/** * Mask the outlier values to get a better median value. * @param medianvec The median value calculated from the current counts. * @param countsWS The counts workspace. Any outliers will be masked here. * @param indexmap Index map. * @returns The number failed. */ int MedianDetectorTest::maskOutliers( const std::vector<double> medianvec, API::MatrixWorkspace_sptr countsWS, std::vector<std::vector<size_t>> indexmap) { // Fractions of the median const double out_lo = getProperty("LowOutlier"); const double out_hi = getProperty("HighOutlier"); int numFailed(0); bool checkForMask = false; Geometry::Instrument_const_sptr instrument = countsWS->getInstrument(); if (instrument != nullptr) { checkForMask = ((instrument->getSource() != nullptr) && (instrument->getSample() != nullptr)); } for (size_t i = 0; i < indexmap.size(); ++i) { std::vector<size_t> &hists = indexmap[i]; double median = medianvec[i]; PARALLEL_FOR_IF(Kernel::threadSafe(*countsWS)) for (int j = 0; j < static_cast<int>(hists.size()); ++j) { // NOLINT const double value = countsWS->y(hists[j])[0]; if ((value == 0.) && checkForMask) { const auto &detids = countsWS->getSpectrum(hists[j]).getDetectorIDs(); if (instrument->isDetectorMasked(detids)) { numFailed -= 1; // it was already masked } } if ((value < out_lo * median) && (value > 0.0)) { countsWS->maskWorkspaceIndex(hists[j]); PARALLEL_ATOMIC ++numFailed; } else if (value > out_hi * median) { countsWS->maskWorkspaceIndex(hists[j]); PARALLEL_ATOMIC ++numFailed; } } PARALLEL_CHECK_INTERUPT_REGION } return numFailed; }
/** Create the final output workspace after converting the X axis * @returns the final output workspace * * @param progress :: Progress indicator * @param targetUnit :: Target conversion unit * @param inputWS :: Input workspace * @param nHist :: Stores the number of histograms */ MatrixWorkspace_sptr ConvertSpectrumAxis2::createOutputWorkspace( API::Progress &progress, const std::string &targetUnit, API::MatrixWorkspace_sptr &inputWS, size_t nHist) { // Create the output workspace. Can not re-use the input one because the // spectra are re-ordered. MatrixWorkspace_sptr outputWorkspace = WorkspaceFactory::Instance().create( inputWS, m_indexMap.size(), inputWS->x(0).size(), inputWS->y(0).size()); // Now set up a new numeric axis holding the theta values corresponding to // each spectrum. auto const newAxis = new NumericAxis(m_indexMap.size()); outputWorkspace->replaceAxis(1, newAxis); progress.setNumSteps(nHist + m_indexMap.size()); // Set the units of the axis. if (targetUnit == "theta" || targetUnit == "Theta" || targetUnit == "signed_theta" || targetUnit == "SignedTheta") { newAxis->unit() = boost::make_shared<Units::Degrees>(); } else if (targetUnit == "ElasticQ") { newAxis->unit() = UnitFactory::Instance().create("MomentumTransfer"); } else if (targetUnit == "ElasticQSquared") { newAxis->unit() = UnitFactory::Instance().create("QSquared"); } std::multimap<double, size_t>::const_iterator it; size_t currentIndex = 0; for (it = m_indexMap.begin(); it != m_indexMap.end(); ++it) { // Set the axis value. newAxis->setValue(currentIndex, it->first); // Copy over the data. outputWorkspace->setHistogram(currentIndex, inputWS->histogram(it->second)); // We can keep the spectrum numbers etc. outputWorkspace->getSpectrum(currentIndex) .copyInfoFrom(inputWS->getSpectrum(it->second)); ++currentIndex; progress.report("Creating output workspace..."); } return outputWorkspace; }
/** Execute the algorithm. */ void CreateEPP::exec() { API::MatrixWorkspace_sptr inputWS = getProperty(PropertyNames::INPUT_WORKSPACE); const auto &spectrumInfo = inputWS->spectrumInfo(); API::ITableWorkspace_sptr outputWS = API::WorkspaceFactory::Instance().createTable("TableWorkspace"); addEPPColumns(outputWS); const double sigma = getProperty(PropertyNames::SIGMA); const size_t spectraCount = spectrumInfo.size(); outputWS->setRowCount(spectraCount); const auto l1 = spectrumInfo.l1(); const double EFixed = inputWS->run().getPropertyAsSingleValue("Ei"); for (size_t i = 0; i < spectraCount; ++i) { const auto l2 = spectrumInfo.l2(i); const auto elasticTOF = Kernel::UnitConversion::run( "Energy", "TOF", EFixed, l1, l2, 0, Kernel::DeltaEMode::Direct, EFixed); outputWS->getRef<int>(ColumnNames::WS_INDEX, i) = static_cast<int>(i); outputWS->getRef<double>(ColumnNames::PEAK_CENTRE, i) = elasticTOF; outputWS->getRef<double>(ColumnNames::PEAK_CENTRE_ERR, i) = 0; outputWS->getRef<double>(ColumnNames::SIGMA, i) = sigma; outputWS->getRef<double>(ColumnNames::SIGMA_ERR, i) = 0; double height = 0; try { const auto elasticIndex = inputWS->binIndexOf(elasticTOF, i); height = inputWS->y(i)[elasticIndex]; } catch (std::out_of_range &) { std::ostringstream sout; sout << "EPP out of TOF range for workspace index " << i << ". Peak height set to zero."; g_log.warning() << sout.str(); } outputWS->getRef<double>(ColumnNames::HEIGHT, i) = height; outputWS->getRef<double>(ColumnNames::CHI_SQUARED, i) = 1; outputWS->getRef<std::string>(ColumnNames::STATUS, i) = "success"; } setProperty(PropertyNames::OUTPUT_WORKSPACE, outputWS); }
/** Fits each spectrum in the workspace to f(x) = A * sin( w * x + p) * @param ws :: [input] The workspace to fit * @param freq :: [input] Hint for the frequency (w) * @param groupName :: [input] The name of the output workspace group * @param resTab :: [output] Table workspace storing the asymmetries and phases * @param resGroup :: [output] Workspace group storing the fitting results */ void CalMuonDetectorPhases::fitWorkspace(const API::MatrixWorkspace_sptr &ws, double freq, std::string groupName, API::ITableWorkspace_sptr resTab, API::WorkspaceGroup_sptr &resGroup) { int nhist = static_cast<int>(ws->getNumberHistograms()); // Create the fitting function f(x) = A * sin ( w * x + p ) // The same function and initial parameters are used for each fit std::string funcStr = createFittingFunction(freq, true); // Set up results table resTab->addColumn("int", "Spectrum number"); resTab->addColumn("double", "Asymmetry"); resTab->addColumn("double", "Phase"); const auto &indexInfo = ws->indexInfo(); // Loop through fitting all spectra individually const static std::string success = "success"; for (int wsIndex = 0; wsIndex < nhist; wsIndex++) { reportProgress(wsIndex, nhist); const auto &yValues = ws->y(wsIndex); auto emptySpectrum = std::all_of(yValues.begin(), yValues.end(), [](double value) { return value == 0.; }); if (emptySpectrum) { g_log.warning("Spectrum " + std::to_string(wsIndex) + " is empty"); TableWorkspace_sptr tab = boost::make_shared<TableWorkspace>(); tab->addColumn("str", "Name"); tab->addColumn("double", "Value"); tab->addColumn("double", "Error"); for (int j = 0; j < 4; j++) { API::TableRow row = tab->appendRow(); if (j == PHASE_ROW) { row << "dummy" << 0.0 << 0.0; } else { row << "dummy" << ASYMM_ERROR << 0.0; } } extractDetectorInfo(*tab, *resTab, indexInfo.spectrumNumber(wsIndex)); } else { auto fit = createChildAlgorithm("Fit"); fit->initialize(); fit->setPropertyValue("Function", funcStr); fit->setProperty("InputWorkspace", ws); fit->setProperty("WorkspaceIndex", wsIndex); fit->setProperty("CreateOutput", true); fit->setPropertyValue("Output", groupName); fit->execute(); std::string status = fit->getProperty("OutputStatus"); if (!fit->isExecuted()) { std::ostringstream error; error << "Fit failed for spectrum at workspace index " << wsIndex; error << ": " << status; throw std::runtime_error(error.str()); } else if (status != success) { g_log.warning("Fit failed for spectrum at workspace index " + std::to_string(wsIndex) + ": " + status); } API::MatrixWorkspace_sptr fitOut = fit->getProperty("OutputWorkspace"); resGroup->addWorkspace(fitOut); API::ITableWorkspace_sptr tab = fit->getProperty("OutputParameters"); // Now we have our fitting results stored in tab // but we need to extract the relevant information, i.e. // the detector phases (parameter 'p') and asymmetries ('A') extractDetectorInfo(*tab, *resTab, indexInfo.spectrumNumber(wsIndex)); } } }
/** * Takes a single valued histogram workspace and assesses which histograms are * within the limits. * Those that are not are masked on the input workspace. * @param countsWS :: Input/Output Integrated workspace to diagnose. * @param medianvec The median value calculated from the current counts. * @param indexmap Index map. * @param maskWS :: A mask workspace to apply. * @return The number of detectors that failed the tests, not including those * skipped. */ int MedianDetectorTest::doDetectorTests( const API::MatrixWorkspace_sptr countsWS, const std::vector<double> medianvec, std::vector<std::vector<size_t>> indexmap, API::MatrixWorkspace_sptr maskWS) { g_log.debug("Applying the criteria to find failing detectors"); // A spectra can't fail if the statistics show its value is consistent with // the mean value, // check the error and how many errorbars we are away const double minSigma = getProperty("SignificanceTest"); // prepare to report progress const int numSpec(m_maxWsIndex - m_minWsIndex); const int progStep = static_cast<int>(ceil(numSpec / 30.0)); int steps(0); const double deadValue(1.0); int numFailed(0); bool checkForMask = false; Geometry::Instrument_const_sptr instrument = countsWS->getInstrument(); if (instrument != nullptr) { checkForMask = ((instrument->getSource() != nullptr) && (instrument->getSample() != nullptr)); } PARALLEL_FOR_IF(Kernel::threadSafe(*countsWS, *maskWS)) for (int j = 0; j < static_cast<int>(indexmap.size()); ++j) { std::vector<size_t> hists = indexmap.at(j); double median = medianvec.at(j); const size_t nhist = hists.size(); g_log.debug() << "new component with " << nhist << " spectra.\n"; for (size_t i = 0; i < nhist; ++i) { g_log.debug() << "Counts workspace index=" << i << ", Mask workspace index=" << hists.at(i) << '\n'; PARALLEL_START_INTERUPT_REGION ++steps; // update the progressbar information if (steps % progStep == 0) { progress(advanceProgress(progStep * static_cast<double>(RTMarkDetects) / numSpec)); } if (checkForMask) { const auto &detids = countsWS->getSpectrum(hists.at(i)).getDetectorIDs(); if (instrument->isDetectorMasked(detids)) { maskWS->mutableY(hists.at(i))[0] = deadValue; continue; } if (instrument->isMonitor(detids)) { // Don't include in calculation but don't mask it continue; } } const double signal = countsWS->y(hists.at(i))[0]; // Mask out NaN and infinite if (!std::isfinite(signal)) { maskWS->mutableY(hists.at(i))[0] = deadValue; PARALLEL_ATOMIC ++numFailed; continue; } const double error = minSigma * countsWS->e(hists.at(i))[0]; if ((signal < median * m_loFrac && (signal - median < -error)) || (signal > median * m_hiFrac && (signal - median > error))) { maskWS->mutableY(hists.at(i))[0] = deadValue; PARALLEL_ATOMIC ++numFailed; } PARALLEL_END_INTERUPT_REGION } PARALLEL_CHECK_INTERUPT_REGION // Log finds g_log.information() << numFailed << " spectra failed the median tests.\n"; } return numFailed; }
/** Forms the quadrature phase signal (squashogram) * @param ws :: [input] workspace containing the measured spectra * @param phase :: [input] table workspace containing the detector phases * @param n0 :: [input] vector containing the normalization constants * @return :: workspace containing the quadrature phase signal */ API::MatrixWorkspace_sptr PhaseQuadMuon::squash(const API::MatrixWorkspace_sptr &ws, const API::ITableWorkspace_sptr &phase, const std::vector<double> &n0) { // Poisson limit: below this number we consider we don't have enough // statistics // to apply sqrt(N). This is an arbitrary number used in the original code // provided by scientists double poissonLimit = 30.; size_t nspec = ws->getNumberHistograms(); size_t npoints = ws->blocksize(); // Muon life time in microseconds double muLife = PhysicalConstants::MuonLifetime * 1e6; if (n0.size() != nspec) { throw std::invalid_argument("Invalid normalization constants"); } // Get the maximum asymmetry double maxAsym = 0.; for (size_t h = 0; h < nspec; h++) { if (phase->Double(h, 1) > maxAsym) { maxAsym = phase->Double(h, 1); } } if (maxAsym == 0.0) { throw std::invalid_argument("Invalid detector asymmetries"); } std::vector<double> aj, bj; { // Calculate coefficients aj, bj double sxx = 0; double syy = 0; double sxy = 0; for (size_t h = 0; h < nspec; h++) { double asym = phase->Double(h, 1) / maxAsym; double phi = phase->Double(h, 2); double X = n0[h] * asym * cos(phi); double Y = n0[h] * asym * sin(phi); sxx += X * X; syy += Y * Y; sxy += X * Y; } double lam1 = 2 * syy / (sxx * syy - sxy * sxy); double mu1 = 2 * sxy / (sxy * sxy - sxx * syy); double lam2 = 2 * sxy / (sxy * sxy - sxx * syy); double mu2 = 2 * sxx / (sxx * syy - sxy * sxy); for (size_t h = 0; h < nspec; h++) { double asym = phase->Double(h, 1) / maxAsym; double phi = phase->Double(h, 2); double X = n0[h] * asym * cos(phi); double Y = n0[h] * asym * sin(phi); aj.push_back((lam1 * X + mu1 * Y) * 0.5); bj.push_back((lam2 * X + mu2 * Y) * 0.5); } } // First X value double X0 = ws->x(0).front(); // Create and populate output workspace API::MatrixWorkspace_sptr ows = API::WorkspaceFactory::Instance().create( "Workspace2D", 2, npoints + 1, npoints); // X ows->setSharedX(0, ws->sharedX(0)); ows->setSharedX(1, ws->sharedX(0)); // Phase quadrature auto &realY = ows->mutableY(0); auto &imagY = ows->mutableY(1); auto &realE = ows->mutableE(0); auto &imagE = ows->mutableE(1); for (size_t i = 0; i < npoints; i++) { for (size_t h = 0; h < nspec; h++) { // (X,Y,E) with exponential decay removed const double X = ws->x(h)[i]; const double Y = ws->y(h)[i] - n0[h] * exp(-(X - X0) / muLife); const double E = (ws->y(h)[i] > poissonLimit) ? ws->e(h)[i] : sqrt(n0[h] * exp(-(X - X0) / muLife)); realY[i] += aj[h] * Y; imagY[i] += bj[h] * Y; realE[i] += aj[h] * aj[h] * E * E; imagE[i] += bj[h] * bj[h] * E * E; } realE[i] = sqrt(realE[i]); imagE[i] = sqrt(imagE[i]); // Regain exponential decay const double X = ws->getSpectrum(0).x()[i]; const double e = exp(-(X - X0) / muLife); realY[i] /= e; imagY[i] /= e; realE[i] /= e; imagE[i] /= e; } return ows; }
/** Forms the quadrature phase signal (squashogram) * @param ws :: [input] workspace containing the measured spectra * @param phase :: [input] table workspace containing the detector phases * @param n0 :: [input] vector containing the normalization constants * @return :: workspace containing the quadrature phase signal */ API::MatrixWorkspace_sptr PhaseQuadMuon::squash(const API::MatrixWorkspace_sptr &ws, const API::ITableWorkspace_sptr &phase, const std::vector<double> &n0) { // Poisson limit: below this number we consider we don't have enough // statistics // to apply sqrt(N). This is an arbitrary number used in the original code // provided by scientists const double poissonLimit = 30.; // Muon life time in microseconds const double muLife = PhysicalConstants::MuonLifetime * 1e6; const size_t nspec = ws->getNumberHistograms(); if (n0.size() != nspec) { throw std::invalid_argument("Invalid normalization constants"); } auto names = phase->getColumnNames(); for (auto &name : names) { std::transform(name.begin(), name.end(), name.begin(), ::tolower); } auto phaseIndex = findName(phaseNames, names); auto asymmetryIndex = findName(asymmNames, names); // Get the maximum asymmetry double maxAsym = 0.; for (size_t h = 0; h < nspec; h++) { if (phase->Double(h, asymmetryIndex) > maxAsym && phase->Double(h, asymmetryIndex) != ASYMM_ERROR) { maxAsym = phase->Double(h, asymmetryIndex); } } if (maxAsym == 0.0) { throw std::invalid_argument("Invalid detector asymmetries"); } std::vector<bool> emptySpectrum; emptySpectrum.reserve(nspec); std::vector<double> aj, bj; { // Calculate coefficients aj, bj double sxx = 0.; double syy = 0.; double sxy = 0.; for (size_t h = 0; h < nspec; h++) { emptySpectrum.push_back( std::all_of(ws->y(h).begin(), ws->y(h).end(), [](double value) { return value == 0.; })); if (!emptySpectrum[h]) { const double asym = phase->Double(h, asymmetryIndex) / maxAsym; const double phi = phase->Double(h, phaseIndex); const double X = n0[h] * asym * cos(phi); const double Y = n0[h] * asym * sin(phi); sxx += X * X; syy += Y * Y; sxy += X * Y; } } const double lam1 = 2 * syy / (sxx * syy - sxy * sxy); const double mu1 = 2 * sxy / (sxy * sxy - sxx * syy); const double lam2 = 2 * sxy / (sxy * sxy - sxx * syy); const double mu2 = 2 * sxx / (sxx * syy - sxy * sxy); for (size_t h = 0; h < nspec; h++) { if (emptySpectrum[h]) { aj.push_back(0.0); bj.push_back(0.0); } else { const double asym = phase->Double(h, asymmetryIndex) / maxAsym; const double phi = phase->Double(h, phaseIndex); const double X = n0[h] * asym * cos(phi); const double Y = n0[h] * asym * sin(phi); aj.push_back((lam1 * X + mu1 * Y) * 0.5); bj.push_back((lam2 * X + mu2 * Y) * 0.5); } } } const size_t npoints = ws->blocksize(); // Create and populate output workspace API::MatrixWorkspace_sptr ows = API::WorkspaceFactory::Instance().create(ws, 2, npoints + 1, npoints); // X ows->setSharedX(0, ws->sharedX(0)); ows->setSharedX(1, ws->sharedX(0)); // Phase quadrature auto &realY = ows->mutableY(0); auto &imagY = ows->mutableY(1); auto &realE = ows->mutableE(0); auto &imagE = ows->mutableE(1); const auto xPointData = ws->histogram(0).points(); // First X value const double X0 = xPointData.front(); // calculate exponential decay outside of the loop std::vector<double> expDecay = xPointData.rawData(); std::transform(expDecay.begin(), expDecay.end(), expDecay.begin(), [X0, muLife](double x) { return exp(-(x - X0) / muLife); }); for (size_t i = 0; i < npoints; i++) { for (size_t h = 0; h < nspec; h++) { if (!emptySpectrum[h]) { // (X,Y,E) with exponential decay removed const double X = ws->x(h)[i]; const double exponential = n0[h] * exp(-(X - X0) / muLife); const double Y = ws->y(h)[i] - exponential; const double E = (ws->y(h)[i] > poissonLimit) ? ws->e(h)[i] : sqrt(exponential); realY[i] += aj[h] * Y; imagY[i] += bj[h] * Y; realE[i] += aj[h] * aj[h] * E * E; imagE[i] += bj[h] * bj[h] * E * E; } } realE[i] = sqrt(realE[i]); imagE[i] = sqrt(imagE[i]); // Regain exponential decay realY[i] /= expDecay[i]; imagY[i] /= expDecay[i]; realE[i] /= expDecay[i]; imagE[i] /= expDecay[i]; } // New Y axis label ows->setYUnit("Asymmetry"); return ows; }
/** Carries out the bin-by-bin normalization * @param inputWorkspace The input workspace * @param outputWorkspace The result workspace */ void NormaliseToMonitor::normaliseBinByBin( const API::MatrixWorkspace_sptr &inputWorkspace, API::MatrixWorkspace_sptr &outputWorkspace) { EventWorkspace_sptr inputEvent = boost::dynamic_pointer_cast<EventWorkspace>(inputWorkspace); // Only create output workspace if different to input one if (outputWorkspace != inputWorkspace) { if (inputEvent) { outputWorkspace = inputWorkspace->clone(); } else outputWorkspace = WorkspaceFactory::Instance().create(inputWorkspace); } auto outputEvent = boost::dynamic_pointer_cast<EventWorkspace>(outputWorkspace); // Get hold of the monitor spectrum const auto &monX = m_monitor->binEdges(0); auto monY = m_monitor->counts(0); auto monE = m_monitor->countStandardDeviations(0); // Calculate the overall normalization just the once if bins are all matching if (m_commonBins) this->normalisationFactor(monX, monY, monE); const size_t numHists = inputWorkspace->getNumberHistograms(); auto specLength = inputWorkspace->blocksize(); // Flag set when a division by 0 is found bool hasZeroDivision = false; Progress prog(this, 0.0, 1.0, numHists); // Loop over spectra PARALLEL_FOR_IF( Kernel::threadSafe(*inputWorkspace, *outputWorkspace, *m_monitor)) for (int64_t i = 0; i < int64_t(numHists); ++i) { PARALLEL_START_INTERUPT_REGION prog.report(); const auto &X = inputWorkspace->binEdges(i); // If not rebinning, just point to our monitor spectra, otherwise create new // vectors auto Y = (m_commonBins ? monY : Counts(specLength)); auto E = (m_commonBins ? monE : CountStandardDeviations(specLength)); if (!m_commonBins) { // ConvertUnits can give X vectors of all zeros - skip these, they cause // problems if (X.back() == 0.0 && X.front() == 0.0) continue; // Rebin the monitor spectrum to match the binning of the current data // spectrum VectorHelper::rebinHistogram( monX.rawData(), monY.mutableRawData(), monE.mutableRawData(), X.rawData(), Y.mutableRawData(), E.mutableRawData(), false); // Recalculate the overall normalization factor this->normalisationFactor(X, Y, E); } if (inputEvent) { // ----------------------------------- EventWorkspace // --------------------------------------- EventList &outEL = outputEvent->getSpectrum(i); outEL.divide(X.rawData(), Y.mutableRawData(), E.mutableRawData()); } else { // ----------------------------------- Workspace2D // --------------------------------------- auto &YOut = outputWorkspace->mutableY(i); auto &EOut = outputWorkspace->mutableE(i); const auto &inY = inputWorkspace->y(i); const auto &inE = inputWorkspace->e(i); outputWorkspace->mutableX(i) = inputWorkspace->x(i); // The code below comes more or less straight out of Divide.cpp for (size_t k = 0; k < specLength; ++k) { // Get the input Y's const double leftY = inY[k]; const double rightY = Y[k]; if (rightY == 0.0) { hasZeroDivision = true; } // Calculate result and store in local variable to avoid overwriting // original data if // output workspace is same as one of the input ones const double newY = leftY / rightY; if (fabs(rightY) > 1.0e-12 && fabs(newY) > 1.0e-12) { const double lhsFactor = (inE[k] < 1.0e-12 || fabs(leftY) < 1.0e-12) ? 0.0 : pow((inE[k] / leftY), 2); const double rhsFactor = E[k] < 1.0e-12 ? 0.0 : pow((E[k] / rightY), 2); EOut[k] = std::abs(newY) * sqrt(lhsFactor + rhsFactor); } // Now store the result YOut[k] = newY; } // end Workspace2D case } // end loop over current spectrum PARALLEL_END_INTERUPT_REGION } // end loop over spectra PARALLEL_CHECK_INTERUPT_REGION if (hasZeroDivision) { g_log.warning() << "Division by zero in some of the bins.\n"; } }