/** Compute the normal for a polygon. Basically, the method simply takes the first three vertices A, B, C and computes the normal of that triangle. However, it is checked that A!=B and B!=C, so it is possible that more than three vertices are looked up. \param poly Polygon index \param[out] N Receives the resulting normal */ void PolyhedronGeom::computeNormal(int poly, vec3d& N) { VertexLoop& loop = *(*polys[poly])[0]; int size = loop.size(); int i = 2; if (size<3) return; const vec3d* a = &(verts.getValue(loop[0])); const vec3d* b = &(verts.getValue(loop[1])); while(a==b) { if (i>=size) return; b = &(verts.getValue(loop[i])); i++; } const vec3d* c = &(verts.getValue(loop[i])); while(b==c) { if (i>=size) return; c = &(verts.getValue(loop[i])); i++; } N.cross((*b)-(*a), (*c)-(*a)); try { N.normalize(N); } catch(...) { N.set(0,0,0); } }
void System::solveForceFreeRigidMotion(vec3d &Utf, vec3d &Otf){ smallmatrix Mag_uf; Mag_uf.allocate_memory(3,3); smallmatrix Mag_ut; Mag_ut.allocate_memory(3,3); smallmatrix Mag_us; Mag_us.allocate_memory(3,5); ////////////////////////// smallmatrix Mag_of; Mag_of.allocate_memory(3,3); smallmatrix Mag_ot; Mag_ot.allocate_memory(3,3); smallmatrix Mag_os; Mag_os.allocate_memory(3,5); ////////////////////////// smallmatrix Mag_ef; Mag_ef.allocate_memory(5,3); smallmatrix Mag_et; Mag_et.allocate_memory(5,3); smallmatrix Mag_es; Mag_es.allocate_memory(5,5); for (int i=0; i < 121; i++){ Mag[i] = Rag[i]; } lapack_inv_ (11, Mag); for (int l=0; l< 3; l++){ for (int k=0; k < 3 ; k++){ Mag_uf.element[l][k] = Mag[k + 11*l]; Mag_ut.element[l][k] = Mag[3+k + 11*l]; Mag_of.element[l][k] = Mag[k + 11*(3+l)]; Mag_ot.element[l][k] = Mag[3+k + 11*(3+l)]; } for (int k=0; k < 5 ; k++){ Mag_us.element[l][k] = Mag[6+k + 11*l]; Mag_os.element[l][k] = Mag[6+k + 11*(3+l)]; } } for (int l=0; l< 5; l++){ for (int k=0; k < 3 ; k++){ Mag_ef.element[l][k] = Mag[k + 11*(6+l)]; Mag_et.element[l][k] = Mag[3+k + 11*(6+l)]; } for (int k=0; k < 5 ; k++){ Mag_es.element[l][k] = Mag[6+k + 11*(6+l)]; } } double *array_inv_Mag_es; array_inv_Mag_es = new double [25]; for (int l=0; l< 5; l++){ for (int k=0; k < 5 ; k++){ array_inv_Mag_es[k + l*5] = Mag_es.element[l][k]; } } lapack_inv_ (5, array_inv_Mag_es); smallmatrix inv_Mag_es; inv_Mag_es.allocate_memory(5,5); for (int l=0; l< 5; l++){ for (int k=0; k < 5 ; k++){ inv_Mag_es.element[l][k] = array_inv_Mag_es[k + l*5]; } } double *Sag; Sag = new double [5]; for (int l=0; l < 5; l++) {Sag[l] = 0;} inv_Mag_es.multiplyVector( sd->Ei, Sag ); double *Uag, *Oag; Uag = new double[3]; Oag = new double[3]; Mag_us.multiplyVector( Sag, Uag ); for (int l=0; l < 3 ; l++) Uag[l] = - Uag[l]; Mag_os.multiplyVector( Sag, Oag ); for (int l=0; l < 3 ; l++) Oag[l] = - Oag[l]; Oag[0] += sd->Oi[0]; Oag[1] += sd->Oi[1]; Oag[2] += sd->Oi[2]; Utf.set(Uag[0], Uag[1], Uag[2]); Otf.set(Oag[0], Oag[1], Oag[2]); DELETE(Sag); DELETE(Uag); DELETE(Oag); DELETE(array_inv_Mag_es); return; }