Пример #1
0
/**
 * Mask the outlier values to get a better median value.
 * @param medianvec The median value calculated from the current counts.
 * @param countsWS The counts workspace. Any outliers will be masked here.
 * @param indexmap Index map.
 * @returns The number failed.
 */
int MedianDetectorTest::maskOutliers(
    const std::vector<double> medianvec, API::MatrixWorkspace_sptr countsWS,
    std::vector<std::vector<size_t>> indexmap) {

  // Fractions of the median
  const double out_lo = getProperty("LowOutlier");
  const double out_hi = getProperty("HighOutlier");

  int numFailed(0);

  bool checkForMask = false;
  Geometry::Instrument_const_sptr instrument = countsWS->getInstrument();
  if (instrument != nullptr) {
    checkForMask = ((instrument->getSource() != nullptr) &&
                    (instrument->getSample() != nullptr));
  }

  for (size_t i = 0; i < indexmap.size(); ++i) {
    std::vector<size_t> &hists = indexmap[i];
    double median = medianvec[i];

    PARALLEL_FOR_IF(Kernel::threadSafe(*countsWS))
    for (int j = 0; j < static_cast<int>(hists.size()); ++j) { // NOLINT
      const double value = countsWS->y(hists[j])[0];
      if ((value == 0.) && checkForMask) {
        const auto &detids = countsWS->getSpectrum(hists[j]).getDetectorIDs();
        if (instrument->isDetectorMasked(detids)) {
          numFailed -= 1; // it was already masked
        }
      }
      if ((value < out_lo * median) && (value > 0.0)) {
        countsWS->maskWorkspaceIndex(hists[j]);
        PARALLEL_ATOMIC
        ++numFailed;
      } else if (value > out_hi * median) {
        countsWS->maskWorkspaceIndex(hists[j]);
        PARALLEL_ATOMIC
        ++numFailed;
      }
    }
    PARALLEL_CHECK_INTERUPT_REGION
  }

  return numFailed;
}
Пример #2
0
/** Create the final output workspace after converting the X axis
* @returns the final output workspace
*
* @param progress :: Progress indicator
* @param targetUnit :: Target conversion unit
* @param inputWS :: Input workspace
* @param nHist :: Stores the number of histograms
*/
MatrixWorkspace_sptr ConvertSpectrumAxis2::createOutputWorkspace(
    API::Progress &progress, const std::string &targetUnit,
    API::MatrixWorkspace_sptr &inputWS, size_t nHist) {
  // Create the output workspace. Can not re-use the input one because the
  // spectra are re-ordered.
  MatrixWorkspace_sptr outputWorkspace = WorkspaceFactory::Instance().create(
      inputWS, m_indexMap.size(), inputWS->x(0).size(), inputWS->y(0).size());

  // Now set up a new numeric axis holding the theta values corresponding to
  // each spectrum.
  auto const newAxis = new NumericAxis(m_indexMap.size());
  outputWorkspace->replaceAxis(1, newAxis);

  progress.setNumSteps(nHist + m_indexMap.size());

  // Set the units of the axis.
  if (targetUnit == "theta" || targetUnit == "Theta" ||
      targetUnit == "signed_theta" || targetUnit == "SignedTheta") {
    newAxis->unit() = boost::make_shared<Units::Degrees>();
  } else if (targetUnit == "ElasticQ") {
    newAxis->unit() = UnitFactory::Instance().create("MomentumTransfer");
  } else if (targetUnit == "ElasticQSquared") {
    newAxis->unit() = UnitFactory::Instance().create("QSquared");
  }

  std::multimap<double, size_t>::const_iterator it;
  size_t currentIndex = 0;
  for (it = m_indexMap.begin(); it != m_indexMap.end(); ++it) {
    // Set the axis value.
    newAxis->setValue(currentIndex, it->first);
    // Copy over the data.
    outputWorkspace->setHistogram(currentIndex, inputWS->histogram(it->second));
    // We can keep the spectrum numbers etc.
    outputWorkspace->getSpectrum(currentIndex)
        .copyInfoFrom(inputWS->getSpectrum(it->second));
    ++currentIndex;

    progress.report("Creating output workspace...");
  }
  return outputWorkspace;
}
Пример #3
0
/** Execute the algorithm.
 */
void CreateEPP::exec() {
  API::MatrixWorkspace_sptr inputWS =
      getProperty(PropertyNames::INPUT_WORKSPACE);
  const auto &spectrumInfo = inputWS->spectrumInfo();
  API::ITableWorkspace_sptr outputWS =
      API::WorkspaceFactory::Instance().createTable("TableWorkspace");
  addEPPColumns(outputWS);
  const double sigma = getProperty(PropertyNames::SIGMA);
  const size_t spectraCount = spectrumInfo.size();
  outputWS->setRowCount(spectraCount);
  const auto l1 = spectrumInfo.l1();
  const double EFixed = inputWS->run().getPropertyAsSingleValue("Ei");
  for (size_t i = 0; i < spectraCount; ++i) {
    const auto l2 = spectrumInfo.l2(i);
    const auto elasticTOF = Kernel::UnitConversion::run(
        "Energy", "TOF", EFixed, l1, l2, 0, Kernel::DeltaEMode::Direct, EFixed);
    outputWS->getRef<int>(ColumnNames::WS_INDEX, i) = static_cast<int>(i);
    outputWS->getRef<double>(ColumnNames::PEAK_CENTRE, i) = elasticTOF;
    outputWS->getRef<double>(ColumnNames::PEAK_CENTRE_ERR, i) = 0;
    outputWS->getRef<double>(ColumnNames::SIGMA, i) = sigma;
    outputWS->getRef<double>(ColumnNames::SIGMA_ERR, i) = 0;
    double height = 0;
    try {
      const auto elasticIndex = inputWS->binIndexOf(elasticTOF, i);
      height = inputWS->y(i)[elasticIndex];
    } catch (std::out_of_range &) {
      std::ostringstream sout;
      sout << "EPP out of TOF range for workspace index " << i
           << ". Peak height set to zero.";
      g_log.warning() << sout.str();
    }
    outputWS->getRef<double>(ColumnNames::HEIGHT, i) = height;
    outputWS->getRef<double>(ColumnNames::CHI_SQUARED, i) = 1;
    outputWS->getRef<std::string>(ColumnNames::STATUS, i) = "success";
  }
  setProperty(PropertyNames::OUTPUT_WORKSPACE, outputWS);
}
/** Fits each spectrum in the workspace to f(x) = A * sin( w * x + p)
 * @param ws :: [input] The workspace to fit
 * @param freq :: [input] Hint for the frequency (w)
 * @param groupName :: [input] The name of the output workspace group
 * @param resTab :: [output] Table workspace storing the asymmetries and phases
 * @param resGroup :: [output] Workspace group storing the fitting results
 */
void CalMuonDetectorPhases::fitWorkspace(const API::MatrixWorkspace_sptr &ws,
                                         double freq, std::string groupName,
                                         API::ITableWorkspace_sptr resTab,
                                         API::WorkspaceGroup_sptr &resGroup) {

  int nhist = static_cast<int>(ws->getNumberHistograms());

  // Create the fitting function f(x) = A * sin ( w * x + p )
  // The same function and initial parameters are used for each fit
  std::string funcStr = createFittingFunction(freq, true);

  // Set up results table
  resTab->addColumn("int", "Spectrum number");
  resTab->addColumn("double", "Asymmetry");
  resTab->addColumn("double", "Phase");

  const auto &indexInfo = ws->indexInfo();

  // Loop through fitting all spectra individually
  const static std::string success = "success";
  for (int wsIndex = 0; wsIndex < nhist; wsIndex++) {
    reportProgress(wsIndex, nhist);
    const auto &yValues = ws->y(wsIndex);
    auto emptySpectrum = std::all_of(yValues.begin(), yValues.end(),
                                     [](double value) { return value == 0.; });
    if (emptySpectrum) {
      g_log.warning("Spectrum " + std::to_string(wsIndex) + " is empty");
      TableWorkspace_sptr tab = boost::make_shared<TableWorkspace>();
      tab->addColumn("str", "Name");
      tab->addColumn("double", "Value");
      tab->addColumn("double", "Error");
      for (int j = 0; j < 4; j++) {
        API::TableRow row = tab->appendRow();
        if (j == PHASE_ROW) {
          row << "dummy" << 0.0 << 0.0;
        } else {
          row << "dummy" << ASYMM_ERROR << 0.0;
        }
      }

      extractDetectorInfo(*tab, *resTab, indexInfo.spectrumNumber(wsIndex));

    } else {
      auto fit = createChildAlgorithm("Fit");
      fit->initialize();
      fit->setPropertyValue("Function", funcStr);
      fit->setProperty("InputWorkspace", ws);
      fit->setProperty("WorkspaceIndex", wsIndex);
      fit->setProperty("CreateOutput", true);
      fit->setPropertyValue("Output", groupName);
      fit->execute();

      std::string status = fit->getProperty("OutputStatus");
      if (!fit->isExecuted()) {
        std::ostringstream error;
        error << "Fit failed for spectrum at workspace index " << wsIndex;
        error << ": " << status;
        throw std::runtime_error(error.str());
      } else if (status != success) {
        g_log.warning("Fit failed for spectrum at workspace index " +
                      std::to_string(wsIndex) + ": " + status);
      }

      API::MatrixWorkspace_sptr fitOut = fit->getProperty("OutputWorkspace");
      resGroup->addWorkspace(fitOut);
      API::ITableWorkspace_sptr tab = fit->getProperty("OutputParameters");
      // Now we have our fitting results stored in tab
      // but we need to extract the relevant information, i.e.
      // the detector phases (parameter 'p') and asymmetries ('A')
      extractDetectorInfo(*tab, *resTab, indexInfo.spectrumNumber(wsIndex));
    }
  }
}
Пример #5
0
/**
 * Takes a single valued histogram workspace and assesses which histograms are
 * within the limits.
 * Those that are not are masked on the input workspace.
 * @param countsWS :: Input/Output Integrated workspace to diagnose.
 * @param medianvec The median value calculated from the current counts.
 * @param indexmap Index map.
 * @param maskWS :: A mask workspace to apply.
 * @return The number of detectors that failed the tests, not including those
 * skipped.
 */
int MedianDetectorTest::doDetectorTests(
    const API::MatrixWorkspace_sptr countsWS,
    const std::vector<double> medianvec,
    std::vector<std::vector<size_t>> indexmap,
    API::MatrixWorkspace_sptr maskWS) {
  g_log.debug("Applying the criteria to find failing detectors");

  // A spectra can't fail if the statistics show its value is consistent with
  // the mean value,
  // check the error and how many errorbars we are away
  const double minSigma = getProperty("SignificanceTest");

  // prepare to report progress
  const int numSpec(m_maxWsIndex - m_minWsIndex);
  const int progStep = static_cast<int>(ceil(numSpec / 30.0));
  int steps(0);

  const double deadValue(1.0);
  int numFailed(0);

  bool checkForMask = false;
  Geometry::Instrument_const_sptr instrument = countsWS->getInstrument();
  if (instrument != nullptr) {
    checkForMask = ((instrument->getSource() != nullptr) &&
                    (instrument->getSample() != nullptr));
  }

  PARALLEL_FOR_IF(Kernel::threadSafe(*countsWS, *maskWS))
  for (int j = 0; j < static_cast<int>(indexmap.size()); ++j) {
    std::vector<size_t> hists = indexmap.at(j);
    double median = medianvec.at(j);
    const size_t nhist = hists.size();
    g_log.debug() << "new component with " << nhist << " spectra.\n";
    for (size_t i = 0; i < nhist; ++i) {
      g_log.debug() << "Counts workspace index=" << i
                    << ", Mask workspace index=" << hists.at(i) << '\n';
      PARALLEL_START_INTERUPT_REGION
      ++steps;
      // update the progressbar information
      if (steps % progStep == 0) {
        progress(advanceProgress(progStep * static_cast<double>(RTMarkDetects) /
                                 numSpec));
      }

      if (checkForMask) {
        const auto &detids =
            countsWS->getSpectrum(hists.at(i)).getDetectorIDs();
        if (instrument->isDetectorMasked(detids)) {
          maskWS->mutableY(hists.at(i))[0] = deadValue;
          continue;
        }
        if (instrument->isMonitor(detids)) {
          // Don't include in calculation but don't mask it
          continue;
        }
      }

      const double signal = countsWS->y(hists.at(i))[0];

      // Mask out NaN and infinite
      if (!std::isfinite(signal)) {
        maskWS->mutableY(hists.at(i))[0] = deadValue;
        PARALLEL_ATOMIC
        ++numFailed;
        continue;
      }

      const double error = minSigma * countsWS->e(hists.at(i))[0];

      if ((signal < median * m_loFrac && (signal - median < -error)) ||
          (signal > median * m_hiFrac && (signal - median > error))) {
        maskWS->mutableY(hists.at(i))[0] = deadValue;
        PARALLEL_ATOMIC
        ++numFailed;
      }

      PARALLEL_END_INTERUPT_REGION
    }
    PARALLEL_CHECK_INTERUPT_REGION

    // Log finds
    g_log.information() << numFailed << " spectra failed the median tests.\n";
  }
  return numFailed;
}
Пример #6
0
/** Forms the quadrature phase signal (squashogram)
* @param ws :: [input] workspace containing the measured spectra
* @param phase :: [input] table workspace containing the detector phases
* @param n0 :: [input] vector containing the normalization constants
* @return :: workspace containing the quadrature phase signal
*/
API::MatrixWorkspace_sptr
PhaseQuadMuon::squash(const API::MatrixWorkspace_sptr &ws,
                      const API::ITableWorkspace_sptr &phase,
                      const std::vector<double> &n0) {

  // Poisson limit: below this number we consider we don't have enough
  // statistics
  // to apply sqrt(N). This is an arbitrary number used in the original code
  // provided by scientists
  double poissonLimit = 30.;

  size_t nspec = ws->getNumberHistograms();
  size_t npoints = ws->blocksize();

  // Muon life time in microseconds
  double muLife = PhysicalConstants::MuonLifetime * 1e6;

  if (n0.size() != nspec) {
    throw std::invalid_argument("Invalid normalization constants");
  }

  // Get the maximum asymmetry
  double maxAsym = 0.;
  for (size_t h = 0; h < nspec; h++) {
    if (phase->Double(h, 1) > maxAsym) {
      maxAsym = phase->Double(h, 1);
    }
  }
  if (maxAsym == 0.0) {
    throw std::invalid_argument("Invalid detector asymmetries");
  }

  std::vector<double> aj, bj;
  {
    // Calculate coefficients aj, bj

    double sxx = 0;
    double syy = 0;
    double sxy = 0;

    for (size_t h = 0; h < nspec; h++) {
      double asym = phase->Double(h, 1) / maxAsym;
      double phi = phase->Double(h, 2);
      double X = n0[h] * asym * cos(phi);
      double Y = n0[h] * asym * sin(phi);
      sxx += X * X;
      syy += Y * Y;
      sxy += X * Y;
    }

    double lam1 = 2 * syy / (sxx * syy - sxy * sxy);
    double mu1 = 2 * sxy / (sxy * sxy - sxx * syy);
    double lam2 = 2 * sxy / (sxy * sxy - sxx * syy);
    double mu2 = 2 * sxx / (sxx * syy - sxy * sxy);
    for (size_t h = 0; h < nspec; h++) {
      double asym = phase->Double(h, 1) / maxAsym;
      double phi = phase->Double(h, 2);
      double X = n0[h] * asym * cos(phi);
      double Y = n0[h] * asym * sin(phi);
      aj.push_back((lam1 * X + mu1 * Y) * 0.5);
      bj.push_back((lam2 * X + mu2 * Y) * 0.5);
    }
  }

  // First X value
  double X0 = ws->x(0).front();

  // Create and populate output workspace
  API::MatrixWorkspace_sptr ows = API::WorkspaceFactory::Instance().create(
      "Workspace2D", 2, npoints + 1, npoints);

  // X
  ows->setSharedX(0, ws->sharedX(0));
  ows->setSharedX(1, ws->sharedX(0));

  // Phase quadrature
  auto &realY = ows->mutableY(0);
  auto &imagY = ows->mutableY(1);
  auto &realE = ows->mutableE(0);
  auto &imagE = ows->mutableE(1);

  for (size_t i = 0; i < npoints; i++) {
    for (size_t h = 0; h < nspec; h++) {

      // (X,Y,E) with exponential decay removed
      const double X = ws->x(h)[i];
      const double Y = ws->y(h)[i] - n0[h] * exp(-(X - X0) / muLife);
      const double E = (ws->y(h)[i] > poissonLimit)
                           ? ws->e(h)[i]
                           : sqrt(n0[h] * exp(-(X - X0) / muLife));

      realY[i] += aj[h] * Y;
      imagY[i] += bj[h] * Y;
      realE[i] += aj[h] * aj[h] * E * E;
      imagE[i] += bj[h] * bj[h] * E * E;
    }
    realE[i] = sqrt(realE[i]);
    imagE[i] = sqrt(imagE[i]);

    // Regain exponential decay
    const double X = ws->getSpectrum(0).x()[i];
    const double e = exp(-(X - X0) / muLife);
    realY[i] /= e;
    imagY[i] /= e;
    realE[i] /= e;
    imagE[i] /= e;
  }

  return ows;
}
Пример #7
0
/** Forms the quadrature phase signal (squashogram)
 * @param ws :: [input] workspace containing the measured spectra
 * @param phase :: [input] table workspace containing the detector phases
 * @param n0 :: [input] vector containing the normalization constants
 * @return :: workspace containing the quadrature phase signal
 */
API::MatrixWorkspace_sptr
PhaseQuadMuon::squash(const API::MatrixWorkspace_sptr &ws,
                      const API::ITableWorkspace_sptr &phase,
                      const std::vector<double> &n0) {

  // Poisson limit: below this number we consider we don't have enough
  // statistics
  // to apply sqrt(N). This is an arbitrary number used in the original code
  // provided by scientists
  const double poissonLimit = 30.;

  // Muon life time in microseconds
  const double muLife = PhysicalConstants::MuonLifetime * 1e6;

  const size_t nspec = ws->getNumberHistograms();

  if (n0.size() != nspec) {
    throw std::invalid_argument("Invalid normalization constants");
  }

  auto names = phase->getColumnNames();
  for (auto &name : names) {
    std::transform(name.begin(), name.end(), name.begin(), ::tolower);
  }
  auto phaseIndex = findName(phaseNames, names);
  auto asymmetryIndex = findName(asymmNames, names);

  // Get the maximum asymmetry
  double maxAsym = 0.;
  for (size_t h = 0; h < nspec; h++) {
    if (phase->Double(h, asymmetryIndex) > maxAsym &&
        phase->Double(h, asymmetryIndex) != ASYMM_ERROR) {
      maxAsym = phase->Double(h, asymmetryIndex);
    }
  }

  if (maxAsym == 0.0) {
    throw std::invalid_argument("Invalid detector asymmetries");
  }
  std::vector<bool> emptySpectrum;
  emptySpectrum.reserve(nspec);
  std::vector<double> aj, bj;
  {
    // Calculate coefficients aj, bj

    double sxx = 0.;
    double syy = 0.;
    double sxy = 0.;
    for (size_t h = 0; h < nspec; h++) {
      emptySpectrum.push_back(
          std::all_of(ws->y(h).begin(), ws->y(h).end(),
                      [](double value) { return value == 0.; }));
      if (!emptySpectrum[h]) {
        const double asym = phase->Double(h, asymmetryIndex) / maxAsym;
        const double phi = phase->Double(h, phaseIndex);
        const double X = n0[h] * asym * cos(phi);
        const double Y = n0[h] * asym * sin(phi);
        sxx += X * X;
        syy += Y * Y;
        sxy += X * Y;
      }
    }

    const double lam1 = 2 * syy / (sxx * syy - sxy * sxy);
    const double mu1 = 2 * sxy / (sxy * sxy - sxx * syy);
    const double lam2 = 2 * sxy / (sxy * sxy - sxx * syy);
    const double mu2 = 2 * sxx / (sxx * syy - sxy * sxy);
    for (size_t h = 0; h < nspec; h++) {
      if (emptySpectrum[h]) {
        aj.push_back(0.0);
        bj.push_back(0.0);
      } else {
        const double asym = phase->Double(h, asymmetryIndex) / maxAsym;
        const double phi = phase->Double(h, phaseIndex);
        const double X = n0[h] * asym * cos(phi);
        const double Y = n0[h] * asym * sin(phi);
        aj.push_back((lam1 * X + mu1 * Y) * 0.5);
        bj.push_back((lam2 * X + mu2 * Y) * 0.5);
      }
    }
  }

  const size_t npoints = ws->blocksize();
  // Create and populate output workspace
  API::MatrixWorkspace_sptr ows =
      API::WorkspaceFactory::Instance().create(ws, 2, npoints + 1, npoints);

  // X
  ows->setSharedX(0, ws->sharedX(0));
  ows->setSharedX(1, ws->sharedX(0));

  // Phase quadrature
  auto &realY = ows->mutableY(0);
  auto &imagY = ows->mutableY(1);
  auto &realE = ows->mutableE(0);
  auto &imagE = ows->mutableE(1);

  const auto xPointData = ws->histogram(0).points();
  // First X value
  const double X0 = xPointData.front();

  // calculate exponential decay outside of the loop
  std::vector<double> expDecay = xPointData.rawData();
  std::transform(expDecay.begin(), expDecay.end(), expDecay.begin(),
                 [X0, muLife](double x) { return exp(-(x - X0) / muLife); });

  for (size_t i = 0; i < npoints; i++) {
    for (size_t h = 0; h < nspec; h++) {
      if (!emptySpectrum[h]) {
        // (X,Y,E) with exponential decay removed
        const double X = ws->x(h)[i];
        const double exponential = n0[h] * exp(-(X - X0) / muLife);
        const double Y = ws->y(h)[i] - exponential;
        const double E =
            (ws->y(h)[i] > poissonLimit) ? ws->e(h)[i] : sqrt(exponential);

        realY[i] += aj[h] * Y;
        imagY[i] += bj[h] * Y;
        realE[i] += aj[h] * aj[h] * E * E;
        imagE[i] += bj[h] * bj[h] * E * E;
      }
    }
    realE[i] = sqrt(realE[i]);
    imagE[i] = sqrt(imagE[i]);

    // Regain exponential decay
    realY[i] /= expDecay[i];
    imagY[i] /= expDecay[i];
    realE[i] /= expDecay[i];
    imagE[i] /= expDecay[i];
  }

  // New Y axis label
  ows->setYUnit("Asymmetry");

  return ows;
}
Пример #8
0
/** Carries out the bin-by-bin normalization
 *  @param inputWorkspace The input workspace
 *  @param outputWorkspace The result workspace
 */
void NormaliseToMonitor::normaliseBinByBin(
    const API::MatrixWorkspace_sptr &inputWorkspace,
    API::MatrixWorkspace_sptr &outputWorkspace) {
  EventWorkspace_sptr inputEvent =
      boost::dynamic_pointer_cast<EventWorkspace>(inputWorkspace);

  // Only create output workspace if different to input one
  if (outputWorkspace != inputWorkspace) {
    if (inputEvent) {
      outputWorkspace = inputWorkspace->clone();
    } else
      outputWorkspace = WorkspaceFactory::Instance().create(inputWorkspace);
  }
  auto outputEvent =
      boost::dynamic_pointer_cast<EventWorkspace>(outputWorkspace);

  // Get hold of the monitor spectrum
  const auto &monX = m_monitor->binEdges(0);
  auto monY = m_monitor->counts(0);
  auto monE = m_monitor->countStandardDeviations(0);
  // Calculate the overall normalization just the once if bins are all matching
  if (m_commonBins)
    this->normalisationFactor(monX, monY, monE);

  const size_t numHists = inputWorkspace->getNumberHistograms();
  auto specLength = inputWorkspace->blocksize();
  // Flag set when a division by 0 is found
  bool hasZeroDivision = false;
  Progress prog(this, 0.0, 1.0, numHists);
  // Loop over spectra
  PARALLEL_FOR_IF(
      Kernel::threadSafe(*inputWorkspace, *outputWorkspace, *m_monitor))
  for (int64_t i = 0; i < int64_t(numHists); ++i) {
    PARALLEL_START_INTERUPT_REGION
    prog.report();

    const auto &X = inputWorkspace->binEdges(i);
    // If not rebinning, just point to our monitor spectra, otherwise create new
    // vectors

    auto Y = (m_commonBins ? monY : Counts(specLength));
    auto E = (m_commonBins ? monE : CountStandardDeviations(specLength));

    if (!m_commonBins) {
      // ConvertUnits can give X vectors of all zeros - skip these, they cause
      // problems
      if (X.back() == 0.0 && X.front() == 0.0)
        continue;
      // Rebin the monitor spectrum to match the binning of the current data
      // spectrum
      VectorHelper::rebinHistogram(
          monX.rawData(), monY.mutableRawData(), monE.mutableRawData(),
          X.rawData(), Y.mutableRawData(), E.mutableRawData(), false);
      // Recalculate the overall normalization factor
      this->normalisationFactor(X, Y, E);
    }

    if (inputEvent) {
      // ----------------------------------- EventWorkspace
      // ---------------------------------------
      EventList &outEL = outputEvent->getSpectrum(i);
      outEL.divide(X.rawData(), Y.mutableRawData(), E.mutableRawData());
    } else {
      // ----------------------------------- Workspace2D
      // ---------------------------------------
      auto &YOut = outputWorkspace->mutableY(i);
      auto &EOut = outputWorkspace->mutableE(i);
      const auto &inY = inputWorkspace->y(i);
      const auto &inE = inputWorkspace->e(i);
      outputWorkspace->mutableX(i) = inputWorkspace->x(i);

      // The code below comes more or less straight out of Divide.cpp
      for (size_t k = 0; k < specLength; ++k) {
        // Get the input Y's
        const double leftY = inY[k];
        const double rightY = Y[k];

        if (rightY == 0.0) {
          hasZeroDivision = true;
        }

        // Calculate result and store in local variable to avoid overwriting
        // original data if
        // output workspace is same as one of the input ones
        const double newY = leftY / rightY;

        if (fabs(rightY) > 1.0e-12 && fabs(newY) > 1.0e-12) {
          const double lhsFactor = (inE[k] < 1.0e-12 || fabs(leftY) < 1.0e-12)
                                       ? 0.0
                                       : pow((inE[k] / leftY), 2);
          const double rhsFactor =
              E[k] < 1.0e-12 ? 0.0 : pow((E[k] / rightY), 2);
          EOut[k] = std::abs(newY) * sqrt(lhsFactor + rhsFactor);
        }

        // Now store the result
        YOut[k] = newY;
      } // end Workspace2D case
    }   // end loop over current spectrum

    PARALLEL_END_INTERUPT_REGION
  } // end loop over spectra
  PARALLEL_CHECK_INTERUPT_REGION
  if (hasZeroDivision) {
    g_log.warning() << "Division by zero in some of the bins.\n";
  }
}