/////////////////////////////////////////////////////////////////////////// // PURPOSE: // Computes the syndrome of a sparse vector // of the binary BCH code of design distance d. // The vector is viewed as a vector of 0's and 1's // being indexed by all nonzero elements of GF2E; because // it is sparse, it is given as the set a of // elements of GF2E where the coordinates of the vector are equal to 1. // If used to compute the secure sketch, the sketch will // tolerate symmetric difference of up to (d-1)/2 // // // ALGORITHM: // The syndrome is computed as a vector of // f(j) = (a_0)^j + (a_2)^j + ... + (a_s)^j // for odd i from 1 do d-1, where a_i is the i-th component // of the input vector A. // (only the odd j are needed, because // f(2j) is simply the square of f(j)). // Because in C++ we number from 0, f(j) will reside // in location (j-1)/2. // // // ASSUMPTIONS: // Let m=GF2E::degree() (i.e., the field is GF(2^m)). // Assumes d is odd, // greater than 1, and less than 2^m (else BCH codes don't make sense). // Assumes the input set has no zeros (they will be ignored) // // // RUNNING TIME: // Takes time O(len*d) operations in GF(2^m), // where len is the length of the input vector // void BCHSyndromeCompute(vec_GF2E & ss, const vec_GF2E & a, long d) { GF2E a_i_to_the_j, multiplier; long i, j; ss.SetLength((d-1)/2); // half the syndrome length, // because even power not needed // We will compute the fs in parallel: first add // all the powers of a_1, then of a_2, ..., then of a_s for (i = 0; i < a.length(); ++i) { a_i_to_the_j = a[i]; sqr(multiplier, a[i]); // multiplier = a[i]*a[i]; // special-case 0, because it doesn't need to be multiplied // by the multiplier ss[0] += a_i_to_the_j; for (long j = 3; j < d; j+=2) { a_i_to_the_j *= multiplier; ss[(j-1)/2] += a_i_to_the_j; } } }
static void RecFindRoots(vec_GF2E& x, const GF2EX& f) { if (deg(f) == 0) return; if (deg(f) == 1) { long k = x.length(); x.SetLength(k+1); x[k] = ConstTerm(f); return; } GF2EX h; GF2E r; { GF2EXModulus F; build(F, f); do { random(r); clear(h); SetCoeff(h, 1, r); TraceMap(h, h, F); GCD(h, h, f); } while (deg(h) <= 0 || deg(h) == deg(f)); } RecFindRoots(x, h); div(h, f, h); RecFindRoots(x, h); }
void mul(vec_GF2E& x, const vec_GF2E& a, const GF2E& b_in) { GF2E b = b_in; long n = a.length(); x.SetLength(n); long i; for (i = 0; i < n; i++) mul(x[i], a[i], b); }
void add(vec_GF2E& x, const vec_GF2E& a, const vec_GF2E& b) { long n = a.length(); if (b.length() != n) LogicError("vector add: dimension mismatch"); x.SetLength(n); long i; for (i = 0; i < n; i++) add(x[i], a[i], b[i]); }
void FindRoots(vec_GF2E& x, const GF2EX& ff) { GF2EX f = ff; if (!IsOne(LeadCoeff(f))) Error("FindRoots: bad args"); x.SetMaxLength(deg(f)); x.SetLength(0); RecFindRoots(x, f); }
/////////////////////////////////////////////////////////////////////////// // Produces a vector res such that res[2i]=ss[i] // and res[2i+1]=ss[i]*ss[i] // // Used to recover the redundant representation // of the BCH syndrome (which includes even values of j) // from the representation produced by BCHSyndromeCompute // Because C++ indexes from 0, the j-th coordinate of the syndrome // will end up in location j-1. // // Takes time O(d) operations in GF2E, where d is the output length // static void InterpolateEvens(vec_GF2E & res, const vec_GF2E & ss) { // uses relation syn(j) = syn(j/2)^2 to recover syn from ss long i; res.SetLength(2*ss.length()); // odd coordinates (which, confusingly, means even i) // are just copied from the input for (i = 0; i < ss.length(); ++i) res[2*i] = ss[i]; // even coordinates (odd i) are computed via squaring. for (i = 1; i < res.length(); i+=2) sqr(res[i], res[(i-1)/2]); // square }
void VectorCopy(vec_GF2E& x, const vec_GF2E& a, long n) { if (n < 0) LogicError("VectorCopy: negative length"); if (NTL_OVERFLOW(n, 1, 0)) ResourceError("overflow in VectorCopy"); long m = min(n, a.length()); x.SetLength(n); long i; for (i = 0; i < m; i++) x[i] = a[i]; for (i = m; i < n; i++) clear(x[i]); }
static void mul_aux(vec_GF2E& x, const mat_GF2E& A, const vec_GF2E& b) { long n = A.NumRows(); long l = A.NumCols(); if (l != b.length()) LogicError("matrix mul: dimension mismatch"); x.SetLength(n); long i, k; GF2X acc, tmp; for (i = 1; i <= n; i++) { clear(acc); for (k = 1; k <= l; k++) { mul(tmp, rep(A(i,k)), rep(b(k))); add(acc, acc, tmp); } conv(x(i), acc); } }
static void mul_aux(vec_GF2E& x, const vec_GF2E& a, const mat_GF2E& B) { long n = B.NumRows(); long l = B.NumCols(); if (n != a.length()) LogicError("matrix mul: dimension mismatch"); x.SetLength(l); long i, k; GF2X acc, tmp; for (i = 1; i <= l; i++) { clear(acc); for (k = 1; k <= n; k++) { mul(tmp, rep(a(k)), rep(B(k,i))); add(acc, acc, tmp); } conv(x(i), acc); } }
static void solve_impl(GF2E& d, vec_GF2E& X, const mat_GF2E& A, const vec_GF2E& b, bool trans) { long n = A.NumRows(); if (A.NumCols() != n) LogicError("solve: nonsquare matrix"); if (b.length() != n) LogicError("solve: dimension mismatch"); if (n == 0) { set(d); X.SetLength(0); return; } long i, j, k, pos; GF2X t1, t2; GF2X *x, *y; const GF2XModulus& p = GF2E::modulus(); vec_GF2XVec M; M.SetLength(n); for (i = 0; i < n; i++) { M[i].SetSize(n+1, 2*GF2E::WordLength()); if (trans) for (j = 0; j < n; j++) M[i][j] = rep(A[j][i]); else for (j = 0; j < n; j++) M[i][j] = rep(A[i][j]); M[i][n] = rep(b[i]); } GF2X det; set(det); for (k = 0; k < n; k++) { pos = -1; for (i = k; i < n; i++) { rem(t1, M[i][k], p); M[i][k] = t1; if (pos == -1 && !IsZero(t1)) { pos = i; } } if (pos != -1) { if (k != pos) { swap(M[pos], M[k]); } MulMod(det, det, M[k][k], p); // make M[k, k] == -1 mod p, and make row k reduced InvMod(t1, M[k][k], p); for (j = k+1; j <= n; j++) { rem(t2, M[k][j], p); MulMod(M[k][j], t2, t1, p); } for (i = k+1; i < n; i++) { // M[i] = M[i] + M[k]*M[i,k] t1 = M[i][k]; // this is already reduced x = M[i].elts() + (k+1); y = M[k].elts() + (k+1); for (j = k+1; j <= n; j++, x++, y++) { // *x = *x + (*y)*t1 mul(t2, *y, t1); add(*x, *x, t2); } } } else { clear(d); return; } } X.SetLength(n); for (i = n-1; i >= 0; i--) { clear(t1); for (j = i+1; j < n; j++) { mul(t2, rep(X[j]), M[i][j]); add(t1, t1, t2); } add(t1, t1, M[i][n]); conv(X[i], t1); } conv(d, det); }