
			forward_addvv_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case AddpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_addpv_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case AcosOp:
			// sqrt(1 - x * x), acos(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_acos_op_0(i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case AcoshOp:
			// sqrt(x * x - 1), acosh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_acosh_op_0(i_var, arg[0], J, taylor);
			break;
# endif
			// -------------------------------------------------

			case AsinOp:
			// sqrt(1 - x * x), asin(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_asin_op_0(i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case AsinhOp:
			// sqrt(1 + x * x), asinh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_asinh_op_0(i_var, arg[0], J, taylor);
			break;
# endif
			// -------------------------------------------------

			case AtanOp:
			// 1 + x * x, atan(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_atan_op_0(i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case AtanhOp:
			// 1 - x * x, atanh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_atanh_op_0(i_var, arg[0], J, taylor);
			break;
# endif
			// -------------------------------------------------

			case CExpOp:
			// Use the general case with d == 0
			// (could create an optimzied verison for this case)
			forward_cond_op_0(
				i_var, arg, num_par, parameter, J, taylor
			);
			break;
			// ---------------------------------------------------

			case CosOp:
			// sin(x), cos(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_cos_op_0(i_var, arg[0], J, taylor);
			break;
			// ---------------------------------------------------

			case CoshOp:
			// sinh(x), cosh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_cosh_op_0(i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case CSkipOp:
			// CSkipOp has a variable number of arguments and
			// forward_next thinks it has no arguments.
			// we must inform forward_next of this special case.
			forward_cskip_op_0(
				i_var, arg, num_par, parameter, J, taylor, cskip_op
			);
			play->forward_cskip(op, arg, i_op, i_var);
			break;
			// -------------------------------------------------

			case CSumOp:
			// CSumOp has a variable number of arguments and
			// forward_next thinks it has no arguments.
			// we must inform forward_next of this special case.
			forward_csum_op(
				0, 0, i_var, arg, num_par, parameter, J, taylor
			);
			play->forward_csum(op, arg, i_op, i_var);
			break;
			// -------------------------------------------------

			case DisOp:
			forward_dis_op(p, q, r, i_var, arg, J, taylor);
			break;
			// -------------------------------------------------

			case DivvvOp:
			forward_divvv_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case DivpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_divpv_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case DivvpOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < num_par );
			forward_divvp_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case EndOp:
			CPPAD_ASSERT_NARG_NRES(op, 0, 0);
			more_operators = false;
			break;
			// -------------------------------------------------

			case EqpvOp:
			if( compare_change_count )
			{	forward_eqpv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				{	if( compare_change_count == compare_change_number )
						compare_change_op_index = i_op;
				}
			}
			break;
			// -------------------------------------------------

			case EqvvOp:
			if( compare_change_count )
			{	forward_eqvv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				{	if( compare_change_count == compare_change_number )
						compare_change_op_index = i_op;
				}
			}
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case ErfOp:
			forward_erf_op_0(i_var, arg, parameter, J, taylor);
			break;
# endif
			// -------------------------------------------------

			case ExpOp:
			forward_exp_op_0(i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case Expm1Op:
			forward_expm1_op_0(i_var, arg[0], J, taylor);
			break;
# endif
			// -------------------------------------------------

			case InvOp:
			CPPAD_ASSERT_NARG_NRES(op, 0, 1);
			break;
			// ---------------------------------------------------

			case LdpOp:
			forward_load_p_op_0(
				play,
				i_var,
				arg,
				parameter,
				J,
				taylor,
				isvar_by_ind.data(),
				index_by_ind.data(),
				var_by_load_op.data()
			);
			break;
			// -------------------------------------------------

			case LdvOp:
			forward_load_v_op_0(
				play,
				i_var,
				arg,
				parameter,
				J,
				taylor,
				isvar_by_ind.data(),
				index_by_ind.data(),
				var_by_load_op.data()
			);
			break;
			// -------------------------------------------------

			case LepvOp:
			if( compare_change_count )
			{	forward_lepv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				{	if( compare_change_count == compare_change_number )
						compare_change_op_index = i_op;
				}
			}
			break;
			// -------------------------------------------------

			case LevpOp:
			if( compare_change_count )
			{	forward_levp_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				{	if( compare_change_count == compare_change_number )
						compare_change_op_index = i_op;
				}
			}
			break;
			// -------------------------------------------------

			case LevvOp:
			if( compare_change_count )
			{	forward_levv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				{	if( compare_change_count == compare_change_number )
						compare_change_op_index = i_op;
				}
			}
			break;
			// -------------------------------------------------

			case LogOp:
			forward_log_op_0(i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case Log1pOp:
			forward_log1p_op_0(i_var, arg[0], J, taylor);
			break;
# endif
			// -------------------------------------------------

			case LtpvOp:
			if( compare_change_count )
			{	forward_ltpv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				{	if( compare_change_count == compare_change_number )
						compare_change_op_index = i_op;
				}
			}
			break;
			// -------------------------------------------------

			case LtvpOp:
			if( compare_change_count )
			{	forward_ltvp_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				{	if( compare_change_count == compare_change_number )
						compare_change_op_index = i_op;
				}
			}
			break;
			// -------------------------------------------------

			case LtvvOp:
			if( compare_change_count )
			{	forward_ltvv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				{	if( compare_change_count == compare_change_number )
						compare_change_op_index = i_op;
				}
			}
			break;
			// -------------------------------------------------

			case MulpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_mulpv_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case MulvvOp:
			forward_mulvv_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case NepvOp:
			if( compare_change_count )
			{	forward_nepv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				{	if( compare_change_count == compare_change_number )
						compare_change_op_index = i_op;
				}
			}
			break;
			// -------------------------------------------------

			case NevvOp:
			if( compare_change_count )
			{	forward_nevv_op_0(
					compare_change_number, arg, parameter, J, taylor
				);
				{	if( compare_change_count == compare_change_number )
						compare_change_op_index = i_op;
				}
			}
			break;
			// -------------------------------------------------

			case ParOp:
			forward_par_op_0(
				i_var, arg, num_par, parameter, J, taylor
			);
			break;
			// -------------------------------------------------

			case PowvpOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < num_par );
			forward_powvp_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case PowpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_powpv_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case PowvvOp:
			forward_powvv_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case PriOp:
			if( print ) forward_pri_0(s_out,
				arg, num_text, text, num_par, parameter, J, taylor
			);
			break;
			// -------------------------------------------------

			case SignOp:
			// cos(x), sin(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_sign_op_0(i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case SinOp:
			// cos(x), sin(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_sin_op_0(i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case SinhOp:
			// cosh(x), sinh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_sinh_op_0(i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case SqrtOp:
			forward_sqrt_op_0(i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case StppOp:
			forward_store_pp_op_0(
				i_var,
				arg,
				num_par,
				J,
				taylor,
				isvar_by_ind.data(),
				index_by_ind.data()
			);
			break;
			// -------------------------------------------------

			case StpvOp:
			forward_store_pv_op_0(
				i_var,
				arg,
				num_par,
				J,
				taylor,
				isvar_by_ind.data(),
				index_by_ind.data()
			);
			break;
			// -------------------------------------------------

			case StvpOp:
			forward_store_vp_op_0(
				i_var,
				arg,
				num_par,
				J,
				taylor,
				isvar_by_ind.data(),
				index_by_ind.data()
			);
			break;
			// -------------------------------------------------

			case StvvOp:
			forward_store_vv_op_0(
				i_var,
				arg,
				num_par,
				J,
				taylor,
				isvar_by_ind.data(),
				index_by_ind.data()
			);
			break;
			// -------------------------------------------------

			case SubvvOp:
			forward_subvv_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case SubpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_subpv_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case SubvpOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < num_par );
			forward_subvp_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case TanOp:
			// tan(x)^2, tan(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_tan_op_0(i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case TanhOp:
			// tanh(x)^2, tanh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_tanh_op_0(i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case UserOp:
			// start or end an atomic operation sequence
			flag = user_state == start_user;
			user_atom = play->forward_user(op, user_state,
				user_old, user_m, user_n, user_i, user_j
			);
			if( flag )
			{	user_tx.resize(user_n);
				user_ty.resize(user_m);
# if CPPAD_FORWARD0SWEEP_TRACE
				user_iy.resize(user_m);
# endif
			}
			else
			{
# ifndef NDEBUG
				if( ! user_ok )
				{	std::string msg =
						user_atom->afun_name()
						+ ": atomic_base.forward: returned false";
					CPPAD_ASSERT_KNOWN(false, msg.c_str() );
				}
# endif
# if CPPAD_FORWARD0SWEEP_TRACE
				user_trace = true;
# endif
			}
			break;

			case UsrapOp:
			// parameter argument in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( size_t( arg[0] ) < num_par );
			user_tx[user_j] = parameter[ arg[0] ];
			play->forward_user(op, user_state,
				user_old, user_m, user_n, user_i, user_j
			);
			if( user_j == user_n )
			{	// call users function for this operation
				user_atom->set_old(user_old);
				CPPAD_ATOMIC_CALL(p, q,
					user_vx, user_vy, user_tx, user_ty
				);
			}
			break;

			case UsravOp:
			// variable argument in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) <= i_var );
			user_tx[user_j] = taylor[ arg[0] * J + 0 ];
			play->forward_user(op, user_state,
				user_old, user_m, user_n, user_i, user_j
			);
			if( user_j == user_n )
			{	// call users function for this operation
				user_atom->set_old(user_old);
				CPPAD_ATOMIC_CALL(p, q,
					user_vx, user_vy, user_tx, user_ty
				);
			}
			break;

			case UsrrpOp:
			// parameter result in an atomic operation sequence
# if CPPAD_FORWARD0SWEEP_TRACE
			user_iy[user_i] = 0;
# endif
			play->forward_user(op, user_state,
				user_old, user_m, user_n, user_i, user_j
			);
			break;

			case UsrrvOp:
			// variable result in an atomic operation sequence
# if CPPAD_FORWARD0SWEEP_TRACE
			user_iy[user_i] = i_var;
# endif
			taylor[ i_var * J + 0 ] = user_ty[user_i];
			play->forward_user(op, user_state,
				user_old, user_m, user_n, user_i, user_j
			);
			break;
			// -------------------------------------------------

			case ZmulpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_zmulpv_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case ZmulvpOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < num_par );
			forward_zmulvp_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case ZmulvvOp:
			forward_zmulvv_op_0(i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			default:
			CPPAD_ASSERT_UNKNOWN(false);
		}
# if CPPAD_FORWARD0SWEEP_TRACE
		size_t  d  = 0;
		if( user_trace )
		{	user_trace = false;

			CPPAD_ASSERT_UNKNOWN( op == UserOp );
			CPPAD_ASSERT_UNKNOWN( NumArg(UsrrvOp) == 0 );
			for(size_t i = 0; i < user_m; i++) if( user_iy[i] > 0 )
			{	size_t i_tmp   = (i_op + i) - user_m;
				printOp(
					std::cout,
					play,
					i_tmp,
					user_iy[i],
					UsrrvOp,
					CPPAD_NULL
				);
				Base* Z_tmp = taylor + user_iy[i] * J;
				printOpResult(
					std::cout,
					d + 1,
					Z_tmp,
					0,
					(Base *) CPPAD_NULL
				);
				std::cout << std::endl;
			}
		}
		Base*           Z_tmp   = taylor + i_var * J;
		const addr_t*   arg_tmp = arg;
		if( op == CSumOp )
			arg_tmp = arg - arg[-1] - 4;
		if( op == CSkipOp )
			arg_tmp = arg - arg[-1] - 7;
		if( op != UsrrvOp )
		{
			printOp(
				std::cout,
				play,
				i_op,
				i_var,
				op,
				arg_tmp
			);
			if( NumRes(op) > 0 ) printOpResult(
				std::cout,
				d + 1,
				Z_tmp,
				0,
				(Base *) CPPAD_NULL
			);
			std::cout << std::endl;
		}
	}
	std::cout << std::endl;
# else
	}
Пример #17
0
void random_setup(
    size_t                                    num_var    ,
    const pod_vector<opcode_t>&               op_vec     ,
    const pod_vector<addr_t>&                 arg_vec    ,
    pod_vector<Addr>*                         op2arg_vec ,
    pod_vector<Addr>*                         op2var_vec ,
    pod_vector<Addr>*                         var2op_vec )
{
    if( op2arg_vec->size() != 0 )
    {   CPPAD_ASSERT_UNKNOWN( op2arg_vec->size() == op_vec.size() );
        CPPAD_ASSERT_UNKNOWN( op2var_vec->size() == op_vec.size() );
        CPPAD_ASSERT_UNKNOWN( var2op_vec->size() == num_var        );
        return;
    }
    CPPAD_ASSERT_UNKNOWN( op2var_vec->size() == 0         );
    CPPAD_ASSERT_UNKNOWN( op2var_vec->size() == 0         );
    CPPAD_ASSERT_UNKNOWN( var2op_vec->size() == 0         );
    CPPAD_ASSERT_UNKNOWN( OpCode( op_vec[0] ) == BeginOp );
    CPPAD_ASSERT_NARG_NRES(BeginOp, 1, 1);
    //
    size_t num_op     = op_vec.size();
    size_t  var_index = 0;
    size_t  arg_index = 0;
    //
    op2arg_vec->resize( num_op );
    op2var_vec->resize( num_op );
    var2op_vec->resize( num_var  );
# ifndef NDEBUG
    // value of var2op for auxillary variables is num_op (invalid)
    for(size_t i_var = 0; i_var < num_var; ++i_var)
        (*var2op_vec)[i_var] = Addr( num_op );
    // value of op2var is num_var (invalid) when NumRes(op) = 0
    for(size_t i_op = 0; i_op < num_op; ++i_op)
        (*op2var_vec)[i_op] = Addr( num_var );
# endif
    for(size_t i_op = 0; i_op < num_op; ++i_op)
    {   OpCode  op          = OpCode( op_vec[i_op] );
        //
        // index of first argument for this operator
        (*op2arg_vec)[i_op]   = Addr( arg_index );
        arg_index            += NumArg(op);
        //
        // index of first result for next operator
        var_index  += NumRes(op);
        if( NumRes(op) > 0 )
        {   // index of last (primary) result for this operator
            (*op2var_vec)[i_op] = Addr( var_index - 1 );
            //
            // mapping from primary variable to its operator
            (*var2op_vec)[var_index - 1] = Addr( i_op );
        }
        // CSumOp
        if( op == CSumOp )
        {   CPPAD_ASSERT_UNKNOWN( NumArg(CSumOp) == 0 );
            //
            // pointer to first argument for this operator
            const addr_t* op_arg = arg_vec.data() + arg_index;
            //
            // The actual number of arugments for this operator is
            // op_arg[4] + 1
            // Correct index of first argument for next operator
            arg_index += size_t(op_arg[4] + 1);
        }
        //
        // CSkip
        if( op == CSkipOp )
        {   CPPAD_ASSERT_UNKNOWN( NumArg(CSumOp) == 0 );
            //
            // pointer to first argument for this operator
            const addr_t* op_arg = arg_vec.data() + arg_index;
            //
            // The actual number of arugments for this operator is
            // 7 + op_arg[4] + op_arg[5].
            // Correct index of first argument for next operator.
            arg_index += size_t(7 + op_arg[4] + op_arg[5]);
        }
    }
}
Пример #18
0
void forward2sweep(
	const size_t                q,
	const size_t                r,
	const size_t                n,
	const size_t                numvar,
	      player<Base>*         play,
	const size_t                J,
	      Base*                 taylor,
	const bool*                 cskip_op,
	const pod_vector<addr_t>&   var_by_load_op
)
{
	CPPAD_ASSERT_UNKNOWN( q > 0 );
	CPPAD_ASSERT_UNKNOWN( J >= q + 1 );
	CPPAD_ASSERT_UNKNOWN( play->num_var_rec() == numvar );

	// used to avoid compiler errors until all operators are implemented
	size_t p = q;

	// op code for current instruction
	OpCode op;

	// index for current instruction
	size_t i_op;

	// next variables
	size_t i_var;

	// operation argument indices
	const addr_t*   arg = CPPAD_NULL;

	// work space used by UserOp.
	vector<bool> user_vx;        // empty vecotor
	vector<bool> user_vy;        // empty vecotor
	vector<Base> user_tx_one;    // argument vector Taylor coefficients
	vector<Base> user_tx_all;
	vector<Base> user_ty_one;    // result vector Taylor coefficients
	vector<Base> user_ty_all;
	size_t user_index = 0;       // indentifier for this atomic operation
	size_t user_id    = 0;       // user identifier for this call to operator
	size_t user_i     = 0;       // index in result vector
	size_t user_j     = 0;       // index in argument vector
	size_t user_m     = 0;       // size of result vector
	size_t user_n     = 0;       // size of arugment vector
	//
	atomic_base<Base>* user_atom = CPPAD_NULL; // user's atomic op calculator
# ifndef NDEBUG
	bool               user_ok   = false;      // atomic op return value
# endif
	//
	// next expected operator in a UserOp sequence
	enum { user_start, user_arg, user_ret, user_end, user_trace }
	user_state = user_start;

	// length of the parameter vector (used by CppAD assert macros)
	const size_t num_par = play->num_par_rec();

	// pointer to the beginning of the parameter vector
	const Base* parameter = CPPAD_NULL;
	if( num_par > 0 )
		parameter = play->GetPar();

	// temporary indices
	size_t i, j, k, ell;

	// number of orders for this user calculation
	// (not needed for order zero)
	const size_t user_q1 = q+1;

	// variable indices for results vector
	// (done differently for order zero).
	vector<size_t> user_iy;

	// skip the BeginOp at the beginning of the recording
	play->forward_start(op, arg, i_op, i_var);
	CPPAD_ASSERT_UNKNOWN( op == BeginOp );
# if CPPAD_FORWARD2SWEEP_TRACE
	std::cout << std::endl;
	CppAD::vector<Base> Z_vec(q+1);
# endif
	bool more_operators = true;
	while(more_operators)
	{
		// this op
		play->forward_next(op, arg, i_op, i_var);
		CPPAD_ASSERT_UNKNOWN( (i_op > n)  | (op == InvOp) );
		CPPAD_ASSERT_UNKNOWN( (i_op <= n) | (op != InvOp) );
		CPPAD_ASSERT_UNKNOWN( i_op < play->num_op_rec() );
		CPPAD_ASSERT_ARG_BEFORE_RESULT(op, arg, i_var);

		// check if we are skipping this operation
		while( cskip_op[i_op] )
		{	if( op == CSumOp )
			{	// CSumOp has a variable number of arguments
				play->forward_csum(op, arg, i_op, i_var);
			}
			CPPAD_ASSERT_UNKNOWN( op != CSkipOp );
			// if( op == CSkipOp )
			// {	// CSkip has a variable number of arguments
			// 	play->forward_cskip(op, arg, i_op, i_var);
			// }
			play->forward_next(op, arg, i_op, i_var);
			CPPAD_ASSERT_UNKNOWN( i_op < play->num_op_rec() );
		}

		// action depends on the operator
		switch( op )
		{
			case AbsOp:
			forward_abs_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case AddvvOp:
			forward_addvv_op_dir(q, r, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case AddpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_addpv_op_dir(q, r, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case AcosOp:
			// sqrt(1 - x * x), acos(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_acos_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case AcoshOp:
			// sqrt(x * x - 1), acosh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_acosh_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
# endif
			// -------------------------------------------------

			case AsinOp:
			// sqrt(1 - x * x), asin(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_asin_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case AsinhOp:
			// sqrt(1 + x * x), asinh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_asinh_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
# endif
			// -------------------------------------------------

			case AtanOp:
			// 1 + x * x, atan(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_atan_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case AtanhOp:
			// 1 - x * x, atanh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_atanh_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
# endif
			// -------------------------------------------------

			case CExpOp:
			forward_cond_op_dir(
				q, r, i_var, arg, num_par, parameter, J, taylor
			);
			break;
			// ---------------------------------------------------

			case CosOp:
			// sin(x), cos(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_cos_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// ---------------------------------------------------

			case CoshOp:
			// sinh(x), cosh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_cosh_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case CSkipOp:
			// CSkipOp has a variable number of arguments and
			// forward_next thinks it has no arguments.
			// we must inform forward_next of this special case.
			play->forward_cskip(op, arg, i_op, i_var);
			break;
			// -------------------------------------------------

			case CSumOp:
			// CSumOp has a variable number of arguments and
			// forward_next thinks it has no arguments.
			// we must inform forward_next of this special case.
			forward_csum_op_dir(
				q, r, i_var, arg, num_par, parameter, J, taylor
			);
			play->forward_csum(op, arg, i_op, i_var);
			break;
			// -------------------------------------------------

			case DisOp:
			forward_dis_op(p, q, r, i_var, arg, J, taylor);
			break;
			// -------------------------------------------------

			case DivvvOp:
			forward_divvv_op_dir(q, r, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case DivpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_divpv_op_dir(q, r, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case DivvpOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < num_par );
			forward_divvp_op_dir(q, r, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case EndOp:
			// needed for sparse_jacobian test
			CPPAD_ASSERT_NARG_NRES(op, 0, 0);
			more_operators = false;
			break;
			// -------------------------------------------------

			case ExpOp:
			forward_exp_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case Expm1Op:
			forward_expm1_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
# endif
			// -------------------------------------------------

			case InvOp:
			CPPAD_ASSERT_NARG_NRES(op, 0, 1);
			break;
			// -------------------------------------------------

			case LdpOp:
			case LdvOp:
			forward_load_op(
				play,
				op,
				p,
				q,
				r,
				J,
				i_var,
				arg,
				var_by_load_op.data(),
				taylor
			);
			break;
			// ---------------------------------------------------

			case EqpvOp:
			case EqvvOp:
			case LtpvOp:
			case LtvpOp:
			case LtvvOp:
			case LepvOp:
			case LevpOp:
			case LevvOp:
			case NepvOp:
			case NevvOp:
			CPPAD_ASSERT_UNKNOWN(q > 0 );
			break;
			// -------------------------------------------------

			case LogOp:
			forward_log_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// ---------------------------------------------------

# if CPPAD_USE_CPLUSPLUS_2011
			case Log1pOp:
			forward_log1p_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
# endif
			// ---------------------------------------------------

			case MulvvOp:
			forward_mulvv_op_dir(q, r, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case MulpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_mulpv_op_dir(q, r, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case ParOp:
			k = i_var*(J-1)*r + i_var + (q-1)*r + 1;
			for(ell = 0; ell < r; ell++)
				taylor[k + ell] = Base(0);
			break;
			// -------------------------------------------------

			case PowpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_powpv_op_dir(q, r, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case PowvpOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < num_par );
			forward_powvp_op_dir(q, r, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case PowvvOp:
			forward_powvv_op_dir(q, r, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case PriOp:
			CPPAD_ASSERT_UNKNOWN(q > 0);
			break;
			// -------------------------------------------------

			case SignOp:
			// sign(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_sign_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case SinOp:
			// cos(x), sin(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_sin_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case SinhOp:
			// cosh(x), sinh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_sinh_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case SqrtOp:
			forward_sqrt_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case StppOp:
			case StpvOp:
			case StvpOp:
			case StvvOp:
			CPPAD_ASSERT_UNKNOWN(q > 0 );
			break;
			// -------------------------------------------------

			case SubvvOp:
			forward_subvv_op_dir(q, r, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case SubpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			forward_subpv_op_dir(q, r, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case SubvpOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < num_par );
			forward_subvp_op_dir(q, r, i_var, arg, parameter, J, taylor);
			break;
			// -------------------------------------------------

			case TanOp:
			// tan(x)^2, tan(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_tan_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case TanhOp:
			// tanh(x)^2, tanh(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar  );
			forward_tanh_op_dir(q, r, i_var, arg[0], J, taylor);
			break;
			// -------------------------------------------------

			case UserOp:
			// start or end an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( NumRes( UserOp ) == 0 );
			CPPAD_ASSERT_UNKNOWN( NumArg( UserOp ) == 4 );
			if( user_state == user_start )
			{	user_index = arg[0];
				user_id    = arg[1];
				user_n     = arg[2];
				user_m     = arg[3];
				user_atom  = atomic_base<Base>::class_object(user_index);
# ifndef NDEBUG
				if( user_atom == CPPAD_NULL )
				{	std::string msg =
						atomic_base<Base>::class_name(user_index)
						+ ": atomic_base function has been deleted";
					CPPAD_ASSERT_KNOWN(false, msg.c_str() );
				}
# endif
				if(user_tx_one.size() != user_n * user_q1)
					user_tx_one.resize(user_n * user_q1);
				if( user_tx_all.size() != user_n * (q * r + 1) )
					user_tx_all.resize(user_n * (q * r + 1));
				//
				if(user_ty_one.size() != user_m * user_q1)
					user_ty_one.resize(user_m * user_q1);
				if( user_ty_all.size() != user_m * (q * r + 1) )
					user_ty_all.resize(user_m * (q * r + 1));
				//
				if(user_iy.size() != user_m)
					user_iy.resize(user_m);
				user_j     = 0;
				user_i     = 0;
				user_state = user_arg;
			}
			else
			{	CPPAD_ASSERT_UNKNOWN( user_state == user_end );
				CPPAD_ASSERT_UNKNOWN( user_index == size_t(arg[0]) );
				CPPAD_ASSERT_UNKNOWN( user_id    == size_t(arg[1]) );
				CPPAD_ASSERT_UNKNOWN( user_n     == size_t(arg[2]) );
				CPPAD_ASSERT_UNKNOWN( user_m     == size_t(arg[3]) );

				// call users function for this operation
				user_atom->set_id(user_id);
				for(ell = 0; ell < r; ell++)
				{	// set user_tx
					for(j = 0; j < user_n; j++)
					{	size_t j_all     = j * (q * r + 1);
						size_t j_one     = j * user_q1;
						user_tx_one[j_one+0] = user_tx_all[j_all+0];
						for(k = 1; k < user_q1; k++)
						{	size_t k_all       = j_all + (k-1)*r+1+ell;
							size_t k_one       = j_one + k;
							user_tx_one[k_one] = user_tx_all[k_all];
						}
					}
					// set user_ty
					for(i = 0; i < user_m; i++)
					{	size_t i_all     = i * (q * r + 1);
						size_t i_one     = i * user_q1;
						user_ty_one[i_one+0] = user_ty_all[i_all+0];
						for(k = 1; k < q; k++)
						{	size_t k_all       = i_all + (k-1)*r+1+ell;
							size_t k_one       = i_one + k;
							user_ty_one[k_one] = user_ty_all[k_all];
						}
					}
					CPPAD_ATOMIC_CALL(
					q, q, user_vx, user_vy, user_tx_one, user_ty_one
					);
# ifndef NDEBUG
					if( ! user_ok )
					{	std::string msg =
							atomic_base<Base>::class_name(user_index)
							+ ": atomic_base.forward: returned false";
						CPPAD_ASSERT_KNOWN(false, msg.c_str() );
					}
# endif
					for(i = 0; i < user_m; i++)
					{	if( user_iy[i] > 0 )
						{	size_t i_taylor = user_iy[i]*((J-1)*r+1);
							size_t q_taylor = i_taylor + (q-1)*r+1+ell;
							size_t q_one    = i * user_q1 + q;
							taylor[q_taylor] = user_ty_one[q_one];
						}
					}
				}
# if CPPAD_FORWARD2SWEEP_TRACE
				user_state = user_trace;
# else
				user_state = user_start;
# endif
			}
			break;

			case UsrapOp:
			// parameter argument in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( user_state == user_arg );
			CPPAD_ASSERT_UNKNOWN( user_j < user_n );
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			user_tx_all[user_j*(q*r+1) + 0] = parameter[ arg[0]];
			for(ell = 0; ell < r; ell++)
				for(k = 1; k < user_q1; k++)
					user_tx_all[user_j*(q*r+1) + (k-1)*r+1+ell] = Base(0);
			++user_j;
			if( user_j == user_n )
				user_state = user_ret;
			break;

			case UsravOp:
			// variable argument in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( user_state == user_arg );
			CPPAD_ASSERT_UNKNOWN( user_j < user_n );
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) <= i_var );
			user_tx_all[user_j*(q*r+1)+0] = taylor[arg[0]*((J-1)*r+1)+0];
			for(ell = 0; ell < r; ell++)
			{	for(k = 1; k < user_q1; k++)
				{	user_tx_all[user_j*(q*r+1) + (k-1)*r+1+ell] =
						taylor[arg[0]*((J-1)*r+1) + (k-1)*r+1+ell];
				}
			}
			++user_j;
			if( user_j == user_n )
				user_state = user_ret;
			break;

			case UsrrpOp:
			// parameter result in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( user_state == user_ret );
			CPPAD_ASSERT_UNKNOWN( user_i < user_m );
			user_iy[user_i] = 0;
			user_ty_all[user_i*(q*r+1) + 0] = parameter[ arg[0]];
			for(ell = 0; ell < r; ell++)
				for(k = 1; k < user_q1; k++)
					user_ty_all[user_i*(q*r+1) + (k-1)*r+1+ell] = Base(0);
			user_i++;
			if( user_i == user_m )
				user_state = user_end;
			break;

			case UsrrvOp:
			// variable result in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( user_state == user_ret );
			CPPAD_ASSERT_UNKNOWN( user_i < user_m );
			user_iy[user_i] = i_var;
			user_ty_all[user_i*(q*r+1)+0] = taylor[i_var*((J-1)*r+1)+0];
			for(ell = 0; ell < r; ell++)
			{	for(k = 1; k < user_q1; k++)
				{	user_ty_all[user_i*(q*r+1) + (k-1)*r+1+ell] =
						taylor[i_var*((J-1)*r+1) + (k-1)*r+1+ell];
				}
			}
			user_i++;
			if( user_i == user_m )
				user_state = user_end;
			break;
			// -------------------------------------------------

			default:
			CPPAD_ASSERT_UNKNOWN(0);
		}
# if CPPAD_FORWARD2SWEEP_TRACE
		if( user_state == user_trace )
		{	user_state = user_start;
			CPPAD_ASSERT_UNKNOWN( op == UserOp );
			CPPAD_ASSERT_UNKNOWN( NumArg(UsrrvOp) == 0 );
			for(i = 0; i < user_m; i++) if( user_iy[i] > 0 )
			{	size_t i_tmp   = (i_op + i) - user_m;
				printOp(
					std::cout,
					play,
					i_tmp,
					user_iy[i],
					UsrrvOp,
					CPPAD_NULL
				);
				Base* Z_tmp = taylor + user_iy[i]*((J-1) * r + 1);
				{	Z_vec[0]    = Z_tmp[0];
					for(ell = 0; ell < r; ell++)
					{	std::cout << std::endl << "     ";
						for(size_t p_tmp = 1; p_tmp <= q; p_tmp++)
							Z_vec[p_tmp] = Z_tmp[(p_tmp-1)*r+ell+1];
						printOpResult(
							std::cout,
							q + 1,
							Z_vec.data(),
							0,
							(Base *) CPPAD_NULL
						);
					}
				}
				std::cout << std::endl;
			}
		}
		const addr_t*   arg_tmp = arg;
		if( op == CSumOp )
			arg_tmp = arg - arg[-1] - 4;
		if( op == CSkipOp )
			arg_tmp = arg - arg[-1] - 7;
		if( op != UsrrvOp )
		{	printOp(
				std::cout,
				play,
				i_op,
				i_var,
				op,
				arg_tmp
			);
			Base* Z_tmp = CPPAD_NULL;
			if( op == UsravOp )
				Z_tmp = taylor + arg[0]*((J-1) * r + 1);
			else if( NumRes(op) > 0 )
				Z_tmp = taylor + i_var*((J-1)*r + 1);
			if( Z_tmp != CPPAD_NULL )
			{	Z_vec[0]    = Z_tmp[0];
				for(ell = 0; ell < r; ell++)
				{	std::cout << std::endl << "     ";
					for(size_t p_tmp = 1; p_tmp <= q; p_tmp++)
						Z_vec[p_tmp] = Z_tmp[ (p_tmp-1)*r + ell + 1];
					printOpResult(
						std::cout,
						q + 1,
						Z_vec.data(),
						0,
						(Base *) CPPAD_NULL
					);
				}
			}
			std::cout << std::endl;
		}
	}
	std::cout << std::endl;
# else
	}
Пример #19
0
void ReverseSweep(
	size_t                      d,
	size_t                      n,
	size_t                      numvar,
	player<Base>*               play,
	size_t                      J,
	const Base*                 Taylor,
	size_t                      K,
	Base*                       Partial,
	bool*                       cskip_op,
	const pod_vector<addr_t>&   var_by_load_op
)
{
	OpCode           op;
	size_t         i_op;
	size_t        i_var;

	const addr_t*   arg = CPPAD_NULL;

	// check numvar argument
	CPPAD_ASSERT_UNKNOWN( play->num_var_rec() == numvar );
	CPPAD_ASSERT_UNKNOWN( numvar > 0 );

	// length of the parameter vector (used by CppAD assert macros)
	const size_t num_par = play->num_par_rec();

	// pointer to the beginning of the parameter vector
	const Base* parameter = CPPAD_NULL;
	if( num_par > 0 )
		parameter = play->GetPar();

	// work space used by UserOp.
	const size_t user_k  = d;    // highest order we are differentiating
	const size_t user_k1 = d+1;  // number of orders for this calculation
	vector<size_t> user_ix;      // variable indices for argument vector
	vector<Base> user_tx;        // argument vector Taylor coefficients
	vector<Base> user_ty;        // result vector Taylor coefficients
	vector<Base> user_px;        // partials w.r.t argument vector
	vector<Base> user_py;        // partials w.r.t. result vector
	size_t user_index = 0;       // indentifier for this atomic operation
	size_t user_id    = 0;       // user identifier for this call to operator
	size_t user_i     = 0;       // index in result vector
	size_t user_j     = 0;       // index in argument vector
	size_t user_m     = 0;       // size of result vector
	size_t user_n     = 0;       // size of arugment vector
	//
	atomic_base<Base>* user_atom = CPPAD_NULL; // user's atomic op calculator
# ifndef NDEBUG
	bool               user_ok   = false;      // atomic op return value
# endif
	//
	// next expected operator in a UserOp sequence
	enum { user_start, user_arg, user_ret, user_end } user_state = user_end;

	// temporary indices
	size_t j, ell;

	// Initialize
	play->reverse_start(op, arg, i_op, i_var);
	CPPAD_ASSERT_UNKNOWN( op == EndOp );
# if CPPAD_REVERSE_SWEEP_TRACE
	std::cout << std::endl;
# endif
	bool more_operators = true;
	while(more_operators)
	{	// next op
		play->reverse_next(op, arg, i_op, i_var);
		CPPAD_ASSERT_UNKNOWN((i_op >  n) | (op == InvOp) | (op == BeginOp));
		CPPAD_ASSERT_UNKNOWN((i_op <= n) | (op != InvOp) | (op != BeginOp));
		CPPAD_ASSERT_UNKNOWN( i_op < play->num_op_rec() );

		// check if we are skipping this operation
		while( cskip_op[i_op] )
		{	if( op == CSumOp )
			{	// CSumOp has a variable number of arguments
				play->reverse_csum(op, arg, i_op, i_var);
			}
			CPPAD_ASSERT_UNKNOWN( op != CSkipOp );
			// if( op == CSkipOp )
			// {	// CSkip has a variable number of arguments
			// 	play->reverse_cskip(op, arg, i_op, i_var);
			// }
			CPPAD_ASSERT_UNKNOWN( i_op < play->num_op_rec() );
			play->reverse_next(op, arg, i_op, i_var);
		}

		// rest of informaiton depends on the case
# if CPPAD_REVERSE_SWEEP_TRACE
		if( op == CSumOp )
		{	// CSumOp has a variable number of arguments
			play->reverse_csum(op, arg, i_op, i_var);
		}
		if( op == CSkipOp )
		{	// CSkip has a variable number of arguments
			play->reverse_cskip(op, arg, i_op, i_var);
		}
		size_t       i_tmp  = i_var;
		const Base*  Z_tmp  = Taylor + i_var * J;
		const Base*  pZ_tmp = Partial + i_var * K;
		printOp(
			std::cout,
			play,
			i_op,
			i_tmp,
			op,
			arg
		);
		if( NumRes(op) > 0 && op != BeginOp ) printOpResult(
			std::cout,
			d + 1,
			Z_tmp,
			d + 1,
			pZ_tmp
		);
		std::cout << std::endl;
# endif
		switch( op )
		{

			case AbsOp:
			reverse_abs_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case AcosOp:
			// sqrt(1 - x * x), acos(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar );
			reverse_acos_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case AddvvOp:
			reverse_addvv_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case AddpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			reverse_addpv_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case AsinOp:
			// sqrt(1 - x * x), asin(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar );
			reverse_asin_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case AtanOp:
			// 1 + x * x, atan(x)
			CPPAD_ASSERT_UNKNOWN( i_var < numvar );
			reverse_atan_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// -------------------------------------------------

			case BeginOp:
			CPPAD_ASSERT_NARG_NRES(op, 1, 1);
			more_operators = false;
			break;
			// --------------------------------------------------

			case CSkipOp:
			// CSkipOp has a variable number of arguments and
			// forward_next thinks it one has one argument.
			// we must inform reverse_next of this special case.
# if ! CPPAD_REVERSE_SWEEP_TRACE
			play->reverse_cskip(op, arg, i_op, i_var);
# endif
			break;
			// -------------------------------------------------

			case CSumOp:
			// CSumOp has a variable number of arguments and
			// reverse_next thinks it one has one argument.
			// We must inform reverse_next of this special case.
# if ! CPPAD_REVERSE_SWEEP_TRACE
			play->reverse_csum(op, arg, i_op, i_var);
# endif
			reverse_csum_op(
				d, i_var, arg, K, Partial
			);
			// end of a cummulative summation
			break;
			// -------------------------------------------------

			case CExpOp:
			reverse_cond_op(
				d,
				i_var,
				arg,
				num_par,
				parameter,
				J,
				Taylor,
				K,
				Partial
			);
			break;
			// --------------------------------------------------

			case CosOp:
			CPPAD_ASSERT_UNKNOWN( i_var < numvar );
			reverse_cos_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case CoshOp:
			CPPAD_ASSERT_UNKNOWN( i_var < numvar );
			reverse_cosh_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case DisOp:
			// Derivative of discrete operation is zero so no
			// contribution passes through this operation.
			break;
			// --------------------------------------------------

			case DivvvOp:
			reverse_divvv_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case DivpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			reverse_divpv_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case DivvpOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < num_par );
			reverse_divvp_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

# if CPPAD_COMPILER_HAS_ERF
			case ErfOp:
			reverse_erf_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
# endif
			// --------------------------------------------------

			case ExpOp:
			reverse_exp_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case InvOp:
			break;
			// --------------------------------------------------

			case LdpOp:
			reverse_load_op(
			op, d, i_var, arg, J, Taylor, K, Partial, var_by_load_op.data()
			);
			break;
			// -------------------------------------------------

			case LdvOp:
			reverse_load_op(
			op, d, i_var, arg, J, Taylor, K, Partial, var_by_load_op.data()
			);
			break;
			// --------------------------------------------------

			case EqpvOp:
			case EqvvOp:
			case LtpvOp:
			case LtvpOp:
			case LtvvOp:
			case LepvOp:
			case LevpOp:
			case LevvOp:
			case NepvOp:
			case NevvOp:
			break;
			// -------------------------------------------------

			case LogOp:
			reverse_log_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case MulvvOp:
			reverse_mulvv_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case MulpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			reverse_mulpv_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case ParOp:
			break;
			// --------------------------------------------------

			case PowvpOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < num_par );
			reverse_powvp_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
			// -------------------------------------------------

			case PowpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			reverse_powpv_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
			// -------------------------------------------------

			case PowvvOp:
			reverse_powvv_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case PriOp:
			// no result so nothing to do
			break;
			// --------------------------------------------------

			case SignOp:
			CPPAD_ASSERT_UNKNOWN( i_var < numvar );
			reverse_sign_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// -------------------------------------------------

			case SinOp:
			CPPAD_ASSERT_UNKNOWN( i_var < numvar );
			reverse_sin_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// -------------------------------------------------

			case SinhOp:
			CPPAD_ASSERT_UNKNOWN( i_var < numvar );
			reverse_sinh_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case SqrtOp:
			reverse_sqrt_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case StppOp:
			break;
			// --------------------------------------------------

			case StpvOp:
			break;
			// -------------------------------------------------

			case StvpOp:
			break;
			// -------------------------------------------------

			case StvvOp:
			break;
			// --------------------------------------------------

			case SubvvOp:
			reverse_subvv_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case SubpvOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			reverse_subpv_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case SubvpOp:
			CPPAD_ASSERT_UNKNOWN( size_t(arg[1]) < num_par );
			reverse_subvp_op(
				d, i_var, arg, parameter, J, Taylor, K, Partial
			);
			break;
			// -------------------------------------------------

			case TanOp:
			CPPAD_ASSERT_UNKNOWN( i_var < numvar );
			reverse_tan_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// -------------------------------------------------

			case TanhOp:
			CPPAD_ASSERT_UNKNOWN( i_var < numvar );
			reverse_tanh_op(
				d, i_var, arg[0], J, Taylor, K, Partial
			);
			break;
			// --------------------------------------------------

			case UserOp:
			// start or end an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( NumRes( UserOp ) == 0 );
			CPPAD_ASSERT_UNKNOWN( NumArg( UserOp ) == 4 );
			if( user_state == user_end )
			{	user_index = arg[0];
				user_id    = arg[1];
				user_n     = arg[2];
				user_m     = arg[3];
				user_atom  = atomic_base<Base>::class_object(user_index);
# ifndef NDEBUG
				if( user_atom == CPPAD_NULL )
				{	std::string msg =
						atomic_base<Base>::class_name(user_index)
						+ ": atomic_base function has been deleted";
					CPPAD_ASSERT_KNOWN(false, msg.c_str() );
				}
# endif
				if(user_ix.size() != user_n)
					user_ix.resize(user_n);
				if(user_tx.size() != user_n * user_k1)
				{	user_tx.resize(user_n * user_k1);
					user_px.resize(user_n * user_k1);
				}
				if(user_ty.size() != user_m * user_k1)
				{	user_ty.resize(user_m * user_k1);
					user_py.resize(user_m * user_k1);
				}
				user_j     = user_n;
				user_i     = user_m;
				user_state = user_ret;
			}
			else
			{	CPPAD_ASSERT_UNKNOWN( user_state == user_start );
				CPPAD_ASSERT_UNKNOWN( user_index == size_t(arg[0]) );
				CPPAD_ASSERT_UNKNOWN( user_id    == size_t(arg[1]) );
				CPPAD_ASSERT_UNKNOWN( user_n     == size_t(arg[2]) );
				CPPAD_ASSERT_UNKNOWN( user_m     == size_t(arg[3]) );

				// call users function for this operation
				user_atom->set_id(user_id);
				CPPAD_ATOMIC_CALL(
					user_k, user_tx, user_ty, user_px, user_py
				);
# ifndef NDEBUG
				if( ! user_ok )
				{	std::string msg =
						atomic_base<Base>::class_name(user_index)
						+ ": atomic_base.reverse: returned false";
					CPPAD_ASSERT_KNOWN(false, msg.c_str() );
				}
# endif
				for(j = 0; j < user_n; j++) if( user_ix[j] > 0 )
				{	for(ell = 0; ell < user_k1; ell++)
						Partial[user_ix[j] * K + ell] +=
							user_px[j * user_k1 + ell];
				}
				user_state = user_end;
			}
			break;

			case UsrapOp:
			// parameter argument in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( user_state == user_arg );
			CPPAD_ASSERT_UNKNOWN( 0 < user_j && user_j <= user_n );
			CPPAD_ASSERT_UNKNOWN( NumArg(op) == 1 );
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			--user_j;
			user_ix[user_j] = 0;
			user_tx[user_j * user_k1 + 0] = parameter[ arg[0]];
			for(ell = 1; ell < user_k1; ell++)
				user_tx[user_j * user_k1 + ell] = Base(0.);

			if( user_j == 0 )
				user_state = user_start;
			break;

			case UsravOp:
			// variable argument in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( user_state == user_arg );
			CPPAD_ASSERT_UNKNOWN( 0 < user_j && user_j <= user_n );
			CPPAD_ASSERT_UNKNOWN( NumArg(op) == 1 );
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) <= i_var );
			CPPAD_ASSERT_UNKNOWN( 0 < arg[0] );
			--user_j;
			user_ix[user_j] = arg[0];
			for(ell = 0; ell < user_k1; ell++)
				user_tx[user_j*user_k1 + ell] = Taylor[ arg[0] * J + ell];
			if( user_j == 0 )
				user_state = user_start;
			break;

			case UsrrpOp:
			// parameter result in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( user_state == user_ret );
			CPPAD_ASSERT_UNKNOWN( 0 < user_i && user_i <= user_m );
			CPPAD_ASSERT_UNKNOWN( NumArg(op) == 1 );
			CPPAD_ASSERT_UNKNOWN( size_t(arg[0]) < num_par );
			--user_i;
			for(ell = 0; ell < user_k1; ell++)
			{	user_py[user_i * user_k1 + ell] = Base(0.);
				user_ty[user_i * user_k1 + ell] = Base(0.);
			}
			user_ty[user_i * user_k1 + 0] = parameter[ arg[0] ];
			if( user_i == 0 )
				user_state = user_arg;
			break;

			case UsrrvOp:
			// variable result in an atomic operation sequence
			CPPAD_ASSERT_UNKNOWN( user_state == user_ret );
			CPPAD_ASSERT_UNKNOWN( 0 < user_i && user_i <= user_m );
			--user_i;
			for(ell = 0; ell < user_k1; ell++)
			{	user_py[user_i * user_k1 + ell] =
						Partial[i_var * K + ell];
				user_ty[user_i * user_k1 + ell] =
						Taylor[i_var * J + ell];
			}
			if( user_i == 0 )
				user_state = user_arg;
			break;
			// ------------------------------------------------------------

			default:
			CPPAD_ASSERT_UNKNOWN(false);
		}
	}
# if CPPAD_REVERSE_SWEEP_TRACE
	std::cout << std::endl;
# endif
	// values corresponding to BeginOp
	CPPAD_ASSERT_UNKNOWN( i_op == 0 );
	CPPAD_ASSERT_UNKNOWN( i_var == 0 );
}