Пример #1
0
  /*
   *  Set a single-phase chemical solution to chemical equilibrium.
   *  This is a convenience function that uses one or the other of
   *  the two chemical equilibrium solvers.
   * 
   *  @param s The object to set to an equilibrium state
   * 
   *  @param XY An integer specifying the two properties to be held
   *  constant.
   * 
   *  @param solver The equilibrium solver to use. If solver = 0,
   *  the ChemEquil solver will be used, and if solver = 1, the
   *  MultiPhaseEquil solver will be used (slower than ChemEquil,
   *  but more stable). If solver < 0 (default, then ChemEquil will
   *  be tried first, and if it fails MultiPhaseEquil will be tried.
   * 
   *  @param maxsteps The maximum number of steps to take to find
   *  the solution.
   * 
   *  @param maxiter For the MultiPhaseEquil solver only, this is
   *  the maximum number of outer temperature or pressure iterations
   *  to take when T and/or P is not held fixed.
   * 
   *  @param loglevel Controls amount of diagnostic output. loglevel
   *  = 0 suppresses diagnostics, and increasingly-verbose messages
   *  are written as loglevel increases. The messages are written to
   *  a file in HTML format for viewing in a web browser.
   *  @see HTML_logs
   * 
   *  @ingroup equil
   */
  int equilibrate(thermo_t& s, const char* XY, int solver,
		  doublereal rtol, int maxsteps, int maxiter, int loglevel) {
    MultiPhase* m = 0;
    ChemEquil* e = 0;
    bool redo = true;
    int retn = -1;
    int nAttempts = 0;
    int retnSub = 0;
  

    if (loglevel > 0) {
      beginLogGroup("equilibrate", loglevel);
      addLogEntry("Single-phase equilibrate function");
      {
	beginLogGroup("arguments");
	addLogEntry("phase",s.id());
	addLogEntry("XY",XY);
	addLogEntry("solver",solver);
	addLogEntry("rtol",rtol);
	addLogEntry("maxsteps",maxsteps);
	addLogEntry("maxiter",maxiter);
	addLogEntry("loglevel",loglevel);
	endLogGroup("arguments");
      }
    }
    while (redo) {
      if (solver >= 2) {
#ifdef WITH_VCSNONIDEAL
	int printLvlSub = 0;
	int estimateEquil = 0;
	m = new MultiPhase;
	try { 
	  m->addPhase(&s, 1.0);
	  m->init();
	  nAttempts++;
	  vcs_equilibrate(*m, XY, estimateEquil, printLvlSub, solver,
			  rtol, maxsteps, maxiter, loglevel-1); 
	  redo = false;
          if (loglevel > 0) 
	    addLogEntry("VCSnonideal solver succeeded.");
	  delete m;
	  retn = nAttempts;
	}
	catch (CanteraError &err) {
	  if (loglevel > 0) 
	    addLogEntry("VCSnonideal solver failed.");
	  delete m;
	  if (nAttempts < 2) {
	    if (loglevel > 0) 
	      addLogEntry("Trying single phase ChemEquil solver.");
	    solver = -1;
	  } 
	  else {
	    if (loglevel > 0) 
	      endLogGroup("equilibrate");
	    throw err;
	  }
	}
#else
	throw CanteraError("equilibrate", 
			   "VCSNonIdeal solver called, but not compiled");
#endif
      } else if (solver == 1) {
	m = new MultiPhase;
	try { 
	  m->addPhase(&s, 1.0);
	  m->init();
	  nAttempts++;
	  (void) equilibrate(*m, XY, rtol, maxsteps, maxiter, loglevel-1); 
	  redo = false;
          if (loglevel > 0) 
	    addLogEntry("MultiPhaseEquil solver succeeded.");
	  delete m;
	  retn = nAttempts;
	}
	catch (CanteraError &err) {
	  if (loglevel > 0) 
	    addLogEntry("MultiPhaseEquil solver failed.");
	  delete m;
	  if (nAttempts < 2) {
	    if (loglevel > 0) 
	      addLogEntry("Trying single phase ChemEquil solver.");
	    solver = -1;
	  } 
	  else {
	    if (loglevel > 0) 
	      endLogGroup("equilibrate");
	    throw err;
	  }
	}
      }
      else {        // solver <= 0
	/*
	 * Call the element potential solver
	 */
	e = new ChemEquil;
	try {
	  e->options.maxIterations = maxsteps;
	  e->options.relTolerance = rtol;
	  nAttempts++;
          bool useThermoPhaseElementPotentials = true;
	  retnSub = e->equilibrate(s,XY,
                                   useThermoPhaseElementPotentials, loglevel-1);
	  if (retnSub < 0) {
	    if (loglevel > 0) 
	      addLogEntry("ChemEquil solver failed.");
	    if (nAttempts < 2) {
	      if (loglevel > 0) 
		addLogEntry("Trying MultiPhaseEquil solver.");
	      solver = 1;
	    } else {
	      throw CanteraError("equilibrate", 
				 "Both equilibrium solvers failed");
	    }
	  }
	  retn = nAttempts;
	  s.setElementPotentials(e->elementPotentials());
	  redo = false;
	  delete e;
          if (loglevel > 0) 
	    addLogEntry("ChemEquil solver succeeded.");
	}

	catch (CanteraError &err) {
	  delete e;
          if (loglevel > 0) 
	    addLogEntry("ChemEquil solver failed.");
	  // If ChemEquil fails, try the MultiPhase solver
	  if (solver < 0) {
	    if (loglevel > 0) 
	      addLogEntry("Trying MultiPhaseEquil solver.");
	    solver = 1;
	  }
	  else {
	    redo = false;
            if (loglevel > 0) 
	      endLogGroup("equilibrate");
	    throw err;
	  }
	}
      } 
    } // while (redo)
    /*
     * We are here only for a success
     */
    if (loglevel > 0) 
      endLogGroup("equilibrate");
    return retn;
  }
Пример #2
0
/*
 *  Set a single-phase chemical solution to chemical equilibrium.
 *  This is a convenience function that uses one or the other of
 *  the two chemical equilibrium solvers.
 *
 *  @param s The object to set to an equilibrium state
 *
 *  @param XY An integer specifying the two properties to be held
 *            constant.
 *
 *  @param estimateEquil integer indicating whether the solver
 *                   should estimate its own initial condition.
 *                   If 0, the initial mole fraction vector
 *                   in the %ThermoPhase object is used as the
 *                   initial condition.
 *                   If 1, the initial mole fraction vector
 *                   is used if the element abundances are
 *                   satisfied.
 *                   if -1, the initial mole fraction vector
 *                   is thrown out, and an estimate is
 *                   formulated.
 *
 *  @param printLvl Determines the amount of printing that
 *                  gets sent to stdout from the vcs package
 *                  (Note, you may have to compile with debug
 *                   flags to get some printing).
 *
 *  @param solver The equilibrium solver to use. If solver = 0,
 *                the ChemEquil solver will be used, and if
 *                solver = 1, the vcs_MultiPhaseEquil solver will
 *                be used (slower than ChemEquil,
 *                but more stable). If solver < 0 (default, then
 *                ChemEquil will be tried first, and if it fails
 *                vcs_MultiPhaseEquil will be tried.
 *
 *  @param maxsteps The maximum number of steps to take to find
 *                  the solution.
 *
 *  @param maxiter For the MultiPhaseEquil solver only, this is
 *                 the maximum number of outer temperature or
 *                 pressure iterations to take when T and/or P is
 *                 not held fixed.
 *
 *  @param loglevel Controls amount of diagnostic output. loglevel
 *                  = 0 suppresses diagnostics, and increasingly-verbose
 *                  messages are written as loglevel increases. The
 *                  messages are written to a file in HTML format for viewing
 *                  in a web browser. @see HTML_logs
 */
int vcs_equilibrate(thermo_t& s, const char* XY,
                    int estimateEquil,  int printLvl,
                    int solver,
                    doublereal rtol, int maxsteps, int maxiter,
                    int loglevel)
{
    MultiPhase* m = 0;
    int retn = 1;
    int retnSub = 0;

    beginLogGroup("equilibrate", loglevel);
    // retry:
    addLogEntry("Single-phase equilibrate function");
    {
        beginLogGroup("arguments");
        addLogEntry("phase",s.id());
        addLogEntry("XY",XY);
        addLogEntry("solver",solver);
        addLogEntry("rtol",rtol);
        addLogEntry("maxsteps",maxsteps);
        addLogEntry("maxiter",maxiter);
        addLogEntry("loglevel",loglevel);
        endLogGroup("arguments");
    }

    if (solver == 2) {
        m = new MultiPhase;
        try {
            /*
             *  Set the kmoles of the phase to 1.0, arbitrarily.
             *  It actually doesn't matter.
             */
            m->addPhase(&s, 1.0);
            m->init();

            retn = vcs_equilibrate(*m, XY, estimateEquil, printLvl, solver,
                                   rtol, maxsteps, maxiter, loglevel);
            if (retn == 1) {
                addLogEntry("MultiPhaseEquil solver succeeded.");
            } else {
                addLogEntry("MultiPhaseEquil solver returned an error code: ", retn);
            }
            delete m;
        } catch (CanteraError& err) {
            err.save();
            addLogEntry("MultiPhaseEquil solver failed.");
            delete m;
            throw err;
        }
    } else if (solver == 1) {
        m = new MultiPhase;
        try {
            m->addPhase(&s, 1.0);
            m->init();
            (void) equilibrate(*m, XY, rtol, maxsteps, maxiter, loglevel-1);
            if (loglevel > 0) {
                addLogEntry("MultiPhaseEquil solver succeeded.");
            }
            delete m;
            retn = 1;
        } catch (CanteraError& err) {
            err.save();
            if (loglevel > 0) {
                addLogEntry("MultiPhaseEquil solver failed.");
            }
            delete m;
            throw err;
        }
    } else if (solver == 0) {
        ChemEquil* e = new ChemEquil;
        try {
            e->options.maxIterations = maxsteps;
            e->options.relTolerance = rtol;
            bool useThermoPhaseElementPotentials = false;
            if (estimateEquil == 0) {
                useThermoPhaseElementPotentials = true;
            }
            retnSub = e->equilibrate(s, XY,
                                     useThermoPhaseElementPotentials, loglevel-1);
            if (retnSub < 0) {
                if (loglevel > 0) {
                    addLogEntry("ChemEquil solver failed.");
                }
                delete e;
                throw CanteraError("equilibrate",
                                   "ChemEquil equilibrium solver failed");
            }
            retn = 1;
            s.setElementPotentials(e->elementPotentials());
            delete e;
            if (loglevel > 0) {
                addLogEntry("ChemEquil solver succeeded.");
            }
        } catch (CanteraError& err) {
            err.save();
            if (loglevel > 0) {
                addLogEntry("ChemEquil solver failed.");
            }
            delete e;
            throw err;
        }
    } else {
        throw CanteraError("vcs_equilibrate",
                           "unknown solver");
    }

    /*
     * We are here only for a success
     */
    endLogGroup("equilibrate");
    return retn;
}
Пример #3
0
int equilibrate(thermo_t& s, const char* XY, int solver,
                doublereal rtol, int maxsteps, int maxiter, int loglevel)
{
    bool redo = true;
    int retn = -1;
    int nAttempts = 0;
    int retnSub = 0;

    if (loglevel > 0) {
        beginLogGroup("equilibrate", loglevel);
        addLogEntry("Single-phase equilibrate function");
        {
            beginLogGroup("arguments");
            addLogEntry("phase",s.id());
            addLogEntry("XY",XY);
            addLogEntry("solver",solver);
            addLogEntry("rtol",rtol);
            addLogEntry("maxsteps",maxsteps);
            addLogEntry("maxiter",maxiter);
            addLogEntry("loglevel",loglevel);
            endLogGroup("arguments");
        }
    }
    while (redo) {
        if (solver >= 2) {
            int printLvlSub = 0;
            int estimateEquil = 0;
            try {
                MultiPhase m;
                m.addPhase(&s, 1.0);
                m.init();
                nAttempts++;
                vcs_equilibrate(m, XY, estimateEquil, printLvlSub, solver,
                                rtol, maxsteps, maxiter, loglevel-1);
                redo = false;
                if (loglevel > 0) {
                    addLogEntry("VCSnonideal solver succeeded.");
                }
                retn = nAttempts;
            } catch (CanteraError& err) {
                err.save();
                if (loglevel > 0) {
                    addLogEntry("VCSnonideal solver failed.");
                }
                if (nAttempts < 2) {
                    if (loglevel > 0) {
                        addLogEntry("Trying single phase ChemEquil solver.");
                    }
                    solver = -1;
                } else {
                    if (loglevel > 0) {
                        endLogGroup("equilibrate");
                    }
                    throw err;
                }
            }
        } else if (solver == 1) {
            try {
                MultiPhase m;
                m.addPhase(&s, 1.0);
                m.init();
                nAttempts++;
                equilibrate(m, XY, rtol, maxsteps, maxiter, loglevel-1);
                redo = false;
                if (loglevel > 0) {
                    addLogEntry("MultiPhaseEquil solver succeeded.");
                }
                retn = nAttempts;
            } catch (CanteraError& err) {
                err.save();
                if (loglevel > 0) {
                    addLogEntry("MultiPhaseEquil solver failed.");
                }
                if (nAttempts < 2) {
                    if (loglevel > 0) {
                        addLogEntry("Trying single phase ChemEquil solver.");
                    }
                    solver = -1;
                } else {
                    if (loglevel > 0) {
                        endLogGroup("equilibrate");
                    }
                    throw err;
                }
            }
        } else {      // solver <= 0
            /*
             * Call the element potential solver
             */
            try {
                ChemEquil e;
                e.options.maxIterations = maxsteps;
                e.options.relTolerance = rtol;
                nAttempts++;
                bool useThermoPhaseElementPotentials = true;
                retnSub = e.equilibrate(s, XY, useThermoPhaseElementPotentials,
                                        loglevel-1);
                if (retnSub < 0) {
                    if (loglevel > 0) {
                        addLogEntry("ChemEquil solver failed.");
                    }
                    if (nAttempts < 2) {
                        if (loglevel > 0) {
                            addLogEntry("Trying MultiPhaseEquil solver.");
                        }
                        solver = 1;
                    } else {
                        throw CanteraError("equilibrate",
                                           "Both equilibrium solvers failed");
                    }
                }
                retn = nAttempts;
                s.setElementPotentials(e.elementPotentials());
                redo = false;
                if (loglevel > 0) {
                    addLogEntry("ChemEquil solver succeeded.");
                }
            }

            catch (CanteraError& err) {
                err.save();
                if (loglevel > 0) {
                    addLogEntry("ChemEquil solver failed.");
                }
                // If ChemEquil fails, try the MultiPhase solver
                if (solver < 0) {
                    if (loglevel > 0) {
                        addLogEntry("Trying MultiPhaseEquil solver.");
                    }
                    solver = 1;
                } else {
                    redo = false;
                    if (loglevel > 0) {
                        endLogGroup("equilibrate");
                    }
                    throw err;
                }
            }
        }
    } // while (redo)
    /*
     * We are here only for a success
     */
    if (loglevel > 0) {
        endLogGroup("equilibrate");
    }
    return retn;
}